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GENERALIZED OPTIMAL HEDGE RATIO ESTIMATION 

A major problem faced by commodity traders is to select the proportion of 

spot positions that should be covered by opposite positions on futures 

markets. This is the problem of choosing an optimal hedge ratio (Johnson; 

Stein; Heifner). A frequently recommended solution is to set the hedge ratio 

equal to the ratio of the covariance between spot and futures prices to the 

variance of the futures price (Benninga, Eldor and Zilcha; Kahl, 1983). But 

in order to implement this seemingly simple rule, the relevant covariance and 

variance must be estimated from available data. This paper considers 

alternative methods for empirical estimation of this optimal hedging rule. 

The conventional approach to estimating optimal hedge ratios is to use 

the slope coefficient from a simple regression of spot price levels on futures 

price levels (Ederington), or spot price changes on futures price changes 

(Carter and Loyns). Some researchers have also regressed spot market returns 

on futures market returns, where returns are defined as the proportional price 

change from period to period (Brown, 1985). The question of whether levels, 

changes or returns should be used in the simple regression approach to optimal 

hedge ratio estimation has become somewhat controversial (Brown, 1986; Kahl, 

1986; Hill and Schneeweis; Bond, Thompson and Lee; Witt, Schroeder and 

Hayenga). This paper shows that none of these simple regression approaches 

are appropriate except under very special and restrictive circumstances. The 

reason is that the slope parameter from the simple regression model only gives 

a ratio of the unconditional covariance between the dependent and explanatory 

variable to the unconditional variance of the explanatory variable. ~et the 

covariance and variance in the optimal hedging rule are clearly conditional 

moments that depend on information available at the time the hedging decision 

is made . A generalized approach based on time series econometrics is provided 
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as an alternative to simple regression. The generalized approach takes proper 

account of relevant conditioning information and therefore should provide 

improved estimates of optimal hedge ratios. 

In the next section, the optimal hedging rule is derived from the usual 

mean-variance model. Two important points about the role of conditioning 

information and the way in which optimal hedge ratios should be estimated are 

then discussed. Next a generalized approach to optimal hedge ratio estimation 

is outlined. The advantages of the procedure are demonstrated by showing how 

the conventional simple regression methods are special cases under a set of 

restrictions on equilibrium prices. The following sections then provide two 

single equati on methods for implementing the generalized approach and discuss 

hypothesis testing and model selection. In an example of optimal hedge ratio 

estimation for corn, soybean and wheat storage in Michigan, it is shown that 

simple regression may lead to errors in the estimation of optimal hedge 

ratios. Finally, implications for empirical estimation of optimal hedge 

ratios are sunmarized in the conclusion. 

Derivation of the Optimal Hedging Rule 

Consider the behavior of an agent that takes out spot and futures 

positions for some colmlodity at time t-1. The agent's profit in period t, the 

date at which the positions are liquidated, is denoted 

where 11t is profit, Pt is the spot pr i ce in period t, qt_ 1 is the spot 

position chosen at t-1, c is an increasi ng and convex cost function, ft is the 

futures price quoted at period t for delivery at some future date, and bt_ 1 is 

sales of futures contracts in t-1 (purchases if negative). 
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The model can be interpreted in a number of different ways. The agent 

might be a producer so that c(qt_ 1) represents production costs. Or the agent 

may be a commodity trader so that c(qt_ 1) represents the cost of purchasing, 

storing and transporting the colllllodity . It is also possible for the agent to 

sell short in the spot market (qt_ 1 < 0) in order to obtain a deterministic 

revenue equal to minus c ( q t- 1) . 1 However, the model does not accomoda te 

producers with a stochastic production technology. An alternative framework 

is required for this case (Rolfo; Grant). 

The agent chooses qt_ 1 and bt_1 to maximize a linear function of the mean 

and variance of income, conditional on available information: 

where Xt_ 1 is a set of informat ion available at t-1 and A is a measure of the 

agent's risk aversion. First-order conditions for this problem are2 

( 1) 

(2) 

where : 2 op =Var (ptlXt_ 1) is the conditional variance of the spot price; 

2 
of = Var(ft1Xt_ 1) is the conditional var iance of the futures price; 

opf = Cov( pt, ft I Xt_ 1) is the conditional covariance between spot and 

futures prices. 

Notice that all of the relevant moments are conditional on information 

available at time t-1 . 
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A crucial assumption in deriving the optimal hedge ratio is that the 

futures market is unbiased, 

Under this assumption, (2) implies the simple hedging rule 

(4) 
a f 

r - _Q£ 
- 2 

of 

where r = bt_ 1/ qt_1. This rule occurs frequently in the literature (Anderson 

and Danthine; Kahl, 1983; Bond, Thompson and Lee). If the futures market is 

biased, so that (3) does not hold, then (4) is still the minimum var iance rule 

but it is no longer mean-variance efficient (Heifner) . 

There are two important points that need to be made regarding estimation 

of the hedging rule (4). First, the model used to derive (4) represents the 

decision process of an individual hedger. The decision rule ( 4 ) therefore 

tells us what information a hedger will seek when implementing the rule (i.e. 

information about opf and o~). But by itself, (4 ) does not tell us anything 

about how to estimate opf and o~. The parameters opf and o~ are conditional 

moments of market prices. Therefore, to determine how opf and o~ should be 

estimated, we need a market model of the equilibrium (or disequilibrium) 

relationship between spot and futures prices; a model that takes the behavior 

of all market participants into account. This essential point was missed by 

Witt, Schroeder and Hayenga when they argued that the way in which hedge 

ratios should be estimated depends on the type of decision probl em the agent 

is facing. I t is true that different decision problems will lead to different 

hedging rules but the type of problem does not prescribe how the parameters on 

the right hand side of those hedging rules should be estimated. 

