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. Introduction

This paper is a user's guide to empirical estimation of stochastic production
functions using the flexible, moment-based approach. The purpose is to provide the
applied researcher with a working knowledge of moment-based estimation.  This
knowledge includes a discussion of possible problems and some available solution
techniques.

The paper is organized as follows. The second section specifies the reduced form
equations that will be used in estimation. The third section describes the econometric
techniques used to estimate these equations. Section & gives an example of how to
implement the technique on actual data. There is a discussion of problems that might
arise and possible solutions. Conclusions are drawn in section 5.

2. Specifying the Reduced Form Equations

The econometrician wishes to estimate the distribution of crop yields (or any other
random variable), which is stochastic but dependent upon input choices. When the range
of possible yields is finite the yield distribution can be estimated arbitrarily closely from
knowledge of the moments of the distribution function (Feller). Since the distribution
depends on input choice it follows that the moments depend on input choice. The
reduced form equations provide empirically estimable relationships among moments and
inputs.

Since the observations contain different input combinations, the FMB approach
implies that each of the n yield observations is drawn from a different random
distribution. The n distribution functions and hence their moments are systematically
related to the inputs. The reduced form equations will be econoinetric specifications of
the relationships among moments and inputs.

The '™ central moment of distribution j is defined to be

E [Y}-Ifor i=landE [(Yj—E [Yj] )i]for 1> 2. These moments are denoted by M = —

For the jth observation the expected value of output is equal to the first moment of the




distribution, that is E [Yj} = W Hence E [Y] =y}, where  is the n x | column vector of
distribution means. Since each moment will depend on the input choices
E[Yj]z f(Xj) and hence E [Y] = f(X). Assuming that f is linear and using Yj as an
observation on My (since E [Yj] = u“-) results in

(1) Y=X8|+¢g)

Where ¢) is an n x | vector of errors with E( €)) = 0. Equation (1) so far is identical with
the usual econometric estimation of yields as a function of inputs. However, the
interpretation of (I) as a relationship explaining only one aspect of the influence of inputs
or yields has important consequences that will be explored later.

Taking expectations of (1) shows that E(Y) = XB) and Y-E [Y] = €. Hence an

empirically observable second moment variable is the n x | vector 612 = [e 11-2] ;-1:[.
Assuming that M 2; is a linear function of X,- and using € 1j2 as an observation on u 2j
results in
2
(2) El = XB 2 - €2-

Similarly, the equation for the ith central moment can be written as
(3) g'=X8;+ ¢

for i>1, where the n x | vector eli = [s:“-i]
The equations (1) and (3) are the set of reduced form equations relating moments of
the yield distribution function to inputs.
Throughout this paper the theoretical discussion will be applied to data on

Senegalese peanut yields. The data set contains n observations on output and k inputs



denoted by the n x | column vector Y and the n x k matrix X. Table | shows the data on
peanut field trials from 1961 to 1982 under different soil preparation and fertilizer
applications. Three types of soil preparations used: i) no preparation, ii) hand tilling, and
iii) tilling with animal traction. Fertilizer was applied at three different rates: 0 kg/ha,
150 kg/ha, and 200 kg/ha. For each soil preparation and fertilizer application the cell
entry shows the yield in kg/ha achieved that year. Yields will be the dependent variable
in this analysis; fertilizer application, soil preparation, and dummy variables for years
will be the independent variables. Soil preparation is represented by 0-1 dummy variables
for hand tilling and tilling with animal traction.
3. Estimating the Reduced Form Equations

Although the OLS estimator Bl = (X‘)()'l X ‘Y is an unbiased estimator of 3!, the
OLS estimates of the standard errors of B, are biased because the covariance matrix
Ele; g ]is not of form o2l (Antle). Equation (2) implies that the diagonal of E [ge{] is
equal to the n x | vector XB,. Similarly, E [g; £;"]has diagonal equal to the n x | vector
X B,; - Diagonal ((XB ;)(XB;)).

The above results imply that the simplest, internally consistent, estimation

procedure is to use a GLS regression where the covariance matrix for equation i has form

|
lL, wi

There are two important consequences. First, hypothesis testing using the OLS
covariance matrix will be inaccurate. Second, XB,; should be positive for all i and for
each observation, for this is a necessary condition that E [e ijzl be positive (here Cijz is

the diagonal element in position j, j in the covariance matrix E[eiei’])




A theoretically correct method for estimating equations (I) and (3) is given by
Antle. First, use the OLS estimator B, to construct cli for all needed i. Second,
estimate equation 2i taking the estimation results from equation i as given and imposing
constraints on B;i so that the variance terms from equation i are nonnegative. Third,
calculate the GLS regression of equation i using the constrained variance estimates from
equation 2i. Fourth, repeat steps 2 and 3 for the desired moment i.

