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A BIOECONOMIC MODEL FOR WEED MANAGEMENT IN CORN AND SOYBEAN 

Abstract 

A bioeconomic model of weed management in corn and soybean called WEEDSIM is 
L.. 

introduced. WEEDSIM innovates beyond existing decision support models by incorporating 

weed population dynamics into the decision rule, while at the same time accommodating 

multiple weed species and control treatments. The associated WFARM model provides a 

whole-farm shell , making it possible either to modify WEEDSIM recommendations in a 

context where field time is limiting, or to evaluate the performance of WEEDSIM 

recommendations over various states of nature. WEEDSIM and WFARM are modularly 

programmed and rely on external data files, making them easily modified and expanded. 
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A BIOECONOMIC MODEL FOR WEED MANAGEMENT IN CORN AND SOYBEAN 

Introduction 

Weeds cause crop losses to U.S . corn and soybean producers valued annually in the 

billions of dollars (Chandler et al.). Herbicides are the chief means of weed control for these 

farmers. The advent of herbicides has permitted U.S. farmers to achieve higher yields with 

less labor. Herbicides' high efficacy, rapid application, and potential for pre-emergent weed 

control have also ameliorated the risk of failing to complete field work due to unsuitable 

weather. 

Nonetheless, weed control is expensive. Herbicides accounted for virtually all of the 

$20.48 per acre spent by the average U.S. soybean grower on agricultural chemicals in 1990. 

Chemicals constituted the largest single component (29%) of variable operating costs. 

Herbicides also account for the lion's share of the $22.64 per acre spent by the average U.S. 

corn grower on chemicals. After fertilizer, chemicals are the second largest component 

(17%) of variable costs in U.S. corn production (USDA 1991a and 1991b). 

The potential health hazard posed by pesticides has raised public concern about their 

use. Herbicides contribute significantly to groundwater contamination in rural areas. Fully 

96% of U.S. corn and soybean cropland was treated with herbicides in 1988. This accounted 

for 81 % of all herbicides applied to U.S. crops that year (Osteen and Szmedra) and 

constituted roughly ten times as much quantity of chemical active ingredient as the total for 
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both insecticides and fungicides on these crops (USDA l99la). An estimated 46 million 

Americans drink water from groundwater supplies that may be contaminated by pesticides, 

which include insecticides, nematicides and fungicides, as well as herbicides (Nielsen and 

Lee). In addition, there is growing evidence that herbicide use may be associated with certain 

types of cancer (Hoar et al. , Wigle et al.). 

Cost and health concerns combine to provide farmers with a powerful incentive to 

manage weed control actions carefully. One means to this end is to base weed management 

on specific, quantitative information about weed populations. ln order to develop suitable 

models and the agronomic data they require, a regional research project was recently 

organized.1 This move toward information-based, integrated weed management represents an 

important shift from the routine chemical treatment that has become the norm for weed 

management in U.S. field crops. 

Previous Weed Management Models 

Integrated management of pests in general-and weeds in particular-identifies pest 

population thresholds at which control is justified. Existing weed management models can be 

divided between research models and practical models. The former deepen our understanding 

of how weed-crop ecology works. However, they tend to be narrowly focused, typically 

involving a single crop, one or two weed species, and a single control treatment. By contrast, 

the practical models typically cover a broad range of weed species and controls, but do so in 

a limited fashion. 

.· 
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Until now, no weed management model has combined dynamic analysis with either 

multiple individual weed species or multiple weed control treatments. Prior efforts have 1) 

modeled the weed management problem dynamically with aggregated weeds and a single 

control (King et al .), 2) modeled it dynamically with a single weed species and a single 

control (Auld et al., Cousens et al. 1986, Doyle et al ., Murdoch, Pandey 1989, Taylor and 

Burt), or 3) modeled it statically with many individual weed species and control treatments 

(Kells and Black, Kidder et al., Lybecker et al. (199tb), Renner and Black (1991), Wilkerson 

et al. 1991). Pannell (1990a and 1990b) and Deen et al. have modeled static control of a 

single species in a single crop with variable rates of a single treatment. 

Perhaps the most important contribution of the research models has been to 

demonstrate that the economic threshold for weed control occurs at a lower weed density in a 

dynamic model (which includes weed population growth parameters) than a static one (which 

does not) (Auld et al ., Cousens et al . 1986, Doyle et al., Murdoch, Pandey 1989). Doyle et 

al. and Cousens et al. (1986) found that upon reaching a steady state managed weed 

population, the dynamic threshold was not reached every year, so optimum herbicide 

application was lower than conventional practice. In a dynamic bioeconomic model of 

Colorado continuous com with two weed variables (aggregate grasses and aggregate 

broadleaves), King et al . also found optimal herbicide use to be lower than conventional 

practice. Taylor and Burt used dynamic programming to show that wheat-fallow rotations 

could provide a nearly optimal control for wild oat in Montana. 
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The practical models divide into two groups, herbicide efficacy models and 

bioeconomic models. The efficacy models (e.g., Kells and Black, Kidder et aJ., Renner and 

Black (1991)) identify the herbicides that best control a given complex of weed species. They 

cover a wide range of weed species and herbicides, the latter in both single and tank mix 

forms. They include soil-applied as well as post-emergent weed control, using herbicide rates 

from product labels and efficacy ratings from university research . While the efficacy models 

offer a comprehensive database for identifying the herbicide(s) which will do the best job of 

killing a given set of weeds, they do not make the connection to yield loss averted. 

