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The Generalized Composite Commodity Theorem and Demand System Estimation
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Abstract: This paper reports tests of aggregation over consumer food products and estimates of
aggregate food demand elasticities. Evidence that food demand variables follow unit root
processes leads us to build on and simplify tests of the Generalized Composite Commodity
Theorem found in the literature. We compute food demand elasticities using cointegration
applied to a convenient but nonlinear functional form. Estimates are based on consumer reported

expenditure data rather than commercial disappearance data.



The Generalized Composite Commodity Theorem and Demand System Estimation

Appropriately specified models of consumer demand are central to market analysis. It has been
established that a valid equilibrium for markets characterized by diverse firms or diverse
consumer products depends on downward-sloping composite demand curves (Heiner, Braulke,
Wohlgenant) or on valid indirect utility functions (Chavas and Cox). Given the large number of
consumer food products, food demand and price analysis must be implemented at some level of
product aggregation. Improper aggregation can lead to biased estimates of welfare loss
associated with public policies, biased estimates of consumer and derived demand elasticities,
and misleading tests of market power. Testing for consistent aggregation over food products and
estimating aggregate consumer food demand elasticities are the subjects of this paper.

By far the most common justification for aggregation has been separable preferences.
One reason for its popularity has been the lack of a viable alternative. Tests of the Composite
Commodity Theorem (Hicks, Leontief, Lewbel) are always rejected because it restricts relative
prices within a group to remain fixed over time. On the other hand aggregation based on weak
separability is often rejected (Diewert and Wales, Eales and Unnevehr).

The Generalized Composite Commodity Theorem (GCCT) justifies aggregation under
milder conditions (Lewbel). It relaxes the restriction of constant relative prices within groups by
strengthening the requirement that independence holds across all groups. Furthermore, the GCCT
simplifies tests for weakly separable preferences.

This paper tests for valid aggregation of consumer food products and reports estimates of
food demand elasticities. As in previous studies we find evidence that food demand variables
contain unit roots, so tests for valid aggregates involve tests for spurious regressions. By building

on the methodology found in previous studies we simplify tests for valid aggregation. In addition



we present estimates of food demand elasticities and tests for weak separability based on recent

developments in the theory of nonlinear nonstationary regressions.

Theory

The GCCT is a stochastic theory of aggregation over diverse consumer products. It maintains
that n-elementary share equations are functions of logged elementary prices, r, and logged
income, z. Following Lewbel let w; (i=1,. . . ,n) denote the ith elementary budget share and let £
denote the mathematical expectations operator. Then g;:(r,z) = w; (i = 1,...,n) such that

(1) w;=gi(r,z) + e, where E(e/|r,z) =0 = E(Ww;|r,z)=g(r,2z).

Since the g; form a valid elementary demand system, they satisfy adding-up (2g; = 1),
homogeneity (g; (r-k, z-k) = g; (r, z) for all i), and Slutsky symmetry (i.e., (0gi/r;) + (Og/'O2)g;
= (0gi/0ry) + (2g; /0z) gr). The compensated demands satisfy negative semi-definiteness.

The theory also maintains the existence of a system of stochastic composite share
equations. The M (< n) composite shares W; =2, w; (I = 1,. . .,M) are functions of logged
income z and logged composite prices R, or Gi: (R, z) > W; (I = 1,2,... M). In particular,

(2) Wi=Gi(R,z) +u, where E(u|R,2)=0 = G;(R,z)=EW;|R, z).
The orthogonality of the model errors of (/) and (2) ensure that g; (r, z) and G;(R, z) are optimal
predictors of elementary and composite shares, respectively.

These model errors are related. Following Lewbel, let G; (r, z) denote the sum of the
conditional means of the elementary demands for group 7, so that Gl*(r, z) =2 gi(T, z). Also
define p; =r; — R; as the ith relative price so the vector of all relative prices is p=r—R* where R

denotes the n-vector of group prices with R;in row i and in every row i €/. This implies



3) w=2Xe+ G (ptR",2)- G/ (R, 2)

iel
which shows the composite model errors are correlated with relative elementary prices.