J 
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The second point is that the usual simple regression approaches to 

optimal hedge ratio estimation will be inadequate except under special and 

restrictive circumstances. This is because the simple regression approaches 

estimate a ratio of the unconditional covar iance between spot and futures 

prices (price changes, returns) to the unconditional variance of futures 

prices (price changes, returns). But from the decision problem outlined 

above, a rat i o of the condit ional covariance between spot and futures price 

levels to the conditional variance of futures price levels is actually 

required. Unless the slope parameters from the simple regression models 

happen to equal the required ratio of conditional moments, each of the three 

simple regression approaches will be mis leading. In the next section we show 

that the conditions under which the simple regression approaches will be 

appropriate are very restrictive and seem unlikely to be satis fied for 

seasonally produced storable cormnodities. 

A Generalized Approach to Estimation 

Thi s section begins by outlin i ng a generalized approach to optimal hedge 

ratio estimation. The approach is based on a model of the data generating 

process for equilibrium spot and futures market prices. After outlining the 

generalized approach, the simple regress ion approaches to optimal hedge ratio 

estimation are shown to be special cases that are onl y valid under strong 

restrictions on the data generating process for equilibrium prices. 

Suppose spot and futures market price data are generated by the following 

linear equilibrium model: 

(5) pt = Xt_ 1a + ut 

(6) ft = xt_ 1a + vt 
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where Xt_1 is a vector of variables known at t-1 that help predict Pt and ft; 

a and 8 are vectors of unknown para.meters; and ut and vt are error terms 

having zero mean and no serial correlation (conditional on Xt_ 1). The errors 

may be contemporaneously correlated and have a t ime independent 

(contemporaneous) covariance matrix a. Examples of variables that might 

appear in Xt_1 are a constant plus lagged values of spot and futures prices, 

production, storage, exports, consumer income etc., all dated t-1 and 

earlier. Equations (5) and (6) can be considered reduced forms from a fully 

specified structural model of equilibrium spot and futures price determination 

for the commodity of interest .3 For now it is assumed that the specification 

of (5) and (6) is known and only the unknown parameters a,8 and n need to be 

estimated . The problem of choosing a specification for the data generating 

process is considered later. 

Before discussing estimation of optimal hedge ratios using this model, it 

should be emphasized that the individual agent decision model presented in the 

previous section places no restr ictions on the parameter vectors a and 8 in 

the equilibrium pricing model. Yet it is clearly the conditional moments of 

the equilibrium prices modeled by (5) and (6) that must be estimated to 

implement the optimal hedging rule. Thus, the appropriate estimation strategy 

depends on the data generating process (5) and (6), not on the individual 

hedger's decision rule. 

To implement the optimal hedging rule, we need to estimate the 

cond i tional covariance matrix of spot and futures prices. But by applying the 

conditional (on Xt_1) covariance operator to (5) and (6), i t is found that 
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2 
Var(ut1Xt_ 1) op = 

2 
Var(vt1Xt_ 1) of = 

opf = Cov(ut,vt1Xt_1). 

Thus, the conditional covariance matrix of Pt and ft is just equal to n, the 

contemponaneous covariance matrix of the error terms ut and vt . The problem 

has been reduced to one of obtaining an estimate of n. 

To estimate a, the first step is to estimate the unknown 

parameters a and a using ordinary least squares (OLS) on each equation. The 

second step is to take the vectors of OLS residuals, u and v, and use their 

sample var iances and covariance as an estimator of n: 

(7) ~
A 

A 1 'u 
a = T 'A 

u 

~]A 
A A 

v v 

Since there are identical exogenous regressors on the right hand side of both 

equations, (7) is the maximum likelihood estimator of o, under the assumption 

of normally distributed errors (Harvey, p. 99) . The third and final step is 

to set the hedge ratio equal to the ratio of the estimated conditional 

covariance between spot and f\Jtures prices to the estimated conditional 

variance of the f\Jtures price: 

( 8) r = v'u 

v'v 

Equation (8) has three desirable properties as an optimal hedge ratio 

estimator. First it is based on a generally specified market model for spot 

and futures price determination. Second, it takes proper account of relevant 

conditioning information by using deviations from the (time varying) 
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conditional means of spot and futures prices to estimate the required 

covariance matrix. Third, under the assumption of normally distr i buted errors 

it is the maximum likelihood estimator of the optimal hedge ratio, given the 

data generating process defined by (5) and (6). These desirable properties 

pers ist even if Pt and ft are nonstationary. 4 

The Conventional Approaches 

We now evaluate the conventional simple regression approaches to optimal 

hedge ratio estimation within the context of the previously outlined 

generalized approach. First, consider using the slope coefficient from a 

simple regression of spot price levels on futures price levels as an optimal 

hedge ratio estimator: 

Define the vectors of T observations on Pt, ft and the constant as 

p = [p1 P2 p ] I 

T 

f = [f 1 f2 f ]' 
T 

i = [ 1 1 ... 1] I 

and let p and f denote the sample means of p and f respectively. Then the OLS 

estimate of 6 can be expressed as 

(9) 6 = (f fi)'(p pi) 

(f - fi)'(f - f i) 

Notice that 6 is just a ratio of the unconditional sample covariance between 

spot and futures prices to the unconditional sample variance of futures 
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prices. 