Basing weed control recommendations upon expected yield loss is the defining 

characteristic of the bioeconomic weed management models. HERB (Wilkerson et aJ.) is the 

first bioeconomic weed management model ·to be tested over a broad geographic area. Now 

publicly distributed, HERB makes recommendations on post-emergent weed control in 

soybeans. It predicts yield loss in response to a competitive index of weed species densities . 

The index is a linear combination of least squares estimates of relative weed competitiveness 

(Coble). HERB includes a wide range of post-emergent soybean herbicides. 

A bioeconomic model for more comprehensive weed control in continuous corn is 

being tested at Colorado State University (Lybecker et aJ. 199lb). The Colorado model 

offers weed control recommendations for both soil-applied and post-emergent weed control. 

Recommendations for soil-applied control are based upon weed seed counts. Seed 

germination is simulated and crop yield loss projected for the resulting weed population. 

Post-emergent recommendations can be based upon direct observatio n of field weed density, 

.· 
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or on model projections. The Colorado model uses a competitive index developed from weed 

competitiveness evaluations from a survey of weed scientists. 

The existing bioeconomic models for weed management suffer from several 

drawbacks. First, they do not capture the dynamic effect of weed seed production on the 

economic threshold for control. Second, they cannot accommodate multiple crops (ergo, crop 

rotations). Third, the micro , field-level unit of analysis for the existing weed management 

models ignores time constraints faced by managers who farm many fields. This is especially 

true of post-emergent weed control, whose efficacy may depend on its timing. Potential yield 

loss due to untimely planting and weed control in other fields makes optimal field-level 

decisions depend upon the state of other fields . The only published whole-farm weed 

management model is Olson and Eidman's MOTAD research study. Designed to analyze 

response to income risk and public policy, their model makes no attempt to simulate 

biological systems and includes only two control options: one fully chemical and one fully 

mechanical strategy. 

The rest of this paper introduces WEEDSIM, a bioeconomic model fo r weed 

management in corn and soybean. As a dynamic, multiple species, multiple control bioeco

nomic model, WEEDSIM has the potential to identify weed management strategies that are 

more profitable than those currently in use. Previous dynamic weed-crop studies suggest that 

such a model may recommend less herbicide use over the long run than conventional practices 

which entail regular spraying. In this respect, the model may facilitate the substitution of 

management for agricultural chemicals that has been advocated by proponents of low-input 
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agriculture (Daberkow and Reichelderfer) . An extension of WEEDSIM, WFARM, simulates 

weed management in a whole-farm setti ng, allowing re-evaluation of WEEDSIM recommen

dations in light of field time constraints due to competing tasks and/or inclement weather. 

Theoretical framework 

The classic static pest management model was set forth by Feder. Consider a slightly 

modified version of his model with a single weed pest and a single control treatment. Weeds 

may be controlled by a s ingle mechanical and/or herbicidal treatment applied at the recom

mended (label) rate. Consequently, the decision to control is a binary one with an implicit 

pest population threshold at which ·the net benefits of control become pos itive (Auld et al.). 

Profit maximization leads to the decision rule that weeds should be controlled at any 

pre-treatment density exceeding the weed population level "at which the cost of control 

measures equals the increased return on yield which would result" (Cousens 1987, p. 15). 

Expanding Feder's model to allow for multiple controls with varied efficacy levels, this 

implies choosing that weed treatment (including no control) which maximizes net revenues at 

recommended application rates2
• 

Omission of weed seeds in the soil (the seed bank) is the major deficiency of this 

model. As Taylor and Burt observed, the static economic threshold ignores the fundamental 

recursion relationship inherent in this dynamic problem. The value of the current weed 

population is a function both of its impact on current season crop yields and of the value of 

future yields that can be reached from it. Failure to control weeds in th e cu rrent period not 

·. 
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only reduces current crop yields; it also leads to greater weed seed production, which reduces 

returns in the subsequent periods. 