Lewbel shows that valid aggregation obtains when the vector of all relative prices is
distributed independently of the vector of composite prices and income. This implies
4 Gi(R, z) = /G (R +p, z) dF(p)
which states the conditional expectation of the /th composite share equals an unconditional
expectation of sums of the elementary demand functions in the /th composite. Lewbel uses (4) to
obtain three results that relate directly to demand system estimation. First, G/(R, z) (I = 1,2,... M)
is a valid system of composite demand equations because this system inherits the adding up,
homogeneity, and nearly (or in some cases exactly) inherits Slutsky symmetry from the
elementary demands. Second, the demand elasticities of G/(R, z) are best, unbiased estimates of
within-group sums of elementary demand elasticities. Third, (3) and (4) implies (G- Gp)isa
bias term that arises from aggregation and this term is a function of p. Because u; contains this
bias the errors of a composite demand system justified by the GCCT will be correlated with
relative prices. If instead the demand system is based on weakly separable preferences, G, = G;
so u; = i ey and composite demand errors will not be correlated with relative prices.

In time series theory the restriction that p; is distributed independently of q; = /R¢’, z{/’
imposes restrictions on the correlation of an infinite number of random variables. For example, if

p: and ¢, are in-deterministic stationary processes they would satisfy

pt = g() Csl/t-s and qt = %Dsl/t-s



where Y-, |Cy| < o0, Y =,” |Dy| < 0, and (V; U,) are iid normal with mean zero. In this case
independence requires E(V,Us) = 0 for all (7, s). An implication of vector independence is E(p:|q,)
= E(p,) or that ¢, provides no information about p,. These restrictions may be difficult or
impossible to test.

This may be why tests of the GCCT have focused on tests for linear relationships. If P
denotes the linear projection operator, valid aggregation means P(ps|q,) is not a linear function of
¢q: and failure to reject such tests is taken as support for valid aggregation (Lewbel, Davis, Davis,
Lin, and Shumway, Asche, Bremmes and Wessells). Because evidence has suggested p; and ¢;
are often unit root processes, aggregation tests have been based on tests of spurious regressions.

Phillips shows that a simple linear regression constructed from two independently
distributed and integrated time series behaves like a model constructed from two non-
cointegrated series. That is, Phillips shows correlation between the stationary components of the
two series will not affect the asymptotic behavior of the regression. It is significant for our work
that Phillips extends this result to multiple regression models, so that if p, = P(piq,) + viis a
spurious regression, the model behaves as though p; is distributed independently of ¢,. This
suggests tests of the GCCT that have been based on a large number of simple regression models
can be simplified by basing them instead on multiple regression models.

In particular, if ¢; is an integrated vector we can, in a straightforward manner, compute a
test of the aggregation scheme. An approach is to compute Engle-Granger tests of no
cointegration for each of the individual p; multiple regressions for which p; is an integrated
variable, and then follow Davis, Lin, and Shumway. That is, based on the individual tests use the
Holm procedure to test the family-wise hypothesis that each integrated element of p is jointly

spuriously related to ¢. This approach differs from the ‘grand test” proposed by Davis because it



represents a test of the null of valid aggregation. Moreover, our reading of Huang leads us to
conclude that the power problems associated Engle-Granger tests are no more severe for
regressions with a large number of regressors than they are for a small number of regressors.

A finding of valid aggregation means a composite demand system is associated with this
aggregation scheme. Moreover, if demand variables follow unit root processes, we expect the
demand equations to be cointegrated (Karagiannis and Mergos). Because of the interest in
demand elasticities, and because a number of useful functional forms used in empirical demand

work are nonlinear, it is desirable to apply cointegration methods to nonlinear demand systems.

Cointegration and Nonlinear Share Equation Systems
We maintain that composite shares of a valid demand system are adequately described by the
semi-flexible almost ideal (S4/) demand system (Moschini). The S4/ demand system is a re-
parameterization of the Almost Ideal (4/) demand system (Deaton and Muellbauer). Thus, it
describes nonlinear Engle curves, defines community income and exact nonlinear aggregation
over consumers, and defines budget shares and income elasticities for income inelastic goods
such as food that decline as incomes rise (Moschini). Moreover the SA/ demand system saves
degrees of freedom while maintaining curvature at a point in the data. In this section we show
that a version of the nonlinear SA/ demand system can be estimated using cointegration methods.
Recall that I denotes the /th composite consumer budget share, z the log of income, and
R;the log of the Jth composite price. If we let e; denote the /th model error, the 47 model is