When will the simple regression estimate (9) equal the desired optimal 

hedge ratio estimator (8)? Suppose the conditional means of spot and futures 

prices are constant so that (5) and (6) take the special form 

(10) Pt= a0 + ut, and 

(11) ft= Bo+ vt. 

Then the OLS estimates of a0 and Bo are just the sample means p and f. In 

this special case 

u = p - pi, and 

v = f - fi. 

Equations (8) and (9) are clearly equivalent under this definition of 

u and v. Thus, for the case where equilibrium spot and futures price levels 

equal a constant plus a serially uncorrelated error, the simple regression 

approach using price levels is appropriate for optimal hedge ratio 

estimation. Otherwise simple regression using price levels will generally 

lead to errors. 

The equilibrium model (10) and (11) under which simple regression using 

price levels is an appropriate optimal hedge ratio estimator is very 

restrictive. If equilibrium prices equalled a constant plus a serially 

uncorrelated error, then there would be substantial arbitrage opportunities 

since relatively low price realizations would generally be followed by higher 

ones (and vice versa). Both cormton sense and empirical evidence reject this 

model but it is precisely the model that lies implicitly behind the use of 

simple regression with price levels to estimate optimal hedge ratios. 
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Second, consider using the slope coefficient from a simple regression of 

spot price changes on futures price changes as an optimal hedge ratio 

estimator: 

where Apt = pt - pt-i and Aft = ft - ft_ 1. 

observations on Apt and Aft as 

Ap : [Ap 1 Ap2 

Af = [ Af 1 Af 2 

Ap ]' T 

Af ] I 

T 

Define the vector s of T 

and let Ap and Af denote the sample means of Ap and Af respect ively. Then the 

OLS estimate of 6 can be expressed as 

( 12) 0
: (Af /;fi)'(Ap 6j)i) 

(Af - Afi)'(Af - Afi) 

The estimate 6 is the ratio of the unconditional sample covariance between 

spot and futures price changes to the unconditional sample variance of futures 

price changes . 

When will the simple regression ~stimate (12) equal the desired optimal 

hedge ratio estimator (8 )? Suppose spot and futures pr ices follow a random 

walk, possibly with drift, so that (5) and (6) take the special form 

Pt = aO + pt-1 + ut 

ft : 80 + ft-1 + Vt. 
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These equations can be written equivalently as 

(13) 6pt = ao + ut 

(14) 6ft = a0 + vt. 

In this special case, the OLS estimates of a0 and s0 are just the sample 

means 6p and 6f and so 

u = 6p - 6pi, and 

v = 6f - 6fi . 

Equations (8 ) and (12 ) are clearly equivalent under this definition 

of u and v. Thus for the case where equilibrium spot and f utures prices 

follow a random walk, poss i bly with drift, the simple regression approach 

using price changes is appropriate for optimal hedge ratio estimation. 

Otherwise, s imple regress i on us i ng price changes will generally lead to 

errors. 

Although the model def ined by (13) and (14) is fairly simple, the random 

walk hypothesis for equilibrium commodity prices does have empirical support, 

particularly in the case of futures markets (Kamara). Thus, equation ( 14), 

perhaps wi th the additional restriction that s0 = O, seems like a reasonable 

market model for the evolut i on of futures prices. On the other hand, the spot 

price equation is too restrictive since spot prices cannot always be expected 

to follow a random walk. Spot prices of storable seasonally produced 

commodities exhibit systemat ic movements over the course of the crop year to 

reflect carrying changes and changes in stock levels. As an example, consider 

the model of equilibrium spot prices for storable commodities developed by 
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Samuelson. If we make the simplifying assumption that the cost of physically 

storing the corrmodi ty is negliglible, Samuelson's model indicates that the 

expected proportional rise in spot prices over the storage season should equal 

the interest rate, R: 

E(ptlXt-1) - pt-1 

pt-1 

This implies 

= R. 

which means (13) is misspecified through exclusion of the Rpt_ 1 term. 

Furthermore, the Samuelson model is a very simple one. Taking convenience 

yields, heterogeneous expectations, physical storage costs etc. into account, 

there is little reason to believe ( 13) is a good model of equilibrium spot 

price determinination (Goldman and Sosin). Thus, there is also little reason 

to believe a priori that simple regression using price changes will give the 

desired generalized estimate of the optimal hedge ratio. 

Third, consider using the slope coefficient from a simple regression of 

spot market returns on futures market returns as an optimal hedge ratio 

estimator: 

( 15) 

From the two previous cases using price levels and price changes, it might be 

thought that the specialization of (5) and (6) which is consistent with the 

simple regression approach using returns is: 
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(16) 

( 17) 

Indeed it is true that the OLS estimate of o in ( 15) gives a ratio of the 

sample covariance between the OLS residuals u and v from estimating 

a0 and a0 in (16) and (17), to the sample variance of~. 5 

However, there is a problem. Rearranging (16) and (17) gives 

Pt= ( 1 + ao)Pt-1 + Pt-1ut 

ft= <1 + 6o)ft-1 + ft-1vt . 