To overcome this omission, recast the Feder model in dynamic form so that the 

manager's objective is to maximize the present value of cumulative net income over the 

planning horizon t = 0 . .. T (CNIT), 

~ P {r:i - v cw; )} - ch, - c 0 

max CN/7 = ~ 
t • O (1 + r)' 

h 

subject to the equations of motion, 

h 
w1 = (1 - k(h)]w

1 

s, = s(s,_1, w,. w,~ 

(1) 

(2) 

(3) 

(4) 

where t is a time subscript, Yo is weed-free crop yield , P is product price, D( •) is the yield 

loss or damage function, w is the weed density, wh is density of weeds that survive to 

compete with the crop, and b is a binary weed treatment variable equal to h' (the recom-

mended treatment rate) or zero . The proportion of weeds killed by treatment h, is denoted 

k(h) E [O, l] ; c is unit cost of weed contro l, C0 denotes fixed and variable costs unrelated to 

pest control, and r denotes the discount rate. It is assumed that damage increases with weed 

density, so D'(wh) > 0 . For simplicity, product and input prices are held constant. The seed 

bank function in (4), s( • ), associates end of season weed seed bank density (SJ with seed 
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bank density in the previous season, (Si_1) , seed loss due to cumulative weed seedling germina

tion during the season (wJ, and seed production by weeds surviving to reproduce (wi:). It is 

assumed that s'(s1_1) > 0, s'(wJ < 0, and s'(w~) > 0. The germination function in (2) 

relates the current weed density to the previous seed bank, with w'(Si.1) > 0 assumed. 

The presence of the seed bank equation (4) is a distinguishing feature of this 

contribution to the family of practical models . The seed bank variable links control activities 

in one period to repercussions in subsequent ones. Under the assumptions stated above, 

differentiation of equation (1) with respect to the arguments of the seed bank equation (4) 

reveals that cumulative net income is decreasing with respect to the variables weed seed bank 

(sJ and weeds at harvest (wi:) in any time period. The decrease is greatest in the early 

periods of the planning horizon because resulting increases in the weed seed bank cause 

increased weed populations and yield losses of longer duration . The derivative of cumulative 

net income with respect to cumulative weed germination is indeterminate, since germination is 

associated with both decline of the seed bank and increase in number of weeds at harvest. On 

the basis of these signs alone, it is clear that the dynamic problem in equations (1-4) is 

considerably more sensitive to control actions than its static analog .3 

The bioeconomic weed management model 

The WEEDSIM bioeconomic weed management decision aid solves the maximization 

problem in ( 1-4) for multiple weed species over a two-year time horizon (Swinton)_ Weeds 

may be controlled by chemical herbicides before they emerge from the soil as well as by 
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chemical or mechanical means afterwards. The WEEDSIM model recommends an optimal 

weed control strategy for a two-year time horizon, based on expectations of the estimated 

weed density, predicted germination (for weed seed density estimates), predicted weed control 

efficacy, predicted yield loss, and predicted seed production. The model user provides 

estimates of expected prices, costs, weed-free yield goals, and weed population information. 

A flow chart of the model appears in Figure 1. In contrast with the simpler dynamic models 

of Taylor and Burt and King et al., it accommodates multiple weed species and multiple 

controls, which may include pre-plant incorporated (PPI) or pre-emergence (PRE) treatments 

as well as post-emergent (POST) ones. Its dynamic decision rule distinguishes it from the 

multiple species, multiple control models of Lybecker et al. (1991a, 199lb). 

The empirical model 

The empirical model implements the maximization problem in equations (1-4). It 

simulates the full range of expected discounted net incomes and associated herbicide loads 

from every possible pair of soil-applied and post-emergent weed management options in the 

model database. Management options are recommended based on the ranked distribution of 

financial outcomes. The model is driven by its component biological equations. These 

predict yield (the bracketed portion of equation (1 )), untreated weed density (2), weeds at 

harvest (3), and the state of the weed seed pool in the soil (4). The rest of this section 

describes the form of the empirical equations used to simulate these relationships. 
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The yield equation is particularly important, since it predicts the relationship between 

weed pressure and output level for the marketable product. Competing biological theories 

support sigmoidal (Zimdahl) and hyperbolic (Cousens 1985) yield loss functions. The 

important economic difference is that sigmoidal functions tend to place the control threshold at 

a higher weed density than the hyperbolic functions. In an exhaustive comparison of 19 

functional forms for the yield-weed density model, Cousens (1985) found the rectangular 

hyperbola to outperform the others over 22 sets of published field data. While he did not 

review any sigmoidal forms, Swinton found the Cousens hyperbola to outperform the 

logarithmic sigmoidal form over several sets of Minnesota and Wisconsin corn and soybean 

yield-weed density data. 

The WEEDSIM model incorporates a multivariate formulation of the Cousens 

hyperbolic yield equation, which takes the form, 

(5) 

where Yo, Ii and A E [0, + oo) are parameters to be estimated from data. As in equation (1), 

Yo represents weed-free yield, Ii is percentage loss in crop yield per density unit of weed 

species i as density approaches zero, and A is the maximum percentage crop yield loss 

asymptote as weed density approaches infinity . The hyperbolic form is approximately linear 

at low weed densities . At high densities it becomes asymptotic to the minimum yield level 
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(Y .run) given by Y0 *(1-A/100). The competitive effect of an additional weed of species n is 

given by the derivative in equation (6). 

(6) 

This implies that as the combined density of all weed species in a field increases, crop yield 

declines monotonicaJly, but at a diminishing rate. The individual Ii coefficients implicitly 

serve as competitive indices for each weed species. Interspecies weed competitio n is implicit 

in (5), since the competitive effect of an additional weed of one species depends in part on the 

density of the other species. The~ coefficients differ importantly from the competitive 

indices developed by Coble and Lybecker et al. (199lb) in that they are estimated from field 

data including multiple weed species growing together and they do not rely on expert opinion 

(Swinton). 