M
(5) W[:a]+J§7]JRJ+ﬂ](Z—ZOgP)+€1 (IZI,...,]M)

M
6) logP=a,+2X aqyR;+ %2 XM R Ry
I=1



with Slutsky-substitution terms

(7) Su = [xX/(p1p)] [y + Wi Wy- oywr + Br By (z - logP)]

where oy=1 for I=J and 9;; = 0 for I£J. Moschini notes that if ¢, = 0 and price and income
variables are deflated by their sample means, then at the sample mean p;=x=1, ¢;is the Ith
budget share, gy = (1/ay)(y; - Pray) - O is a cross-price elasticity of demand, 7, = (b1/cy) + 1 is
the income elasticity of demand, and the Slutsky substitution terms are

() O =y + ar oy - Oy ar.

The SAI model can be used to estimate demand elasticities conditioned on curvature imposed at
the mean (or any other point) of the data. By setting © = [6;;] =-T’T where T =/7;,] is upper
triangular and O is less than full rank, Moschini restricts the rank of © by setting the last number
of rows equal to zero. For example if © is a 5-by-5 matrix, setting the last two rows of 7 to zero
restricts © to a matrix of rank three. Such restrictions allow the parameters of

M 1 M-1
(9) W1=0q+a1R1—algaJRJ-:ZIrs[J:ZTSJ(RJ-RM)+ﬂ12—ﬂ110gP+eI ([:],...,M-])

M-1 M-1

M M M
(10)  logP = nga, Ry — ¥ 4;1 ay R+ Y JZI ay(R) - %X [Xt(Rs- R’

s=1 J=s

identify the parameters of (5) and (6). Equations (9) and (10) represent the SA/ demand model.
The task is to estimate this nonlinear system assuming each share equation is an

integrated regression with stationary model errors. The estimator developed by Chang, Park, and

Phillips applies to a class of nonlinear, single equation cointegrated models. To describe this

class in detail let (9) be represented as

(]]) m:a+Q(xt,ﬂ)+€t



where x;” = [X;/, X2 4.+ Xii] 18 @ k-vector of integrated stochastic regressors. Chang, Park, and
Phillips show their estimator applies to nonlinear models such as (7/) when model errors are
serially uncorrelated (i.e., e, is a martingale difference series) and g(x;, ) satisfies additive
separability. They show that if g(x;, ) consists of k additive terms for = /1,2y« Pi ],

additive separability requires

k
qx:,.p) = FZI% (Xits ).

Thus, additive separability permits only one integrated regressor per additive term.

For an S47/ demand equation, it is seen that if /ogP could be treated as one integrated
regressor, (9) would satisfy additive separability. The problem lies with /ogP. With the
exception of the first term, every term in (/0) involves two integrated variables, so (9) and (10)
violate additive separability. However, the approximation (Deaton and Muellbauer)

M
(10°) longJ:ZIWJRJ
does treat logP as a single variable so (9) and (10°) satisty additive separability. Moschini notes
that (9) and (10°) represent a valid form of the SA/ model, and demand system estimation in this
study is based on (9) and (10°).

For integrated regressions, cointegration does not ensure econometric exogeneity. The
consequence for estimation of linear, single equation cointegrated regresssions is that OLS
estimates are biased and even though cointegration means this bias disappears in large samples
this bias injects nuisance parameters into the distributions of OLS estimates. The result is that
standard ¢- and F-tests are misleading even in large samples. When econometric exogeneity is

achieved, the bias and the nuisance parameters disappear so that OLS estimates are normally



distributed, and #- and F tests provide correct inference. The fully modified (FM) estimator
transforms single equation linear models in such a way that the transformed model satisfies
econometric exogeneity (Phillips and Hansen).

Chang, Park, and Phillips show similar issues generally arise in nonlinear cointegrated
regressions, and so derive an FM estimator for single nonlinear cointegrated regressions. To
describe their estimator it is asssumed that model errors of (/) form a martingale difference
series and the regression function, g, satisfies additive separability. Let Ax,= v, and E(v,) = 0 so
[e; v,] forms a linearly indeterministic stationary vector. The covariance generating function
(evaluated at frequency /) of this vector is

[ 2] [E(eiecs’)  Efe;vis) |
_ 5
fe=-c0

L2 2] LEW, eci’) Ew vi) | .