Thus, in this case the conditional (on Pt-l and ft_ 1) covariance matrix of Pt 

and ft is not just equal to a, the covariance matrix of the error terms. In 

fact, the conditional covariance matrix of Pt and ft is heteroscedastic with 

Now it is the conditional moments of price levels (not returns) which enters 

into the optimal hedging rule (4). Therefore, given the price determination 

model (16) and (17), 

( 18) r = 
~-1 

As stated earlier, the OLS estimate of o in (15) gives an estimate of the 
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be an appropriate optimal hedge ratio estimator if: (a) equations ( 16) and 

( 17) adequately represent the determination of equilibrium spot and futures 

prices; and (b) Pt_ 1 = ft_ 1 so that the prices in (18) cancel and r just 

equals the ratio of covariance to variance of the error terms ut and vt. If 

either of these conditions does not hold then simple regression using returns 

will generally lead to errors in optimal hedge ratio estimation. 

The equilibrium model (16) and (17), together with the condition Pt_ 1 = 

ft_ 1, impose strong restrictions on the evolution of equilibrium spot and 

futures prices. Even if ( 16) and ( 17) seem reasonable, it is illogical to 

expect current spot price to equal the current futures price for delivery at a 

future date . Thus, simple regression using returns data will generally be 

inappropriate for estimation of the hedging rule (4). 

Single Equation Estimation Methods 

The generalized approach to optimal hedge ratio estimation in the 

previous section is more complicated than the simple regression methods. Two 

equations must be estimated using multiple regression and then the vectors of 

OLS residuals have to be cross-multiplied to get the optimal hedge ratio 

estimate (8).6 However, in this section we show that the generalized optimal 

hedge ratio estimate (8) can be obtained from OLS estimation of the parameters 

in a single regression equation. This simplifies the estimation approach 

considerably since only one equation has to be estimated and the optimal hedge 

ratio is equal to an estimated parameter so there is no need to cross-multiply 

vectors of residuals. 

The single-equation approach to generalized optimal hedge ratio 

estimation is motivated by the following proposition: 
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Given the data generating process 

Pt = Xt_ 1a + ut 

ft = X t- 1 B + v t 

where ut and vt . are serially uncorrelated with 
contemporaneous covariance matrix o, then the generalized 
optimal hedge ratio estimator ( 8 ) is equal to the OLS 
estimate of 6 in the regression equation 

See the appendix. 

Equation ( 19) is called an augmented reduced form since the reduced form 

equat i on for the spot price is "augmented" by using the current futures price, 

ft, as an additional regressor . Estimation proceeds by simply runn i ng OLS on 

(19) and using the estimate of 6 as the optimal hedge rat io . 

It is important to note that estimation of (19 ) is just a mechanism for 

computing the generalized optimal hedge ratio estimate (8). The augmented 

reduced form has no structural interpretation and so simultaneous equations 

bias (and other estimation problems) from using ft as an additional regressor 

are irrelevant. OLS est imat ion of ( 19) is just a direct single-equation 

method for computing (8). 

A careful examination of ( 19) reveals how this optimal hedge ratio 

estimator generalizes the simple regress ion approach. In simple regression 

using price levels, it is assumed that all parameters in a other than the 

constant term are zero. In other words, using s imple regression assumes 

implicitly that Pt is equal to a constant plus a serially uncorrelated 
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error. By including Xt_ 1 a in the regression we take account of relevant 

conditioning information that may be important in optimal hedge ratio 

estimation. 

A further simplification is to assume Xt_ 1 contains only a constant and 

one through q lags of spot and futures prices. Then (19) becomes 

q q 
(20) pt = y + oft + r a.pt-i + r a f + Et. 

i=1 l J=1 q+j t-j 

The advantage of this specification is that it uses only the same data that 

would be needed to implement a simple regression approach (i .e. data on Pt and 

ft). Although estimating (20) does require multiple regression rather than 

simple regression, the marginal cost of using ( 20) over taking a simple 

regression approach is essentially zero. But estimation of (20) may lead to 

significant improvements in optimal hedge ratio estimation since it takes 

account of (at least some) relevant conditioning information . 

So far we have been dealing with a very general equilibrium model defined 

by ( 5) and ( 6 ) . Now suppose we want t o impose the restriction that the 

futures marke t is unbiased, but we still want to specify a general model for 

spot prices. This leads to a data generating mode l of the form 

(21 ) pt= Xt_ 1a + ut 

( 22) 6f t : Vt 

where , as before, ut and vt have contemporaneous covariance matrix a. The 

generalized approach to optimal hedge ratio estimation is slightly more 

complicated i n this case since the two equations have different regressors and 

OLS is no longer an appropriate estimator. A seemingly unrelated regression 

approach is now required. However, there is no real difficulty . Just 
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estimate a by maximum likelihood under the assumption of normally distributed 

errors and then use the maximum likelihood residuals in (8) instead of the OLS 

residuals to get the generalized optimal hedge ratio estimator: 

(23) 
Af'u ml 

where r is the hedge ratio estimated under the assumption of an unbiased u 

futures market and uml is a vector of residuals from estimating (21) and (22) 

by maximum likelihood. 

Is there a direct single-equation approach to estimation in this case? 