Weed population dynamics are governed by the germination, survival, and seed 

production equations (2-4). Experimental evidence suggests that weed seed germination 

occurs as a proportion of the seeds in the seed bank (Cavers and Benoit, Forcella). For 

s implic ity, this model treats weed seedling germination (equation (2))as a Markovian process, 

ignoring dormancy. For management purposes, weed seedling germination in row crop fields 

takes place in three stages (1 = 0, 1,2: prior to crop planting, after planting, and after post-

emergent weed contro l) . In the absence of weed control, weed seed germination in stage 1 of 

the growing season can be specified as 
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(7) 

where wni is seedling germination by weed species i in stage 1, s;1• 1 is the seed bank of weed 

species i in the previous season, and a,; is a parameter representing the proportion of weed 

seeds of species i germinating during stage 1 . Note that a., may be estimated as a fixed 

coefficient, or treated as a function itself. In the Forcella germination model, cumulative 

seasonal weed germination is simulated as a; = a;(AGDD), where AGDD is cumulative April 

growing degree days. The proportion of total germination (a;) occurring at each stage, ;, was 

estimated from a 1985-86 data set from Morris, MN, reported in Forcella and Lindstrom. 

Germination prior to crop planting, W o;1, follows equation (7). Only weed species 

tolerant of cool weather germinate in significant numbers at this stage. These weeds are 

assumed killed by crop planting in a conventional tillage operation, but their numbers require 

tracking since they represent a loss from the .soil seed bank. Weed seedlings germinating with 

the crop seeds, w1it, represent a competitive threat to the crop. Due to the use of soil-applied 

pre-plant incorporated (PPI) and pre-emergent (PRE) herbicides, germination and emergence 

are not necessarily equivalent. Weeds that emerge can be expressed as those that germinated 

and survived any control treatment, 

(8) 

where h li1 is a dummy variable for pre-emergent weed control treatment j in period t. Some 

of these surviving weeds may be killed by post-emergent weed control treatments, h2it. 

Weeds that get established with the crop and compete for more than four to six weeks cause 
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the greatest reduction in crop yields (Stoller et al.) . Some weed seedlings emerge after post-

emergent treatment, w2;ii· These compete weakJy with the crop, but they also reach reproduc

tive maturity and set seed (albeit at a lower rate than larger, early-emerged weeds). Weeds at 

harvest can be expressed as, 

(9) 

where h2it is post-emergence weed control treatment j, and w2iit is the density of weed species 

i emerging after POST weed control. 

Weed control "efficacy" refers to the lethality of a control treatment to the target 

weed. As implied by the function k(wsp,h), it is determined by the choice and quantity of the 

control input, h, and the susceptibility of the weed species, wsp . 

Herbicide efficacy ratings for treatment at recommended rates are available by weed 

species (e.g., Durgan et al.). These are expressed as a set of discrete levels, such as "poor," 

"fair," "good," or "excellent." Because recommended rates are fixed, the weed control 

function for a given treatment jumps discontinuously from a stated efficacy level to zero if 

some condition for efficacy fails. For PRE herbicides that are sprayed upon the soil before 

weed seedlings emerge, a necessary condition for the stated effficacy is that sufficient rain fall 

to move the chemical into the soil layer where weed seeds are germinating. For herbicides 

sprayed on weeds that have already emerged (POST herbicides), required conditions are 1) 

that no rain wash the chemical from the weed leaves within one to eight hours of spraying, 

and 2) that weeds be at a susceptible life cycle stage. 

The kill function employed here takes the form, 
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_ _ {k11 if conditions suit.able 
k(wsp,.,h/) - KIJwi, 'K;j -

0 otherwise 

(10) 

where hj is treatment j applied at the recommended rate and kij E [O, IJ is the proportion of 

weeds of species i killed as a result. The treatment efficacy data set used to run WEEDSIM 

includes a treatment feasibility dummy variable, as well as efficacy ratings organized by crop, 

weed species, and timing of weed treatment (ie., PPI , PRE, POST). As will be discussed 

subsequently, treatment feasibility is partially determined by weed and crop growth stage. 

These are included in the WF ARM model . 

The soil seed bank is the link between seasonal weed popul ations. It contains a stock 

of viable seeds which grows with the deposition of new seeds and shrinks through seed death 

and germination. By reducing the number of weeds surviving to reproduce, weed control 

practices affect seed bank growth. 

Reproducing weeds add seeds to the soil seed bank. Abstracting from the age and 

size of individual weeds, their mean contribution is a simple multiple of the number of weeds 

at harvest, w~it· These seeds join the survivors from the previous season, determining the 

current seed bank, S;u 

2 2 

s;, = (1 - L ati - P;)sit- t + LY dw: (11) 
t c() Tc() 

where Ea,; represents the proportion of seeds of species i lost through germination during the 

three (r = 0, 1,2) stages of period t , {3; represents that of those lost through seed death in the 
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soil. Since late-emergi ng weeds tend to produce fewer seeds than ones th at grow the full 

season, )',; distinguishes mean seed production per mature weed according to stage of 

emergence. 