Since v, is a stationary, serially correlated series it satisfies v, =23;—y” m; &.j where & is a serially
uncorrelated iid vector process with 3—”|z;| < co. If the model errors are also stationary and
serially correlated they satisfy e, = 3i—p” ¢; (., with 2;—*|p;| < oo (where {; may be

contemporaneously but not serially correlated with &). In this case

=-00 (=0

212 =2 E(evii’) = 2B (Z9iC) (2 myeiga) #0
=0 J=

means exogeneity is violated. However, for serially uncorrelated errors ¢; =0 for i > 0, and

2= kZ E(e;vii) ZkZE(% & (Zoﬂj &nj) = E(pon(l) & &) = E(eyv) =217
= =~ =
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where (1) = 3j=y” m;. Hence violations of econometric exogeneity arise in models with serially
uncorrelated errors only because of the presence of contemporaneous correlation between e, and
v, Define 3, = E(v;v,)’ so that subtracting 2 20(2220)'1 v, from both sides of (11) gives

(11) Wi =a+qx.p)+e

where W, = W,-212"(2.") vi e = e, -232"(222")" v s0 that

YE@ vi’) = Ele,ve) -2 (2 ) Eveve) =351"- 5" =0

k=-c0

and econometric exogeneity is obtained. This means nonlinear least squares (NVLS) estimates of
(11°) are consistent, efficient, and normally distributed. Furthermore, consistent estimates of 57
and %,” obtain by applying NLS to (11) in the first stage. Chang, Park, and Phillips refer to this
estimator as the efficient non-stationary nonlinear least squares (EN-NLS) estimator.

To estimate demand elasticities of an SA/ demand model using the EN-NLS estimator, it
must be expanded to a systems estimator. It should be recognized that when estimating systems
of cointegrated regressions a violation of econometric exogeneity means SUR or nonlinear SUR
(NSUR) yield inconsistent estimates.' The implication for FM system estimation is that single-
equation estimators such as OLS, NLS, or EN-NLS rather than multivariate estimators such as
SUR or NSUR must be used in estimating the model in the first stage. The SUR or NSUR
estimator is then applied to the transformed model in the second stage.

More specifically, represent the M-1 SAI composite demand equations as

(12) Wi=ay;+qs(x.B) +exn J=12..M-1)

" The reason is for a system of cointegrated regressions with correlation across the model errors and non-zero
correlation with the regressors, information on unit root variables in the system is transmitted to the equations across
the system and the SUR estimator does not weight that information properly. The result is a bias term associated
with a SUR or NSUR estimator that may not disappear asymptotically (Park and Ogaki).

11



where W), is the Jth composite budget share in time ¢, x; is a vector of integrated prices and
income, g, is additively separable, ey is the Jth element of the M-1 vector e, which is drawn
from a martingale difference series. Let v, = Ax,, denote the vector of first differences of non-
redundant regressors in the system with E(Ax,) = (. Since v, is a stationary vector series, it
satisfies v,ZZi:()wms,_j and in general e, satisfies e, =2 ;- P; ;. But because E(e e.1, €2, . . .) =
0, Var(e) =P,AP,” where A = E({;{;’) so e; = P,¢; where ¢ is a serially uncorrelated iid vector
process that can be contemporaneously but not serially correlated with &. Then

212 =2 Elevir) = D E(PoL) (2=0"Tj i) = E(P.L (1) &) = E(ervy) = 217

and violation of strict econometric exogeneity in a system of cointegrated regressions

derives only from the presence of contemporaneous correlation between e, and v, when model
errors are serially uncorrelated. Define 2’220 = E(v;v)’ and let oy 20" represent the Jth row of 2}20
so that subtracting a)uo(J)(Z'ggo)’l v, from (12) gives

(12°) Wi =ay+q(x, B) +ex J=12..., M-I)

where WJ[* =Wy - o1, (‘D(Zggo)‘lv, and eJ,* = ey -0 (J)(Egg)'l v;. This means

kf E(esv’) = E(env) - 01207 (2" Eviv)) = w0120” - 0120 =0
and econometric exogeneity is achieved. This means that given consistent estimates of 3;,”
NSUR estimates of £ from (12°) are consistent and normally distributed. It should be noted this
nonlinear estimator takes the same form as the FM estimator for linear systems (Moon).