Consider the following proposition: 

Proposition 2 

Proof 

Given the data generating process 

pt = xt-1a + ut 

Aft : Vt 

where ut and vt are serially uncorrelated with 
contemporaneous covariance matrix c, then the generalized 
optimal hedge ratio estimator (23) is equal to the OLS 
estimate of 6 in the regress ion equation 

See the appendix. 

Equation (24) is an augmented reduced form with 6f t instead of ft as the 

augmenting variable. 
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This proposition indicates that if you have prior information that the 

futures market is unbiased, but have a more general model specified for spot 

prices, then OLS estimation of 6 in (24) will give a generalized optimal hedge 

ratio estimator with desirable properties. As before, a simplification would 

be to have only a constant and one through q lags of spot and futures prices 

in xt_ 1• 

(25) 

In this case, one would estimate 

q q 
Pt = y + 66ft + L a .pt . + L a Jft-j + Et 

i=1 l -l J=1 q+ 

and use the OLS estimate of 6 as the optimal hedge ratio. Again, this 

procedure has zero marginal cost over using simple regression but may lead to 

an improved optimal hedge ratio estimate. 

Hypothesis Testing and Hodel Selection 

Up unt il now we have assumed that the form of the equilibrium model (5) 

and (6) is known. In practice this will rarely be the case . Thus, choosing a 

model specification is an important aspect of generalized optimal hedge rat io 

estimation. This involves specifying the variables and lag lengths to include 

in xt_ 1. As is usually the case, the approach to model specification is 

somewhat ad hoc with economic theory, hypothesis testing, and common sense 

used as guides. 

The first set of variables that should be included in Xt_ 1 is lagged 

values of Pt and ft. Both dynamic economic theory and common sense suggest 

that past values of these series may help predict future values. Further, we 

may be able to place restrictions on the way these lagged values are 

specified. In particular, if Pt and ft are nonstationary then this implies a 

set of unit root restrictions on a and a (Dickey, Bell and Miller). 
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There is a growing number of sophisticated methods of testing for unit 

roots (Phillips) . Here we outline a simple procedure due to Dickey and 

Fuller. Consider models of the form 

q 
6pt = aopt-1 + 1: a.6pt . + ut 

i=1 l -1 

q 
Mt = 8oft-1 + t a.Mt . +Vt. . 1 l -1 l= 

Dickey and Fuller suggest estimating these models using OLS and then testing 

the null hypothesis that a
0 

(and s
0

) are zero against the alternative that 

they are negative. The usual t-statistic can be used but under the null of a 

unit root the usual t distribution is inappropriate. Dickey and Fuller 

provide the correct probability tables . 

If evidence of a unit root is found in both the spot and futures price 

equations then equations (5) and (6) can be specified using first 

differences, 6pt and Mt. If valid, imposing this restriction will improve 

estimation efficiency . Estimation then proceeds as before but 

using 6pt and 6f t instead of Pt and ft.7 For example, equations (20) and (25) 

now have the identical form: 

q q 
(26) = y + 66ft + 1: a.6pt . + 1: a j6ft-j + Et. 

i:1 l -l J=1 q+ 

Thus , when Pt and ft have a unit root OLS estimation of 6 in (26) would give 

the generalized optimal hedge ratio estimate irrespective of whether the 

futures market is biased or unbiased.a 

Another problem is choosing the lag length q. Economic theory usually 

provides little guidance on this question but various statistical criteria 
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have been suggested. One approach is to start with q deliberately large and 

test down using sequential likelihood ratio tests (Harvey, p. 279) . Various 

procedures based on minimizing an objective function (e.g. Akaike's 

information criterion) have also been suggested (see Judge et al. Section 

16.6). 

The final choices are which variables to include other than lagged 

prices, whether these variables should be differenced, and specifying their 

appropriate lag lengths. Economic theory will guide which variables to 

consider and the way in which they enter can be determined in the same way as 

for lagged prices . 

Model specification is perhaps the most difficult aspect of the 

generalized approach to optimal hedge ratio estimation. However, the simple 

regression approaches to optimal hedge ratio estimat ion do not overcome this 

difficulty. They too may be misspecified since they imply certain restrictive 

forms of equilibrium spot and futures price equations. In fact, since these 

restricted equilibrium models are just special cases of the more generally 

specified time-series models suggested in our generalized estimat i on method, 

the simple regression approaches are much more susceptible to specification 

error than our approach . This is because they will usually omit relevant 

variables . 

An Example 

Optimal hedge ratios were estimated for corn, soybean and wheat storage 

in Michigan to illustrate the generalized approach. The hedger is assumed to 

be an agent that stores the colllllodity at harvest and intends to sell at the 

most advantageous time prior to the next harvest. To hedge, the agent sells 

futures in a contract maturing just before the next harvest (July for corn and 
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soybeans and Hay for wheat). He or she then liquidates portions of the spot 

and futures positions at whatever time prior to the next harvest is deemed 

appropriate. It is assumed that the agent decides on a weekly basis what spot 

and futures positions to hold for the coming week. 

appropriate. 