Each of the parameter values appearing in equations (5 and 7- 11) is read into 

WEEDSIM from data files . The model requires separate parameter data files for crop 

species, weed species, weed-crop competition, weed treatment alternatives, and weed control 

efficacy ratings . 

Other features 

An important feature of WEEDSIM is its open programming structure. The model is 

written in Microsoft QuickBasic 4.5 in highly modular fashion. This allows it to be enhanced 

by the addition of subprograms to add detail to the functions that drive the program. For 

example, parameters which are currently read into the model as constants could be calculated 

internal ly through new subroutines. 

All coefficients used to drive model equations are read in from external files . This 

facilitates the substitution of ex isting coefficients with replacements that may be better suited 

to different geographic conditions. External files also simplify the addition of new crops , 

weed species, and weed control treatments. 
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The whole-farm "shell " 

WFARM evaluates WEEDSIM recommendations in a whole-farm context where land , 

labor and machinery resources are limited (Swinton). WFARM is illustrated in Figure 2 . 

The most important whole-farm constraint is the number of days with suitable weather and 

so il conditions for field work. A function of equipment capacity, labor, and climatic 

conditio ns, it can limit gross returns in two ways. First, maximum attainable crop yield is 

reduced by delayed planting. Second, weed control for some treatments and weed species 

becomes infeas ible when the weeds get too big or the crop reaches a susceptible stage. Since 

the 3-4 week "window of opportunity" for post-emergent weed control in corn may occur at 

the same time as the optimal planting stage fo r soybeans, efficient time util ization is crucial. 

Although WEEDSIM does not incorporate field time availability into its decision rule, 

WFARM provides a means to evaluate its recommendations in a context where delays matter. 

WFARM provides a whole-farm shell in which WEEDSIM is run to generate 

recommendations for weed management fo r each field . In addition to simulating the 

biological functions in WEEDSIM, WFARM simulates time allocated to field preparation, 

soil-applied weed control , planting, and post-emergent weed control (Figure 2) . It also 

simulates weed growth during the weeks following planting (a simple quadratic function of 

days after planting).• This allows WF ARM to predict the stage at which certain weeds 

exhibit reduced susceptibility to g iven herbicides (e.g ., green foxtail susceptibility to atrazine 

declines after the weed height surpasses 1.5 inches). 
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In addition to the parameter data required by WEEDSIM, WFARM calls for input 

files containing machinery size, speed and cost parameters, as well as crop and weed 

quadratic growth rates, and weed and crop size thresholds beyond which specific control 

treatments become ineffective. 

WFARM need not only be run deterministically. It can also be run with stochastic 

input files for such variables as rainfall , weed-free yield , weed germination rates, days suited 

for field work, and disturbance terms associated with th e coefficients and equations that run 

the biological equations. 

Parameter input data 

Prototype input parameters were developed for WEEDSIM fo r conditions in southwest 

Minnesota. Data estimation procedures for the yield and seed bank equations (5 and 11) are 

reported in Swinton. The total weed seedling emergence rates (ai in (7)) were computed from 

Forcella's simulation model, with the stagewise emergence proportions (r in (7)) estimated 

from data. Efficacy ratings for herbicides were obtained from Durgan et al., while those for 

mechanical controls (rotary hoe) were obtained from unpublished Minnesota agronomic trial 

data. 

The prototype parameter set allows WEEDSIM to be run for corn and soybean crops, 

including continuous corn and corn-soybean rotations. The weed species included are those 

that abound in southwestern Minnesota: green and yell ow foxtai ls (Setaria viridis (L.) Beauv. 

and S. glauca (L.) Beauv .), redroot pigweed (Amaranthus retrotlexus L. ), and common 
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lambsquarters (Chenopodium album L.). Key biological parameter values from the prototype 

data set are reported in Table I. The main weed control treatment parameters in the 

prototype data set appear in Table 2. 

Model val id at ion 

Model verification seeks to answer the question , "Does the model perform as 

intended?" The focus of verification is on the inner workings of the computer program. As 

such, it applies to the WEEDSIM and WFARM computer code. Model validation, on the 

other hand, seeks to answer the question, "Does the model accurately represent the system it 

purports to simulate?" This is an empirical question, and cannot be answered without 

comparing model results to those from actual systems. 

Law and Kelton identify five techniques for model verification: 1) write and debug the 

model in discrete modules, 2) have other programmers check the code, 3) trace the evolution 

of variable values as the simulation runs, 4) test the model under simplified assumptions, and 

5) display model results at a graphics terminal as it runs . All but the last of these techniques 

has been applied in development of the weed management model (Swinton). The sequence of 

program development also reduced the likelihood of programming error: Verification of the 

model proceeded in tandem with programming individual modules and procedures. 

