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ABSTRACT: 

Parameter Identification in Nonlinear Statistical Models: 

A Monte Carlo Analysis of Crop-Pest Response Functions 

(!he form of crop yield-pest density functions influences control thresholds and 
J 

risk management strategies. Monte Carlo simulation of sigmoidal yield response to 

weed density suggests that given empirical levels of functional curvature and data 

variability, large sample sizes are required to reject the null hypothesis of hyperbolic 

response) 



Parameter Identification in Nonlinear Statistical Models: 

A Monte Carlo Analysis of Crop-Pest Response Functions 

Introduction 

Until recently, limits on computational power have restricted most nonlinear 

statistical estimation to models that could be made linear by a simple transformation 

or by polynomial expansion (Heady and Dillon). For static linear models with 

independently and identically distributed (i.i.d.) normal disturbances, collinearity due 
J 

to ill-conditioned design matrices is the principal impediment to parameter 

identification. For intrinsically nonlinear models, however, the set of identifiability 

problems extends beyond the design matrix to the functional form itself and the 

criterion function used to estimate it (Belsley; Seber and Wild). 

Parameter identification is particularly important for testing hypotheses about 

nonlinear functional form. In the analysis of optimal pest management, the form of 

the crop-pest yield function is critical, especially for agents who are not risk-neutral. 

In weed management, this centers around the enduring debate over whether crop 

response to weed density is best described by a sigmoidal or a hyperbolic yield 

function (Cousens, Pannell 1991, Swinton). From a management perspective, the 

steep initial slope of a hyperbolic yield function means that at low weed densities, 

crop yield damage per weed is greatest. This implies a low economic threshold for 

weed control at given input costs and product prices. The gentle initial slope of a 

sigmoidal curve implies a higher weed control threshold. A hyperbola everywhere 
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convex to the origin implies that weed control inputs can be risk-increasing when 

weed density or product price is uncertain (Pannell 1990). Sigmoidal yield response 

implies the opposite over the concave portion of the yield function's range (Swinton). 

While Cousens found his hyperbolic curve to outperform a variety of other 

forms published in the weed literature, none of those he evaluated was sigmoidal. 

The only sigmoidal yield function that appears in print is a logistical curve (King et 

al.). However, the inherent symmetry of this form makes it unsuited to capturing 
t 

nonsymmetrically curved yield response. 

The question remains whether a flexible sigmoid provides a better fit to crop-

weed competition data than the hyperbolic alternative. This begs a more fundamental 

question: Can the variability of field data support estimating the number of parameters 

necessary for a sigmoidal curve? 

Consider the first question. We wish to fit the basic model: Y = f(x,8). 

Apart from the biologically unacceptable linear model (which can predict negative 

yields), two classes of functional form are of interest: a) concave hyperbolic 

(3 parameters--e.g. , Cousens), and b) sigmoid functions (3-4 parameters--e.g. , King 

et al.). The ideal way of evaluating the degree of nonlinearity of the model is to 

choose a flexible sigmoidal function that nests the hyperbolic model as a special case. 

This admits several statistical tests, including the likelihood ratio, Lagrange 

multiplier, and Wald tests (Bates and Watts, Gallant, Judge et al.). A less attractive 
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alternative is to compare non-nested models using a mean squared error criterion 

(Bates and Watts). 

The Morgan-Mercer-Flodin or MMF model (Morgan et al.; Ratkowsky; Seber 

and Wild) is a flexible sigmoid which embodies the Cousens hyperbola as a special 

case. The MMF model takes the form: 

y = {3-y +axo 

'Y +x .s 

J 

(1) 

The parameters. have the following interpretations: a is the minimum yield asymptote 

as weed density (x) approaches infinity, (3 is the maximum (weed-free) yield , 'Y is a 

curvature measure that determines the rate at which yield reaches its lower asymptote 

(i.e., the lower curve of the sigmoid), and o is a curvature measure that determines 

the point at which yield begins to decline at a decreasing rate (i.e. , the upper curve of 

the sigmoid). 