4. Implementing the GLS Procedure.

This section discusses some of the problems that can arise in FMB estimation of
probability distributions. It is not a complete listing and the proposed solutions are
neither guaranteed nor exhaustive. The purpose of this section is to provide a starting
point from which the applied econometrician can proceed quickly to obtain results.

a. OLS Estimation

The results of the OLS regressions of the Senegalese peanut data are shown in
Table 2. Each type of soil preparation increases mean yields as seen by the positive
coefficients in the first moment regression. Fertilizer also increases mean yields, with
the estimated coefficient of 2.89 implying that application at the recommended rate of
150 kg/ha will increase yields by 433 kg/ha. This figure agrees with agronomic intuition
on increased yields. Soil preparation has a negative effect on variance, indicated by the
negative sign in the second moment regression. Fertilizer also has a negative effect.
This is somewhat surprising since it is generally considered that fertilizer has only a
small effect in bad years but a large effect in good years, leading to an increased
dispersion of yields. The OLS regressions suggest that this is not so, although the sign of
this coefficient changes to positive in the GLS regressions. In the third moment
regression hand tilling has a positive coefficient while tilling with animal traction and
fertilizer have negative signs. Although the third moment is related to the skewness of
the distribution there is very little intuition as to the effects of soil preparation and

fertilizer on skewness.




The standard errors reported for the three regressions in Table 2 are calculated
from the OLS covariance matrix. Recall that these errors are biased: the improved
efficiency from the GLS estimation will generally produce smaller errors. This will be
especially important in regards to the peanut data since none of the coefficients are
significant at the 5% level based on the OLS statistics. Standard errors will be discussed
further in subsection C.

b. Choice of Dependent Variables

Using the errors from OLS estimation of equation (l) to construct the dependent
variables for the remaining equations is incongruous with the rejection of OLS methods in
favor of GLS methods for estimating the parameter vector 8. An alternative procedure
would be to use the GLS errors from equation | to reestimate a constrained equation (2),
to use the reestimated (2) to construct a second GLS regression for (l), and repeat until
convergence is reached.

Three justifications for the simple, OLS estimation of dependent variables are
i

available. First, the OLS estimation B is unbiased and hence the ¢ are unbiased

estimators of u;. Second, the iterated estimation procedure may not significantly alter
the error. Third, if the iteration procedure does not converge then some artificial
stopping point must be imposed, which will lead to the same conceptual problems as
stopping after the OLS estiration of dependent variables.

An examination of the estimated errors is provided in Table 3. The first column
shows the errors from OLS regression, g=Y-X B. The second column shows the errors
from GLS estimates based on constrained second moment regressions.

c. Imposing the Constraints

The constrained estimation for moment 2i should be thought of as choosing an
estimator B,; which minimizes the sum of squared errors subject to a constraint that
XB 21<C where Cis an n x | vector of constrains. If izl then C=0; If

th

i >] then Ci= (X Bi)z , which is a constant in the 2i""' moment regression. There are n

constraints involved, one for each observation.




The econometrics literature contains several methods for calculating constrained
estimations; the technique used in this paper is the Lagrangian multiplier (for a survey of
techniques see Judge et al., Appendix B). The problem with imposing Lagrangian
multipliers when each observation is constrained is that there are as many multipliers as
constraints. Each of these multipliers must be estimated together with the parameter
vector B, which leads to an underdetermined system when there is only one yield
observation associated with each input combination. However, it is likely that not all the
constraints will be binding. The Kuhn-Tucker theorem implies that the multiplier on a
non-binding constraint is zero (Luenberger, p. 249). Hence the econometrician need
estimate the multipliers only for binding constraints.

Algebraically the constrained minimization problem is
(4) MIN (Y-XB)' (Y-XB) s.t. XB 52,
The solution for B is
(5) B=exx!x (v-n),

which shows that the estimated B depends on knowledge of the A,

A numerical method which uses the Kuhn-Tucker condition is outlined in Table 4.
First, note that the unconstrained estimates Bg = (X'X)'IX'Y, can be written as a solution
to the equation, A(B = Dy where Ag =1 and Dy = XTY. Second, check to see if any
constraints are violated. If there is a violation pick the worst violation, observation j,
where worst can be defined in terms of absolute value or percentage deviation. The third
step is to find an expression for the constrained, optimal B. The estiinate of Bj that
minimizes SSE subject to the constraint will be written as a solution to A B = Dl - Ay

and D, can be constructed from Ag and Dy. Concantenating the column Xj+Y to the

B onadbadmsdenanan i L e




right border of A, captures the effect of the matrix ) in equation (5) when entry j is the
only nonzero entry. The constraint ijzcj is imposed with equality by adding to Ag a

k+I15t row equal to (Xj,O) and constructing on Dy the k+15t row equal to the constraint

Ly B it .

nxn °j land D, = |[X Y[ The fourth step is to solve
1

Xj 0 Cj

constant Ci' Thus Al

these equations.