While there remains the possibility of erroneous code in a program of this size, every effort 

was made to reduce it. 
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Two general approaches to model validation have been followed . The first is to 

ascertain whether component equations accurately simulate reality. The second is to 

determine whether the recommendations of the entire model make sense. Component 

equations can be validated 1) statistically (against out of sample data) and 2) by expert 

opinion. 

As 1985-86 data from Morris , Minnesota (Forcella and Lindstrom), were used to 

develop the prototype parameter input data, out-of-sample data from 1990 field trials at 

Morris were used to validate components of the original version of the WEEDSIM/WFARM 

model. Since data were available only for the emergence and corn yield functions, statistical 

validation was not possible for the seed bank, plant growth and soybean yield functions . The 

1990 Morris data come from two sites, representing a wide range of weed pressures. The 

validation tests led to calibration of the germination equations and acceptance of the corn yield 

equation in its original form. 

Discussion of model coefficients with weed scientists at the University of Minnesota 

and Michigan State University5 indicated that the seed production values are very low, 

relative to those in the literature. This is true. The values reported by Forcella and 

Lindstrom are among the lowest in the weed seed literature, due to their examination of only 

late-germinating, small weeds. The germination rates reported by Forcella are comparable to 

those of other scientists using repeated laboratory germination methods, but higher than those 

of scientists using seed separation methods. The combined effect of low seed production and 

high germination rates leaves the prototype parameter set internally consistent at generating 
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typical weed populatio ns. The intimate connection between the seed production and 

emergence equations makes it imperative to estimate both from the same data set in order to 

insure internal consistency and controllability of the forecasted weed population. 

Model recommendations appeared plausible to a committee of weed scientist experts at 

University of Minnesota. Field experiments to validate the model were begun at Rosemount 

and Morris, Minnesota, in 1991 (Buhler). 

Sample results from the model 

Threshold map for weed management 

Since WEEDSIM recommendations for weed management are based upon weed 

density estimates, a convenient way to illustrate what it does is by means of a "threshold 

map" of management recommendations as a function of weed density. One complication is 

that maps are two-dimensional , so for more than two weed species they require that 

something be held constant. The threshold map in Figure 3 illustrates recommendations for 

weed management in the corn part of a corn-soybean rotation. Grass weed densities are 

shown on the·vertical axis and broadleaf densities on the horizontal axis. The ratio of 

densities among the broadleaf species is held constant at a level typical of the field 

observations by Forcella and Lindstrom (2: 1 common lambsquarters to redroot pigweed). 

At very low densities , the recommended treatment is no control. When moderately 

low numbers of broadleaf weeds are chiefly present, 2,4-D (POST) is recommended . As 

these become greater, dicamba (PRE) is also recommended . When grass weeds abound 
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instead of broadleafs, cyanazine is the recommended treatment. At low densities, cyanazine is 

recommended either PPI or POST. As grass weed numbers get large, it is recommended at 

both stages. For the broad range of mixed grass and broadleaf weeds, the recommended 

treatment is cyanazine {PPI) followed by 2,4-D (POST). However, when high levels of grass 

weeds are in the mix, the recommendation switches to aJachlor (PPI) plus cyanazine (POST). 

This reflects the fact that 2,4-D, while inexpensive and highly effective against most broadleaf 

weed species, cannot control grasses. Alachlor, on the other hand, is more expensive but 

highly effective against both foxtails and pigweed, albeit only fair against lambsquarters. The 

switch from 2,4-D to aJachlor substitutes a higher cost, but more efficacious control for the 

weed mixture at hand. 

The threshold map illustrated assumes a corn price of $2.50 per bushel, with soybeans 

at $6.00 per bushel. At lower crop prices, the map is stretched out. Thresholds appear at 

higher levels since the value of yield saved is lower. By excluding low-cost, efficacious 

controls such as atrazine and 2,4-D, the threshold for control is raised at low weed densities, 

but remains unchanged at higher levels. These controls give the greatest "value for money" 

in weed control, so they are the first treatments to be recommended over "no control" as 

weed densities rise. 

Effect of the dynamic decision rule 

Substituting a myopic, one-year decision rule in place of the two-year time horizon 

has an similar effect to that of reducing the crop price. Omitting expected yield losses in the 



22 

second year (due to weed propagation) reduces the expected value of yield saved . As a 

result, the thresholds for control all become higher. Figure 4 illustrates a myopic threshold 

map based upon the assumptions underlying Figure 3. Note that while all recommended 

treatments are the same, the threshold population densities for moving from one to the next 

are higher in every instance. 

A dynamic decision rul e has the effect of maintaining the weed population over time 

at a lower level than a myopic rule. Figure 5 illustrates that under these conditions, the 

myopic rule would recommend no control in year 2, resulting in a jump to over 600 foxtail 

seeds per square meter, whereas the two-year rule would wait until year 4 to skip control, 

resulting in a subsequent seed density half as high . 