The Cousens hyperbola takes the form: 

y v<>f l Ix ] 
= £ l - (l+lx/A) 

(2) 

where Y0 represents maximum yield, I represents the proportion of crop yield loss per 

unit of weed density (x) as density approaches zero, and A represents the maximum 

proportion of crop yield loss asymptote as weed density approaches infinity. 

Cousens' parameters can be translated into MMF coefficients as follows: 
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a = Y0(1 - A) , (3 = Y0
, 'Y = A/I, and o = I. One test for the sigmoid model is to 

evaluate the null hypothesis that o = 1 in the MMF model. Acceptance would 

support use of Cousens' hyperbolic functional form. 

An empirical example 

The MMF model was estimated using several sets of corn and soybean yield 

data as a function of weed density. The model was fit using nonlinear maximum 
J 

likelihood estimation with SHAZAM's quasi-Newton, Davidson-Fletcher-Powell 

algorithm (White et al.), assuming additive disturbances distributed i.i.d. 

normal(O,a2). Following Ratkowsky, the original MMF model was reparameterized 

to reduce parameter effects nonlinearity, substituting e,.· for 'Y (so 'Y* = ln('Y)). 

Typical results came from fitting this model to Buhler et al. 's 1989-90 Minnesota 

soybean yield, cocklebur weed density data. Figure 1 illustrates the data along with 

the fitted curves for the MMF sigmoid and Cousens hyperbolic functions. As crop 

yield-weed density data sets go, this one gives an unusually clear picture of the 

functional relationship. 

Parameter estimates and asymptotic t-values for the MMF model with restric-

tion and with the restriction o = 1 are presented in Table 1. While asymptotic t-

values must be interpreted with caution (Ratkowsky), it is clear that these model 

parameters are poorly determined. Only the (3 and ln('Y) estimates appear to be robust 

relative to the null hypotheses a, (3 and 'Y = 0, and o = l. The Wald and likelihood 

• I 
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Figure 1: Soybean yield as a function of cocklebur weed density. 

ratio test statistics (Judge et al., p. 545) are 0.54 and 0.63, respectively. Since both 

are far inferior to the x2(1,.05) test value of 3.84, the null hypothesis o = 1 cannot be 

rejected. These data do not support estimation of the 4-parameter MMF sigmoid 

model. 

The asymptotic coefficient correlation matrix (Table 2) suggests a possible 

source of the problem: almost perfect positive correlation of the 'Y and o parameters. 
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Table 1. Parameter estimate statistics from MMF regression of soybean yields on 
cocklebur weed density. 

Parameter 
Alpha 
Beta 
LN(Gamma) 
Delta 

Unrestricted Model 

Estimate 
1.4 

38.4 
4.8 
1.4 

Asymptotic 
t-value 
0.2 

21.1 
2.9 
2.5 

Restricted Model 

Estimate 
- 7.7 
39.0 
3.8 

Asymptotic 
t-value 

- 1.2 
20.3 
10.8 

1.0 by restriction 

Log-likelihood ratio: Unrestricted: -233.1331; Restricted: -233.4493 
Asymptotic standard error of estimate (SEE): Unrestricted: 5.37; Restricted: 5.39. 
R2 between observed and predicted: Unrestricted: 0.75; Restricted: 0.75. 

In fact, in the Jacobian matrix used to identify the gradient vector for the solution 

algorithm, 'Y and o figure in every term, and both figure quadratically in the dY/d-y 

and dY/do terms. More intuitively, since these parameters determine segments of the 

sigmoid with opposite convexity, both must be adjusted to compensate for data in a 

given range. Yet the 'Y and o coefficients of the MMF model are not intrinsically 

unidentified in the sense that neither can be substituted for a simple function of the 

other. 

Table 2. Asymptotic correlation matrix from unrestricted MMF regression of soybean 
yields on cocklebur weed density (original parameterization). 