Thus, weekly data are 

Spot price data are for the Saginaw market in Michigan and were obtained 

from Hid-States Terminals, Toledo, Ohio. Futures pr ice data are for the 

Chicago Board of Trade and were obtained from various issues of the Chicago 

Board of Trade Statistical Annual. These data are weekly observations taken 

at the mid-week (Wednesday) closing price on the relevant market. In addition 

to price data, weekly data on total co111Dodity stocks available on the Friday 

of each week were also used in some of the optimal hedge ratio models. These 

data were obtained from various issues of the Chicago Board of Trade 

Statistical Annual. The estimation period runs from July 1977 to July 1985, a 

total of 417 observations.9 

As shown above, there are different procedures for estimating optimal 

hedge ratios depending on the equilibrium model specified for spot and futures 

price determination. We start with some very simple models and build up to 

consider more general alternatives. Estimated optimal hedge ratios for all 

model specifications discussed here are shown in table 1 and were estimated 

using the single equation methods outlined above. 

The simplest possible approach is to use (9), the slope coefficient from 

a simple regression of spot price levels on futures price levels, as a hedge 

ratio estimate. This gives 98% for corn, 87% for soybeans and 61% for wheat 

(table 1). But since the equilibrium model, (10) and (11), implied by this 

approach appears so contrary to the actual behavior of commodity prices, we 

would expect these to be poor estimates of optimal hedge ratios. 
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The first generalization, which is very easy to implement, involves 

regressing Pt on Aft as well as lagged values of Pt and ft [see model (2) in 

table 1]. This implies an equilibrium model for spot price determination of 

the form 

q q 
t a . pt . + t a jft j + ut 
i=1 l -l J=1 q+ -

{see Proposition 2). Thus, the futures market is assumed to be unbiased but a 

fairly general model is specified for spot price determination . Since 

evidence is presented below that Pt and ft are nonstationary , identifying the 

lag length q by the usual hypothesis testing approach is fraught with 

difficulties . However, it was found that the estimated hedge ratio was very 

insensit i ve to additional lags once five lags had been included. Results 

reported in table 1 use a lag length of 15. The estimated hedge ratios from 

this generalized model change fairly dramatically compared to simple 

regression wi th price levels. The corn hedge ratio decreases by 11 percentage 

points, soybeans increases by 15 percentage points, and wheat increases by 33 

percentage points. Since we can be more confident in results from the general 

model, we conclude that simple regression in price levels would lead to large 

errors in optimal hedge ratio estimation in this application. 10 

The second generalization adds lagged observations on the relevant 

commodity stock levels to the model just discussed [see model (3) in 

table 1]. This implies an equilbrium model of the form 
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q q q 

Pt = aO + i!1aipt-i + j!1aq+jft-j + k!1a2q+kst-k + ut 

where st is conmodity stocks in period t. The estimated hedge ratios change 

little compared to the previous case in which the stock variables were 

excluded (table 1). We conclude that in this application the stock variables 

can be excluded without introducing serious errors in estimated optimal hedge 

ratios. This is because the information contained in lagged commodity stocks 

does not change significantly the estimated conditional covariance matrix of 

spot and futures prices. 

We experimented by including other variables in the generalized optimal 

hedge ratio estimation equation. For example, we specified multiconmodity 

models in which lagged prices and stock levels of corn and wheat were included 

in the soybean equation etc . None of these specifications changed the 

estimated hedge ratios appreciably. Thus, for this application equation (2) 

in table was found to be an adequate model for optimal hedge ratio 

estimation, given that the equilibrium spot price equation is specified in 

levels. 

It is often suggested that commodity prices are nonstationary in the 

levels and that they have a unit root so their first differences are 

stationary. If this is true, more efficient optimal hedge ratio estimation 

may be achieved by imposing the unit root restriction and building models in 

first differences . 11 Table 2 contains the results from Dickey-Fuller tests 

for nonstationarity applied to spot prices, futures prices, and storage levels 

for each coltlllodity . A lag length of 15 was used in the estimated equations, 

but experimenting with lag lengths between 5 and 20 revealed the inferences 
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are not sensitive to this assumption. The first difference model in table 2 

tests the null hypothesis that the levels are nonstationary while the second 

difference model tests the null hypothesis that the first differences are 

nonstationary. There is evidence of a unit root in all of the series tested. 

The simplest optimal hedge ratio model using first differences is to 

regress 6pt on 6ft and use the slope parameter (12). This gave optimal hedge 

ratios of 89% for corn, 102% for soybeans and 95% for wheat. Perhaps 

surprisingly, these estimates are very close to those obta ined with the 

generalized model using price levels. Furthermore, augmenting the simple 

regression of 6pt on 6f t with lagged price changes and lagged commodity stocks 

did not change the estimated hedge ratio appreciably (table 1} . Further 

experimentation with model specification using a multicommodity approach also 

had little effect on estimated hedge ratios . 

These results indicate that the simple regression in price changes is a 

reasonable approach to optimal hedge ratio estimation in this application. In 

turn, th i s implies that (13) and (14) represent a reasonable model of spot and 

futures price determination for the collJilodi t i es studied, for the purpose of 

optimal hedge ratio estimation. Thus, although spot colIITlodity prices probably 

do not follow a random walk with drift, the random walk model with drift 

appears to be a reasonable approximation in this case if the aim is to 

estimate optimal hedge ratios . However, a word of caution is in order. This 

is not a general result and other applications may require the use of the 

generalized approach to optimal hedge ratio estimation, even if modeled in 

first difference form. Furthermore, without a careful empirical investigation 

there is no way to anticipate whether simple regression in price changes is 

adequate or whether a generalized approach is necessary . The easiest way to 

answer this question is to apply the generalized approach and compare results. 
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The approaches discussed earlier for testing different lag lengths and 

model specifications could be applied to the (stationary) first difference 

model. However, in our example the estimated hedge ratios are not sensitive 

to lag length or model specification, once f i rst differences have been 

taken . Thus these tests were not applied . 