There are two more points worth mentioning. First, it is well known that because
-MW,=1, the error covariance matrix is singular and the model is estimated using M-/
equations (Berndt and Savin). When cross-equation restrictions are imposed in the first stage of a
mean distance estimator (e.g., SUR) as they are for the SA/ model, the estimates will not be

invariant to the omitted equation unless one uses a first-stage weight matrix that treats equations

12



symmetrically (see Chavas and Sergerson). The problem is these matrices contain non-zero off
diagonal elements and this leads to inconsistent estimates of cointegrated systems for the same
reasons SUR or NSUR yields inconsistent estimates (see footnote 1). In this study we use the
identity as the first-stage-weight matrix, and recognize the estimates are consistent but not
invariant to the equation omitted.

Second, Chavas and Sergerson note that if the model errors are included in the
specification of share equations, as they are in (/2), they also enter the indirect utility function
and so can lead to heteroskedastic errors. They recommend applying a GLS transformation that
accounts for heteroskedasticity prior to estimation. However, cointegration theory is based on a
data-generating process in which partial sums are distributed like continuous time Brownian
motion variables (Phillips and Durlauf). This automatically allows for heteroskedastic errors, so

the only transformations that are necessary are those ensuring econometric exogeneity.

Empirical Results
This section reports a test of valid aggregation of /9 elementary at-home food products,
estimates of composite food demand elasticities, and tests for weakly separable preferences.
We propose the /9 food products be aggregated into the following five at-home food
composites. The cereal and bakery composite includes all cereal and bakery products. The meat
composite includes beef, pork, other meat, poultry, and fish and seafood. The dairy composite
includes fluid milk, butter, cheese, and ice cream. The fruit and vegetable composite includes
fresh fruit, fresh vegetables, and processed fruit and vegetables. The other food-at-home
composite includes sugar and sweets, fats and oils, non-alcoholic beverages, eggs, and

miscellaneous foods. Food-away from home and non-food are treated as valid composites.
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Estimates of U.S. quarterly budget shares, after-tax income, and community income are
computed from 1982.1 to 2000.4 using weighted sums of household expenditures reported in the
diary section of the Consumer Expenditure Survey (CES) (U.S. Dept. of Labor), with weights
supplied by the CES. Quarterly after-tax income is constructed as the U.S. annual estimate
divided by four, and nonfood expenditure is the difference between the quarterly after-tax
income and the sum of away-from-home and at-home food expenditures. The quarterly budget
share for the /th composite, wy, is computed as the ratio of the expenditure for the ith good-to-
after tax income. If x;, denotes the (weighted) total expenditures for household 4 and &, denotes
the number of members in household /, then community income (per capita) associated with
PIGLOG preferences (Muellbauer) is x,= exp/ 2 xi log(x /ky) /24 x1]. If m, denotes the sample
mean of x,, z =log (x,/m,) is used in estimation.

Quarterly Laspeyres price indices (1982-84=1.0), P, J =1, ..., 5 are constructed for
the five at-home categories using the /9 elementary prices, p;, with expenditure weights
constructed from the expenditure data. Logs of mean-deflated prices are used in testing and
estimation. Specifically if M, denotes the sample mean of P, and m; denotes the sample mean of
pj, then the Jth log mean-deflated composite price is log (P;/M;) = R, and the jth relative
elementary price is log (p/m;) — R; = p; for every j e J.

Table 1 reports unit root tests on relative prices, composite prices, and community
income. They indicate that at the o = 0.10 level of significance most of the 27 elements of p, R
and z follow unit root processes. Both the Dickey-Fuller and the Kwaitkowski, Phillips, Schmidt
and Shin tests suggest that community income, six of the seven composite prices, and 9 relative
prices follow unit root rather than trend stationary processes. Both tests also suggest the relative

price of beef is trend-stationary. The tests conflict for the dairy price index and the remaining 9
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relative prices. A test of the Joint Confirmation Hypothesis (JCH) of a unit root (Silvestre,
Rossello, and Ortuno) confirmed the presence of a unit root in the dairy price index and in 6 of
those remaining 9 relative prices. A unit root could not be confirmed for the relative prices of
butter, fresh vegetables, and eggs and so these series are considered trend stationary. The results
in Table / suggest unit root processes generate all composite prices, community income, and /5
of the 79 relative prices.