Effect of farm size on timeliness 

The effect of reduced workable field days is illustrated in Table 3, using the , FA'" 

model with historic field day data recorded at the Southwest Experiment Station of the 

University of Minnesota at Lamberton, Minnesota. Weed management results with the 18 

workable field days between April 19 and June 20 in 1982 are contrasted with those for the 

55 workable days during the same period in 1987. Results are simulated using the recom

mendations from Figure 3 for a heavy weed infestation with weed seed densities for mixed 

green and yellow foxtails, common lambsquarters and redroot pigweed at 1750, 500 and 250 

seeds/m2
• Crop prices, weed germination rates and precipitation were held constant at their 

1974-90 means for the simulation. 
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Weed-free yields in 1982 and 1987 were both high , 151 and 163 bushels per acre for 

corn and 42 and 48 bu/acre for soybean, so other things being equal, net revenue is expected 

to be high . Since other variables are held equal in the s imulation, differences in percent of 

maximum (weed-free) yield obtained are entirely due to timeliness and infeasible weed control 

treatment penalties . Late planting penalties take the form of yield loss. Under 1982 

conditions , late planting leads to a 7% yield loss on the corn fields . Infeasible weed control 

penalties may increase yield loss or treatment cost. The lower herbicide load on continuous 

corn in 1982 is due to post-emergence atrazine application becoming infeasible because the 

foxtails had grown too large. The higher weed densities in 1987 are due to infeasibility of the 

recommended rotary hoeing of weeds in soybeans. In both cases , the next best alternative 

was not to control weeds. 

Summary and conclusion 

Over the past decade, research on integrated weed management has made impressive 

advances. However, a mismatch has persisted between research discoveries and available 

decision tools for managers. The WEEDSIM model bridges this gap with a bioeconomic 

model that incorporates weed population dynamics into the decision rule, while at the same 

time accommodating multiple weed species and control treatments. The associated WFARM 

model provides a whole-farm shell , making it possible either to modify WEEDSIM recom

mendations in a context where field time is limiting, or to evaluate the performance of 

WEEDSIM recommendations over various states of nature. The modular programming 
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structure of WEEDSIM facil itates the addition of new subroutines to model biological 

processes more accurately. By accessing external parameter files, the model can easily be 

extended to include more weed species, control treatments, machinery sets, or states of 

nature. While field validation of the model is at an early stage, preliminary resul ts are 

promising. 
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Table 1: Key parameter values from the S. W. Minnesota WEEDS IM prototype input data set . .. 

Equation number Green and Yell ow Lambs- Red root 

and variable Foxtails quarters pigweed 

(5) Yield loss (I;) by first weed 

Corn 0 .2 0.8 0.8 

Soybean 0.2 1.9 1.9 

(7) Seedling emergence proportions 

Total (a;) 0.269 0. 168 0.097 

Pre-plant (O!o;) 0 .048· 0.067 0 

Post crop planting (a1;) 0.194 0.091 0.089 

After POST treatment (a2i) 0.027 0.010 0.008 

(11) Seed dynamics 

Seeds produced per plant {'y,J 

Plants emerged with crop (-y1;) 90 120 130 

Late-emerged plants (r2i) 9 6 13 

Mortality of unemerged seeds in soil (fJ;) 0.714 0.818 0.116 
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Table 2: Efficacy percentage and application time of weed control treatments included in the 

model , by crop. 

Treatment 

Corn 

No control 

Alachlor 4E 

Atrazine 4F 

Bromoxynil 2E 

Cyanazine 4F 

Dicamba 4S 

Eradicane (EPTC) 6.7E 

Nicosulfuron 

Rotary hoe 

2,4-D Amine 4S 

Soybean 

No control 

Application Fox-

time3 tail 

0,1,2 0 

0, 1 90 

0,1,2 90 

2 0 

0, 1,2 90 

1,2 10 

0 90 

2 90 

2 30 

2 0 

0, 1,2 0 

Percentage Killed 1 Materials cost 

Lambs- Pig- per acre2 

guarter weed PRE POST 

--- --%-- ---- --$---

0 0 

30 90 16.25 

90 90 6.78 4 .07 

90 70 6.89 

90 50 14.71 8.80 

90 90 6.05 6.05 

70 5 15.48 

30 90 17.98 

50 50 --4 

90 90 1.49 

0 0 

.. 
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Acitluorfen 2S 2 10 10 90 15.03 

Alachlor 4 MT 0, 1 90 30 90 16.99 

Bentazon 4S 2 0 10 90 11.22 

Imazethapyr 2L 2 90 10 90 18.11 

Metribuzin OF 0, 1 50 90 90 16.62 

Rotary hoe 2 30 50 50 - • 

Sethoxydim I .SEC 2 90 0 0 16.72 

Tritluralin 4E 0 90 70 90 5.25 

1. Efficacy percentages are a linear transformation of the qualitative ratings published 
in Durgan et al. where "good" efficacy is interpreted as 90% efficacious and "poor" as 10% 
efficacious. 