Parameter Alpha 
Alpha l.000 
Beta -.219 
Gamma .834 
Delta .920 

Beta 

l.000 
-.399 
-.326 

Gamma 

1.000 
.982 

Delta 

l.000 
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Monte Carlo test of parameter identification with the MMF function 

The example above illustrates the difficulty of fitting the MMF function to 

empirical data. This leads to the second question: Can routine field data ever support 

estimation of a sigmoidal curve? A Monte Carlo experiment was designed to test 

conditions under which the Cousens hyperbola model could not be rejected in spite of 

a true, underlying MMF model with an additive, i.i.d. normal disturbance. Factors 

likely to affect the ability to obtain reliable coefficient estimates include the inherent 
J 

curvature of the true model, the sample size, ran?om variability in the data, and both 

the domain and distribution of observations on the independent variable. Parameter 

identifiability was expected to improve with increases in inherent curvature, sample 

size and breadth of functional domain, and with decreases in random variability. The 

Monte Carlo experimental design varied all factors but functional domain , setting the 

weed density sufficiently broadly to facilitate estimation of the asymptote in all cases. 

Two "true" models were designed to be similar to the soybean-cocklebur yield 

function illustrated in Figure 1. Both had maximum yield ({3) parameters of 40 and 

minimum yield (a) parameters of 4. One had weak sigmoidal curvature (o = 1.5 and 

ln(-y) = 6.4) and the other strong sigmoidal curvature (o = 3 and ln(-y) = 14.2). 

These are illustrated in Figure 2, along with a hyperbolic model (o = 1, ln(y) = 

3.8). The weed densities required to induce a 2% yield loss in the hyperbolic, 

weakly sigmoid, and strongly sigmoid models, are l, 6 and 32 weeds/m2
, 

respectively. 



8 

Yield 
50,..--~~~~~~~~~~~~~~~~~~-,-~~~~~~~---, 

40 .--,, 
. ' 

30 

20 

10 

. . . . . . 

' ' ' 

. . 

' \ 
\ 

\ 
\ 

\ 

·. 

\ 
\ 

\ 
\ 

\ 
\ 

' ·. ' . . ' ·. ' 

J 

Parameters 

-a-1. ln(Y)• s.s 
· ·-a-1.s, ln('Y)• 6.4 

- ·6•3, ln(Y)•14.2 

----... ············ ... ... . ....... . 
------------~:~~~~: 

O'--~~~~~~~~~~~~~~~~~~~~~~~~~~-' 

0 50 100 150 200 250 300 350 400 450 500 

Weed density 

Figure 2: Yield functions synthesized (a=4 and {3 = 40 in all cases). 

Yield data were synthesized from a uniformly distributed population of 500 

weed densities over the domain [O, 499] weeds/m2
• To these were added i.i.d. 

normal disturbances with mean 0 and standard deviations a = 1, 3 , and 5 , subject to 

the constraint that yield not fall below zero. One hundred data sets were generated 

for each of three sample sizes (n = 50, 200, 500). The MMF model was estimated 

for each of these cases using coefficient initial values equal to the known true values. 
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Results support expectations that identifiability of the upper curvature parameter, 

o, declines with increases in variance and decreases in sample size. Identifiability 

increases with the degree of inherent curvature in the underlying model. These points 

are clearly illustrated in Table 3, which reports the percentage of cases in which a 

Wald x2 test of the null hypothesis o = 1 would correctly be rejected. Of particular 

interest is the o = 1.5 model with <J = 5, since this approximates parameters from 

the soybean-cocklebur data set. Only at a sample size of 500 is the null hypothesis 

rejected on a regular basis. 

Table 3. Percent of cases that Wald test at 5% significance level led to correct 
rejection of hypothesis that o= 1 in 100 MMF regressions, by model curvature, 
standard deviation and sample size. 

Degree of curvature (5) and sample size 
0 = 3 0 = 1.5 

(J 500 200 50 500 200 50 
- - - - - - - - - - - - percent - - - - - - - - - - - - -

1 100 100 100 100 100 93 
3 100 100 99 100 84 33 
5 100 100 88 90 51 14 

Another approach to evaluating parameter identifiability is to examine the 

significance of coefficient asymptotic t-statistics. Ratk:owsky (p. 34) suggests that 

while a high asymptotic t-value may not insure that a parameter is well determined, a 

low one indicates that it is not. The variability in coefficient asymptotic t-values is 

summarized in Table 4. It reports t-tests of the null hypothesis that mean coefficient 
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Table 4. T-tests that coefficient asymptotic t-values exceed 1.96 in 100 MMF 
regressions. 