Table 2 reports the Engle-Granger test statistics (7%) for each of the /5 integrated relative
price regressions. Each is specified as a function of an intercept, a time trend, community
income, the five food-at-home, the away-from home, and the nonfood price indices. With the
exception of processed fruits and vegetables, the each individual test failed to reject the null of
spurious regression. Following Davis, Lin, and Shumway the family-wise test statistic of no
cointegration is max |Ty| = 5.989. For a 10-percent family-wise significance level, the (.10/15)
critical point of the distribution of this statistic under the null of no cointegration for each of the
tests and for 76 observations is 7* = 6.952 (MacKinnon). Since max |T}| < T* the tests fail to
reject the aggregation scheme. This suggests composite demand elasticities for this scheme
accurately reflect the elasticities for the products that consumers actually purchase (Lewbel).

The system estimates are computed in three steps. First, compute estimates of 2, and
2" by applying the NSUR estimator to the system using the M-/ identity matrix as the weight
matrix in the first stage. Specifically, denote the first-stage residuals as r, = [ry,,. . ., a1/, and
the vector of first differences of non-redundant regressors (with drift removed) as v,. From these
compute the contemporaneous covariance matrix, § 220 = (1/T)Y vi*v*’, where vi*=v,— ¢ v, 1

where ¢ = (Y ;.1 vi1’) 'I(Zv,_l v,’), and the cross-covariance matrix, Slzo = (1/T)Y (rive®).
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Second, construct the transformed model as WJ[* =Wy —s120J) (S 220) 'y, where s120(J) denotes
the Jth row of S7,”. Third, apply NSUR to the transformed system of cointegrated regressions.

Table 3 presents estimates of composite consumer demand elasticities. They are based on
a rank three © matrix. The results yield relatively large estimates of income elasticities, although
such results may be attributed to the very broad definitions of the composites. The results suggest
the fruits and vegetable composite is the most price elastic and meat is the least price elastic.
Except for the meat composite, the results suggest the food-away-from-home composite is a
gross substitute for the at-home food groups, and nonfood is a gross complement for all at-home
food groups.

At this point we note that the above estimates are based on consumer-reported
expenditure data rather than USDA’s computed farm-based commercial disappearance data (e.g.,
Eales and Unevehr). The problem with using the commercial disappearance data in consumer
demand analysis is these data provide information only on the physical amount of farm
components in food. By ignoring the value that consumers place on the mix of food products,
commercial disappearance ignores the fact that the mix of food products purchased has changed
over time. Nelson shows that the CCT permits composite demand to be decomposed into a
physical component and a quality component, where quality is a value measure of the mix of
products purchased and where variations in quality reflect changes in the mix of products
purchased over time. Reed, Levedahl and Clark show this same decomposition follows from the
GCCT, and provides evidence that consumers respond to changes in prices and income mostly
by adjusting the mix of products purchased. Hence using commercial disappearance data as a

proxy for food demand omits this important aspect of consumer demand for food.
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Finally, there is interest in checking for weak separability. Under weak separability, the
model errors of a composite demand system are not correlated with relative prices. Because the
model errors are presumed to be stationary, a test for weak separability reduces to a test that the

model errors are uncorrelated with stationary elements of p. Table 1 suggests the relative prices
for beef (o5 ), butter (pp,), fresh vegetables (p,), and eggs (p.) are stationary. If u; denotes the
residual of kth composite demand equation, we estimate

(13)  uk = Tko T Th1 Por + Tk2 Pour + T3 Por + Tks Pe 1o+ Tks (bt Pour) + T ks (Pt Per) T Chj -

for k = 1,. .., M-1 and test the null 7y; = 7> = w3 = Wy = 7mrs = e = 0. The results presented in

Table 4 suggest this aggregation scheme cannot be based on weakly separable preferences.