The solution B = Al'! D, may still violate the covariance constraints. The fifth
step will accommodate these constraints. Check again to see if any constraints are
violated. If there are still violations, then follow the above procedure for constraining
the (new) worst violation by constructing A and D, from Ajand D).

The number of repetitions needed is dependent on the quality of the data and the
explanatory power of the model. For example, the constraint on the second moment
regression determining B, is that XB, = 0. Since the dependent variable in this
regression, 512, is nonnegative by construction, the predicted values XB, will be negative
only because of large sampling error or specification error. Hence it is not expected that
the covariance constraint will be binding for a large number of observations. However,
note that each time a multiplier is required, a linear relationship among the elements of
B is imposed. Thus the greater the number of multipliers imposed the less flexibility is
left for B in minimizing SSE (although B; = 0 for all moments i will always satisfy all
constraints). This minimization is generally the economically relevant part of the
regression (Bi = 0 is uninformative). Hence, an increase in the number of multipliers
needed to impose the constraints means a corresponding decrease in the information
content of the results.

C. Using the Constrained Results as GLS Weights

Successful completion of the constrained estimation of the 2ith moment regression
allows the econometrician to compute the it moment GLS covariance matrix V under
the assumptions made above. Specifically, the diagonal of V will be the vector X Bai -0y
where C = 0 if i=l and C= X BZi - [(XBi(j,U)i ]?:lil i > 2; the off-diagonal elements of

V are zero.



Since the GLS estimator B and the standard deviations of the estimated coefficient
depend on vl problems will arise whenever a constraint has been imposed. Imposing the
covariance constraint on observation i implies that vi; = 0, and hence that V is singular.

If the model is correctly specified constraint i will be binding when there is a large
sample error associated with observation i. Hence the econometrician may wish to omit
the effect of this observation in calculating and the standard errors of the estimated
coefficients. This can be done by defining vl to be the n x n diagonal matrix with
diagonal elements vi-‘l when v;; = 0 and 0 when v;. = 0. An alternative procedure is to

1 11

use the mean of the nonzero v.. as a proxy for the values of the vij constrained to equal

ii
zero (this implies renormalization of V so that tV:n)J. Finally, the econometrician could
eliminate the observation entirely. The justification for this is similar to the
justification for removing outliers when there is an a priori belief that the outlying
observation represents measurement error, and of course problems with removal of
outliers apply to the methods discussed here.

The second moment regression of peanut yields resulted in eleven of the one
hundred thirty-five observations having predicted values (first moment variance)
essentially equal to zero. Of the zero values five were directly constrained to be zero;
six were indirectly forced to zero by the imposition of the five constraints. The fact
that five constraints affected eleven observations may be due to the use of dummy
variables as independent variables, since altering the coefficient on soil preparation #l
(for example) affects forty-five observations in exactly the same manner.

The GLS regression are presented in Table 4. In the first moment regression each
coefficient has the same sign as in the OLS regression. The coefficients generally have

the same order of magnitude in the GLS and OLS regressions. Soil preparation seems to

be economically unimportant and is statistically insignificant. Fertilizer is highly

IThis suggestion is due to John Hoehn.



significant, and application of the recommended 150 kg/ha dose increases average yields
by 420 kg/ha. This is only 3% different from the OLS figure, which is not surprising since
this coefficient is highly significant according both the GLS and the OLS standard error
estimates. The GLS coefficients on the soil preparation variables are much smaller than
their OLS counterparts, although none are statistically significant.

The advantage of the FMB approach over OLS methods for estimating the yield
equations is apparent from a comparison of the estimated standard errors. For the year
dummy variables the OLS standard errors are clearly nonsense. However, some of the
problems with equality of OLS standard errors across coefficients is due to the
combination of many dummy variables and the GAUSS procedure for calculating the
standard errors. Even so, the greater precision of the GLS method is apparent. For
example, the coefficient on Dummy-1969 is insignificant at the 10% level in the OLS
regression but significant at the 10% level in the GLS regression.

The second moment GLS estimates are similar to the second moment OLS
estimates, although the standard errors are again very different. It is interesting to note
that the fertilizer coefficient switched signs, although it is not signficant in either
regression.