The simple regression in returns was not estimated because it is a 

logically inconsistent approach to optimal hedge ratio estimation in this 

applicat i on . The reason is that the simple regress i on in returns implies that 

the conditional distribution of spot and futures prices in heteroscedastic, as 

discussed above. But if this conditional distribution is really 

heteroscedas tic, then the optimal hedge ratio (4) will change over time . Thus 

the constant slope parameter in the simple regression of spot market returns 

on futures market returns cannot be the optimal hedge ratio defi ned by (4) . 

Conclusion 

The correct approach to optimal hedge ratio estimati on depends on the 

data generating process that determi nes equilil5rium spot and futures prices . 

Moreover, the usual s i mple regression approaches using price level s, price 

changes, and returns, implicitly assume particular forms for this data 

generating process. These forms appear to be quite restrict i ve a pr i ori. A 

generalized approach to optimal hedge ratio esti mation allows for a more 

flexible specification of equi l ibrium pricing models . 

This paper derived a general i zed approach to optimal hedge ratio 

estimation and provided direct s ingle-equation OLS techniques for implementing 

it . The approach is very easy to apply and w il 1 usually lead to improved 

optimal hedge ratio estimates. The general ized approach was il l ustrated with 

an example of storage hedging in corn, soybeans, and wheat. The simple 
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regression model in price levels was found to be inadequate but, perhaps 

surprisingly, the simple regression model in price changes provided estimates 

that were very close to those obtained with the generalized approach . Of 

course, this is not a general result and simple regression in price changes 

may be inadequate in other applications. 

Two main extensions of the paper suggest themselves . The first is to 

expand the generalized approach to allow for conditionally heteroscedastic 

errors. That is, allow the conditional covariance matrix, n, to change 

systematically over time . This would lead to optimal hedge ratios that also 

may change over time . Therefore, optimal hedge ratio estimates would need to 

allow for this time variation. The second extension is to use out of sample 

data to compare the performance of simple regression hedging rules and 

generalized hedging rules for particular applications. The comparisons would 

be in terms of impacts on the mean and variance of total returns. This would 

provide information on the size of economic benefits from moving to· the 

generalized approach. 
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This implies c(O) = 0 and c(qt_ 1) < 0 for qt_ 1 < 0. 

2 Since c(qt_ 1) is convex these conditions are necessary and sufficient for 

a maximum. 

3 For optimal hedge ratio estimation we do not need to be concerned 

directly with this structural model. The reduced form is sufficient 

since the only information we are seeking is the conditional covariance 

matrix of the prediction errors ut and vt. 

4 Hypothesis testing and in f erence in model s with nons tat i onary variables 

is probl ematical because the properties and distributions of standard 

test statistics are generally unknown . However, the usual estimators 

remai n appropriate. In fact, they are generally "superef f i cient" since 

they converge more rapidly to a ctual parameter values as sample size 

increases . We will return to t he issue of nons tationarity when 

discuss ing hypothesis testing and model selection. 

5 To see this just follow the same steps used in the previous cases of 

simple regression with price levels and simple regress i on with price 

changes . 

6 There is also the problem of specifying which variables to include in 

Xt_ 1. This issue wi ll be taken up in the next section . 
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In this case we are actually computing the conditional covariance matrix 

of Apt and Aft instead of Pt and ft. However, since Pt_ 1 and f t- 1 are 

known at time t-1, these two conditional covariance matrices are 

identical . 

Of course, if the futures market is biased then the estimated hedge ratio 

will be minimum variance but not mean-variance efficient. 

Although there are a total of 417 observations, not all of these could be 

used to estimate models that contained lagged futures price variables. 

The problem is that the futures price series has annual breaks when there 

is a switch from one futures contract to the next (e.g. switching from 

the July 1980 contract to the July 1981 contract). It would clearly be 

unwise to allow observations on, say, the maturing July 1980 contract to 

be treated as lagged observations on the July 1981 contract. Thus, if 

there are 15 lagged futures pr ices in the model, then the first 15 

observations on each contract were not used, except in the computation of 

lagged variables . 

There is a question concerning the sense in which these errors, ranging 

from 11 to 33 percentage points, are "large. 11 These seem like re l atively 

important amounts but it is unclear exactly how much additional risk 

exposure is implied by errors of this magnitude. As a rule of thumb, we 

define deviations of greater than five percentage points in optimal hedge 

ratios as "large" and those less than five percentage points as "small." 

Thi s would not imply that the models specified in levels which have just 

been discussed are wrong. It merely suggests that if the unit root 

restriction holds it will be more efficient to impose it. 
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APPENDIX 

Proof of Proposition 1 

The generalized optimal hedge rat i o est i mator (8) is 

v'u 
r = 

v'v 

Letting X = [X1, x2 , . . . , XT ] ', this can be wr i tten 

(A. 1) r = ( f-X~)'(p-X~ ) 

(f-XS)' (f-XS) 

where a and a are the OLS estimates of a and a. Using the defin i t i on of the 

OLS estimator , then (A . 1) becomes 

f'M'Mp 
r = f'M'Mf 

where M = I - X( X'X)- 1x•. Si nce M i s an indempotent mat r ix , this ca n be 

written 

(A. 2) ~ 
r = f'Hf' 

We now show that the OLS estimate of 6 in (19) is equi valent to the r i ght hand 

side of (A.2 ). 