Conclusions

One part of Lewbel’s message is that the Generalized Composite Commodity Theorem may
support a number of different aggregation schemes. Another part suggests this theorem could
lead to improved estimates of consumer demand elasticities. This paper represents an attempt to
address both of these points.

Our results agree with previous studies that suggest data used in food demand analysis
are generated from unit root processes so that tests for valid aggregation may reduce to tests for
spurious regressions. We build on these studies by applying multi-comparison procedures to
multiple rather than simple regression models. This simplifies testing and leads to a
straightforward test of the aggregation scheme. Moreover, we choose a popular form to describe
this composite food demand system, and show it can be treated as an estimable nonlinear system
of cointegrated regressions. The demand elasticities for six broadly defined food categories

appear to be reasonable, and tests reject weak separability.
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Other results not reported here suggest the elementary food products chosen for this study
could have been aggregated differently. While this may be symptomatic of the low power of
residual tests for spurious regression, they may also reflect the notion that the stochastic nature of
the GCCT may support numerous aggregation schemes. This would suggest, for example, that
demand and market analysis applied to nutrition-based aggregates such as USDA’s food pyramid

applies equally well to analysis based on the more traditional farm-based aggregates.
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Table 1. Unit Root Tests of Income and Group and Relative Prices

Null hypotheses: I(1) 1(0) | I(1) or 1(0)?
Tr ’72’

R (Cereal and Bakery) -1.611 (8) 0.237 (6)* I(1)
p (cereal) -1.428 (8) 0.261 (6)* I(1)
p (bakery) -1.487 (8) 0.260 (6)* I(1)

R (Meat) -0.967 (5) 0.205 (6)* I(1)
p (beef) -3.246 (8)* 0.116 (6) 1(0)
p (pork) -3.014 (6) 0.102 (5) I(1) JCH)
p (other meat) -2.206 (5) 0.185 (6)* I(1)
p (poultry) -2.519 (6) 0.089 (5) I(1) JCH)
p (fish and seafood)) -2.152 (6) 0.136 (6)* I(1)

R (Dairy) -2.217 (6) 0.077 (6) I(1) (JCH)
p (fluid) -2.575 (3) 0.112 (6) I(1) JCH)
p (butter) -4.639 (8)* 0.201 (6)* 1(0) (JCH)
p (cheese) -1.186 (2) 0.208 (6)* I(1)
p (ice cream) -2.678 (3) 0.111 (6) I(1) (JCH)

R (Fruits and Vegetables) -1.751 (5) 0.152 (6)* I(1)
p (fresh fruit) -1.914 (6) 0.190 (4)* I(1)
p (fresh vegetables) -3.159 (8) 0.068 (1) 1(0) JCH)
p (proc. Fruit&Veg) -3.104 (8) 0.118 (1)* I(1)

R (Other Food at Home) -1.636 (7) 0.124 (6)* I(1)
P (sugar and sweets) -2.266 (6) 0.118 (6) I(1) JCH)
p (fats and oils) -3.389 (5)* 0.146 (6)* I(1) JCH)
p (non alcoholic bev) -2.153 (2) 0.164 (6)* I(1)
p (eggs) -2.562 (6) 0.054 (5) 1(0) (JCH)
p (miscellaneous foods) -2.160 (8) 0.180 (6)* I(1)

R (Food Away from Home) -1.847 (5) 0.290 (6)* I(1)

R (Nonfood) -0.928 (3) 0.239 (6)* I(1)

z (income) -1.551 (8) 0.194 (4)* I(1)

10 percent critical values: .*=-3.167 n*=0.119 (7, n)* =(-3.601,0.073)