Size of original Model and Standard Deviation 
regression samples 0 = 3 0 = 1.5 
and parameter name u= 1 u= 3 u=5 u= 1 u=3 u=5 

N = 500 
Alpha 22.50 7.88 5.14 10.78 3.09 1.76 
Beta 33.50 25.58 19.49 23.16 14.05 9.12 
Gamma 31.07 18.95 15.60 25.45 16.14 9.83 
Delta 30.18 16.02 11 .69 13.89 3.68 1.41 

N = 200 
Alpha 9.11 3.39 2.17 4.66 1.17 0.58 
Beta 8.63 7.96 7.16 4.93 4.19 3.26 
Gamma 14.09 12.21 8.52 7.78 5.53 3.58 
Delta 13.68 9.78 5.99 5.32 1.03 -0.02 

N = 50 
Alpha 4.81 1.31 0.67 1.86 0.32 0.19 
Beta 3.63 3.27 2.87 1.90 1.53 1.21 
Gamma 5.30 3.69 2.17 2.50 1.23 0.37 
Delta 5.28 2.84 1.12 1.44 -0.46 -0.87 

1T-tests were constructed as follows: t = (it,.I - 1.96)/Sr, where t,. is the mean 
of 100 regression coefficient asymptotic t-values (t,.'s) and s, is the standard deviation 
of those 100 t/s. 

The one-tailed critical value at the .05 significance level is 1.66. 

2Since the null hypothesis is o = 1, asymptotic t-values were calculated as 
(o-1 )Is, where s is the asymptotic standard error. 

asymptotic t-statistics from the 100 regressions are "significant" in the sense of 

exceeding 1. 96. Since 1. 96 is the 95 % confidence level critical value for a two-tailed 

t-test with large sample size, higher t-valu·es imply that the estimated coefficient 
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indicates an identifiable parameter. For parameters a, {3 and -y, identifiable means 

non-zero; · for o, it means different from 1. T-test statistics in Table 4 whose absolute 

values exceed the one-tailed critical value 1.66 indicate that asymptotic t-values would 

be "significant" in more than 95 % of cases. When underlying sigmoidal curvature is 

weak (o= 1.5) and data are highly variable u=5, Table 4 suggests that even 500 

observations are insufficient to determine o at that confidence level. With u= 1, 200 

observations will reliably suffice to determine the curvature parameters, but 50 

observations will not be adequate to determine o. When sigmoidal curvature is strong 

(5=3), 200 observations are adequate at the cr=5 level or 50 observations at the cr=3 

level of variability. 

The o and -y coefficients in the Monte Carlo experiments had correlation 

coefficients in the 0.98 - 0.99 range. In spite of the very high correlation, parameter 

determination did not suffer noticeably. This may owe, in part, to use of true 

parameter values to initialize the estimation procedure. 

Conclusion 

These results highlight the importance of inherent curvature, data variability, 

and sample size for parameter identification in inherently nonlinear models. In 

particular, even if the crop yield-weed density response function is truly sigmoidal , 

the null hypothesis of hyperbolic response is hard to reject under likely levels of 

inherent curvature and ordinary levels of field data variability. Yet acceptance of a 
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hyperbolic response function tends to imply a lower weed control threshold than does 

the alternative sigmoid response function . 

Of the determinants of parameter identification examined here, sample size is 

the only one that can be manipulated by researchers. The results suggest that 

identification of a 4-parameter sigmoid crop yield-weed density response function 

requires a much larger data set than is the norm for agronomic experiments. A 

definitive study to test the sigmoidal yield response hypothesis will also require an 

experiment specifically designed to optimize parameter identifiability. Apart from 

large sample size, this will likely call for a non-uniform distribution of weed densities 

and variance reduction through inclusion of additional independent variables. 
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