Let Z = [f X), c = [c 1, c2 , ... , cT], and y = [6 a']' . Then (19) can be 

expressed equivalently as 

(A . 3) p = Zy + t. 
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The OLS estimator of y in (A.3) is 

Using the definition of Z and computi~g (Z'Z)-1 but partitioned inverse (see 

Theil p. 17), the first row of y is 

0 = .... [ f_' __ f_' X_(;:...X_'_X ...... ) _-_
1 

X_'_.]..._p_ 
f'Mf 

Using the definition of M, this can be written 

~ 6 = f'Mf" 

This shows the OLS estimate of 6 in (19) gives the desired optimal hedge ratio 

estimator (8). 

Proof of Proposition 2 

The generalized optimal hedge ratio estimator (23) under the assumption 

of an unbiased futures market is 

(A. 4) 

Now 

(A . 5) 

tif 'u ml r =---
u tif'tif 

u = p - Xaml ml 
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where aml is the maximum likelihood estimate of a from (21) and (22). 

Differentiating the likelihood function for this model with respect 

to aml gives the first order condition 

(A.6) 

where, by definition, r is u the estimated covariance 

between 6f t and ut divided by the estimated variance of t:.f t. Subs ti tu ting 

(A.6) into (A.5) gives 

(A. 7) 
-1 ... -1 

u = p - X(X'X) X'p + r X(X'X') X't:.f. ml u 

Next, substitute (A . 7) into (A.4) to get 

f:.f I t:.f 

or 

r t:.f't:.f = t:.f'Mp + ; t:.f'X(X'X)- 1X1 t:.f 
u u 

Collecting terms in r ' u 

or 

r [t:.f't:.f - t:.f'X(X'X)-1X1 t:.f] = t:.f'Mp u 

r t:.f'Mt:.f = t:.f'Mp. 
u 
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Dividing through by the scalar Af'MAf gives 

( A.8) 
Af'Mp 

ru = Af'MAf' 

We now show that the OLS estimate of 6 in (24) is equivalent to the right hand 

side of (A. 8) . 

Redefine Z to be Z = [Af X] and, as in the proof of Proposition 1, let 

£ = [£ 1, £ 2 , ... ,Erl' and y = [o a']'. 

equivalently as 

(A.9) p = Zy + £. 

Then (24) can be expressed 

Using partioned inverse, as in the proof of Proposition 1, the first row of 

the OLS estimate of y is 

0 = ~[_A_f_' ~_A_f_'_X~(_X_'_X~)-_1_X_'~] ...... P 
Af'MAf 

Using the definition of M then 

0 = Af'Mp 
Af'MAf" 

This shows that the OLS estimate of o in (24) gives the des i red optimal hedge 

ratio estimator (23), under the restriction of an unbiased futures market. 
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(3) 

(4) 

(5) 

(6) 

Notes 

pt = y + 

Pt = y + 

Pt = y + 

6pt = y + 

tipt = y + 
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Table 1 

Estimated Optimal Hedge Ratios Under Alternative 
Model Specifications 

Model Corn 

6f t + £t 0.98 

6tif t + a(L)pt-l + b(L)f t-l + Et 0.87 

6tif t + a(L)pt-l + b(L)ft-l + c(L)st-l + £t 0. 85 

66f t + £t 0.89 

66f t + a(L)tipt-l + b(L)6ft-l + Et 0.85 

Hedge Ratio 6 
Soybeans Wheat 

0.87 0.61 

1.02 0 .94 

1. 04 0 .94 

1.02 0.95 

1.02 0.94 

6pt = y + 66ft + a(L)6pt_ 1 + b(L)tif t_1 + c(L)tist-l + Et 0.84 1.03 0.93 

a(L), b(L) and c(L) are polynomials in the lag operator L, defined by Lyt = Yt_ 1, 
Pt is the spot pr ice, ft is the futures price and st is co1I1T1odity stocks at 
time t. 
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Table 2 

Dickey-Fuller Tests 

First Difference Hodel Second Difference Hodel 
Parameter t p-value Parmeter t p-value 

Corn 

Spot Price -0.000 -0.01 0.96 -0.784 -4.63 < 0.01 
Futures Price -0.001 -0.82 0.70 -0.729 -3.41 0.01 
Stocks -0.002 -1. 11 0.60 -0 . 428 -5.41 < 0.01 

So:t:beans 

Spot Price -0 .000 -0.11 0 .92 -1. 074 -5.35 < 0.01 
Futures Price -0.004 -2.57 0 . 10 -1. 364 -5 . 42 < 0.01 
Stocks -0.004 -1 .31 0.50 -0 . 491 -5 . 13 < 0.01 

Wheat 

Spot Price -0 .001 0.30 0.98 -1.225 -4.80 < 0.01 
Futures Price -0 .004 -2 . 16 0.20 -0.931 -3 . 58 < 0.01 
Stocks 0.001 -1 . 31 0.50 -0 . 263 -5.22 < 0.01 

Notes <0.01 indicated less than 0.01. 