2. Applied at the average of the recommended rates in Durgan et al. Application 
costs per acre (Fuller et al ., 1991), omitting labor, are: 

PPI (sprayer & cultivator) $4.82 
PRE (sprayer) $1.40 
POST (sprayer) $1.40 
Rotary hoe $2.04 

3. Codes are as follows: O= pre-plant incorporated , 1 =pre-weed emergence, 2 = post
weed emergence. 

4. Rotary hoe causes 3-5% stand loss (Gunsolus, personal communication), lead ing to 
an average loss of 1.5% of yield. 
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Table 3: Impact of restricted workable fi eld days: Simulated weed management on base farm 

in 1982 versus 1987 using the two-year decision rule with high initial weed seeds . 

Number of workable field days 

Performance Measurement (April 19 - June 20) 

criterion unit 18 (1982) 55 (1987) 

Farm net revenue dollars - 6,582 1,675 

Herbicide load 

Continuous corn lbs ai/acre1 2 .7 4.2 

Rotational corn lbs ai/acre 4.3 4.3 

Rotational soybean lbs ai/acre 0.8 0 .8 

Percent max. y ield 

Continuous corn percent 71.6 76.6 

Rotational corn percent 70.6 75.9 

Rotational soybean percent 66.4 64.7 

Weed density 

Fox tails plants/m2 94 107 

Lambsquarters plants/m2 10 6 

Pigweed plants/m2 9 10 

1 Pounds of chemical active ingredient per acre. 
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ENDNOTES 

I. U.S. Department of Agriculture Cooperative State Research Service project NC-202, 

"Biological and Ecological Bas is for a Weed Management Model to Reduce Herbicide Use in 

Corn," created October 1, 1990. 

2. While Pannell (1990a) and Headley have cal led for a marginal herbicide application 

rule, Deen et al . have demonstrated that the value of such a rule is smal l relative to the value 

of a threshold rule at recommended rates. The higher variance of herbicide efficacy at low 

rates combined with farmers' loss of legal recourse in the event of failure constitute 

substantial associated costs. 

3. The dynamic optimum weed control path can be expressed using the tools of dynamic 

programming. To simplify the notation of equations (1-4), retain W: and h1, letting Xi 

represent al l other variables. If the problem is solved backwards from the final stage, then by 

Bellman 's principle of optimality, the optimal path may be found by solving at each stage for 

the control that maximizes returns for the current stage plus the value of the stage that results 

from it. For the problem in equations (1-4), the recursive relation can be stated, 

V,{w,
11
} = max [n,(w,

11,x,.h) + V,.1{S{w,11,x,,h)}] 
h 

(A.1) 

where V10 is the current period value function, 1r1 is current period net returns, V1• 1 O is the 

discounted val ue function fo r the next period, S{-} is the transition function linking period t 

with period (t+ I) , t=T. .. 1. By assumption , the initial condit ion is given and a transversality 

condition fixes the value of the terminal state. 

'• 

, 

• 
• r' 
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Now define DV1+ 1 (w~ ,x1, h1) as a value of future yield damage function . The dynamic 

economic threshold , w~·. is the weed density in period t at which the discounted value of 

current and future yield damage avoidable by current period control exactly equals the cost of 

that control. Consequently, weeds should be controlled in period t using the best available 

control, h,.., if the value of damage function exceeds the cost of control, c,..: 

h,· = {hr• iJP(D(w,1t0)-D(w/1r•)]+DV,+1{w1h•,x,,h1} ~ er• (A.
2
) 

0 otherwise 
Because both terms on the lefthand side of (A.2) are non-negative, this rule implies a 

threshold for current period weed control that is at least as low as that which applies in the 

static decision rule where the value of future yield damage is omitted . From a practical 

standpoint, this means that following the dynamic weed control decision rule in (A.2) leads to 

a control strategy that is more conservative than that of the static decision rule from the Feder 

and Auld et al. model. 

4. The fact that some POST treatments are not efficacious for weeds or crops greater 

than a specified size makes it desirable to model plant growth. Since only the 4-6 weeks after 

crop planting are of interest, a rudimentary growth equation will suffice. For this short 

period, the average height of a plant species, ph;, can adequately be modeled as a simple 

quadratic function of the number of days after planting, ph; = o;(DAP)2. This form appears 

to work acceptably for both crops and weeds. Efficacy thresholds stated in terms of number 

• of leaves are readily converted to height format due to the high correlation between height and 

leaf number. When plants exceed the height threshold fo r POST efficacy of a given 
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treatment, its efficacy is assumed to be nil , as in equation (10). The oi coefficients estimated 

for Minnesota are .0048, .0033, and .0038, fo r mixed green and yellow foxtails , common 

lambsquarters, and redroot pigweed, respectively. 

5 . Participants included Douglas D. Buhler Research Agronomist, U.S. Department of 

Agriculture (USDA), AgriculturaJ Research Service (ARS) and Associate Professor, 

Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul ; Frank 

Forcella, Research Agronomist, USDA, ARS, North CentraJ So il Conservation Research 

Laborato ry, Morris, MN; and Jeffrey Gunsolus and Bruce Maxwell , Assistant Professors, 

Department of Agronomy and Plant Genetics, University of Minnesota; James Kells, 

Professor, and Karen Renner, Associate Professor, Department of Crop and Soil Sciences, 

Michigan State University. 
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