Notes: Asterisk (‘*’) denotes rejection of the null at the 0.10 level of significance. The test statistics of the null
hypothesis of /(1) (z,) are the augmented Dickey-Fuller (1979) (ADF) t-values of the coefficient on the lagged level
variable in the regression of the first-differences on a constant, a time trend, the lagged level and lagged-differences
of variables appended to the regression. The number of lags of first differences is reported in parentheses and
determined by SHAZAAM 7.0. The second column (77,) reports test statistics developed by Kwaitkowsi, Phillips,
Schmidt, and Shin (KPSS). They are sums of squared partial sums of residuals divided by an error variance
estimator. The residuals are computed from a model in which the series is regressed on a constant and a time trend,
and the error variance estimator is a Bartlett kernel weighted-sum of auto-covariances, with the automatic (Newey-
West) bandwidth parameter reported in parenthesis. The third column reports inference based on the Joint
Confirmation of a Unit Root, and is used when the tests in the first and second columns conflict (Silvestre, Rossello,
and Ortuno). The joint critical values (-3.601,0.073) represent the mid-point of critical values for 50 and 700
observations for the ADF and the KPSS (with Bartlett kernel) tests with trend. They are interpreted as follows. If the
value of the ADF statistic (column 2) is less (greater) than —3.601and the value of the KPSS statistic (column 3) is
less (greater) than 0.073 then the series is considered (at the 0.90 level) stationary (integrated). Otherwise the series
cannot be confirmed to be a unit root and is therefore considered to be stationary.
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Table 2. Individual and Joint Tests of Spurious Regressions

Relative Price

Regression Tk

1. cereal -4.491 (8)
2. bakery -4.415 (8)
3. beef NC

4. pork -3.544 (8)
5. other meat -3.318 (5)
6. poultry -3.561 (7)
7. fish and seafood -2.436 (8)
8. fluid -3.471 (3)
9. butter NC

10. cheese -2.390 (7)
11. ice cream -4.658 (2)
12. fresh fruit -4.935 (4)
13. fresh vegetables NC

14. processed fruits and vegetables -5.989 (8)

15. sugar and sweets -4.600 (8)
16. fats and oils -4.771 (5)
17. nonalcoholic beverages -3.273 (6)
18. eggs NC

19. miscellaneous foods -3.473 (8)

10 percent critical values:

T* =-5.7381 (Individual tests)
T* = 6.9521 (Family-wise test)

Notes: The entries (T}) are Engle-Granger tests of the null that the kth relative price and the vector of composite
group prices and income are not cointegrated. The entries are augmented Dickey-Fuller tests of /(7) residuals formed
from regressing the kth relative price on each of the seven integrated group price indices (see Table 1), income, a
constant, and a time trend. The number of lagged first difference residuals included (in the residual regression) is
reported in parentheses, and is determined by SHAZAM 7.0. The 0.10 critical values reported for the individual tests
are based on 76 observations and 8 integrated explanatory variables, so that £ = 9 in MacKinnon. The 0.70 family
wise critical value of 6.952 is based on 76 observations, k = 9, and the (0.10/15) critical point.
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Table 3. Composite Demand Elasticities

Cereal & Bakery
Meat

Dairy

Fruits & Vegetables
Other Food (home)
Food Away

Nonfood

Cereal
& Bak

(Ry)
-0.606
0.014
-0.547
0.357
-0.337
0.049

0.001

Meats
(R2)
0.036
-0.605
0.589
-0.108
0.176
-0.337

-0.002
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Dairy
(R3)
-0.396
0.257
-0.861
-0.089
-0.461
-0.276

-0.002

Fruits&
Vegs
(Ry)
0.399
-0.072
-0.143
-0.979
-0.125

0.154

-0.008

Other
Food

(Rs)
-0.673
0.180
-1.260
-0.237
-0.741
0.344

-0.003

Away
(Ro)
0.182

-0.736
1.321
0.497
0.656

-0.692

-0.045

NonFood

-0.293

-0.849

-1.346

-1.042

-0.207

1.173

-0.864

Income
&2
1.351
1.810
2.246
1.601
1.038
1.379

0.924



Table 4. Weak Separability Tests

Groups W PW>x)
1. Cereal and Bakery 59.37 <0.0001
2. Meat 51.73 <0.0001
3. Dairy 36.65 <0.0001
4. Fruit and Vegetables 26.62 <0.0001
5. Other Food at Home 66.59 <0.0001
6. Food Away 13.52 0.036

Notes: The entries (W) are Wald statistics associated with the null that relative prices are not related to the composite
model errors. Each statistic is based on equation (7/3) in the text, and therefore each is distributed chi-square with 6
degrees of freedom. The third column reports probabilities of observing the reported level of W under the null of
weak separability.
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