Problems with estimating the sixth moment constrained estimation prevented GLS
estimation of a third moment regression. The problem is that the magnitude of the
elements of the dependent variable in the sixth moment regression can be very
different. For example, the dependent variables for observation 112 is the first rnoment
error for the observation, -593, raised to the sixth power. This is of order 1016. However
for observation 29 the dependent variable is 2.08. The GAUSS inversion procedure
cannot easily handle such wide discrepencies in element size, and hence it was not
possible to perforin the calculations necessary to estimate a constrained sixth moment
regression. Solutions are to write a subroutine conformalizing matrices or else to move

to a language with this capability built in, such as APL.
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While the programming problem can probably be solved, a more severe criticism is
that the OLS regression indicates that the inputs have very little explanatory power in
the third moment regression. Thus it appears best to limit the analysis to the first two
moments.

4. Conclusions

This paper has pointed out some of the problems that occur when using a flexible,
moment-based approach to stochastic production analysis. The Senegalese peanut data
used in this paper illustrate some of these problems. Proposed solution are implemented
on the peanut data in order to test their efficiency and to derive econometric results.

The problems in using the FMB method on Senegalese peanut data worsen as higher
moments are estimated. Third and higher moments cause extreme problems, implying
that the data may not be amenable to more than mean-variance analysis.

The FMB approach appears to have a significant advantage over the nonstochastic
function approach even in estimating only the yield function (1). The FMB approach
accounts for heteroskedasticity in (1) and significantly improves the precision of the

estimated parameters.



Year

1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982

Year

1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982

SENEGALESE PEANUT YIELDS

SOIL PREPARATION #1

Fert =
Okg/ha

2200
1380
1378
1005
1234
1660
1636
1607
1436
1465
1766

SOIL PREPARATION #2

Fert =
Okg/ha

1837
1226
1344
978

1279
1656
L1494
1741
1894
1862
1662

TABLE 1

Fert =
150kg/ha

1925
1656
2001
1205
1267
2463
1929
2316
2069
1388
2814
745
1588
1061
L1110
1876
l644

Fert =
lSOkg/ha

2075
1532
2040
L1116
1420
2077
1908
2354
2450
1531
2535
776
2056
1328
1020
2182
1747

Fert =
200kg/ha

2150
1897
234]
1570
1673
2897
2180
2155
2377
2283
2645
948
1909
1330
1291
2977
1802

Fert =
200kg/ha

2062
1599
2134
1677
1778
2566
2017
2418
2465
1756
2589
883
2398
2177
1147
2873
1858



TABLE 1 (CONTINUED)
SENEGALESE PEANUT YIELDS

SOIL PREPARATION #3

Fert = Fert= Fert =
Year Okg/ha 150kg/ha 200kg/ha
1966 1737 2150 2062
1967 1267 1677 1552
1968 1548 2250 2204
1969 1319 1765 1893
1970 1316 1668 1673
1971 1808 2278 2294
1972 1581 2102 2140
1973 1702 2238 2241
1974 2111 2575 27 80
1975 1133 1170 1540
1976 2390 2685 2447
1977 896 969
1978 2072 2497
1979 1477 1961
1980 1005 1260
15981 2309 2886

1982 1575 1863




Constant
Soil Prep {2
Prep #3

Fert

Dumimy-1966
Dummy-1967
Dummy-1968
Dummy-1969

Dummy-1970

Dummy-1971
Dummy-1972
Dummy-1973
Dummy-1974

Dummy-1975

Dummy-1976
Dummy-1977
Dummy-1978
Dummy-1979

Dummy-1980

duminy-198]
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TABLE 2

OLS REGRESSIONS ANALYSIS OF THE STOCHASTIC
YIELD FUNCTION FOR PEANUTS
Third Moment

First Moment Second Moment

1203.6 29,790 2,230,276
(105.4) (29,355) (20,155,000)
31.9 -25,661 6,163,772
(48.4) (13,439) (9,241,000)
82.9 -27,294 4,423,582
(49.1) 13,654) (9,241,000)
2.89 -41.2 -18,459
(0.26) (73.2) (50,303)
442.6 43,947 15,721,540
(119.6) (33,258) (22,835,000)
-47.6 13,757 -1,573,500
(119.6) (33,258) (22,835,000)
336.1 11,864 -449,040
(119.6) (33,258) (22,835,000)
-187.4 31,648 -4,094,149
(119.6) (33,258) (22,835,000)
-100.7 10,984 -2,418,870
(119.6) (33,258) (22,835,000)
609.4 44,363 12,323,365
(119.8) (33,258) (22,835,000)
304.5 411 -1,195,370
(119.8) (33,314) (22,871,000)
502.8 10,428 -841,124
(119.8) (33,312) (22,071,000)
656.7 38,737 -7,687,941
(119.8) 38,737) (22,871,000)
42.4 126,861 1,314,848
(119.8) (33,312) (22,871,000)
809.6 52,130 1,849,094
(119.8) (33,312) (22,871,000)

-878.7 -3526 435,209

(130.0) (36,130) (24,807,000)
338.5 52,446 -4,214,151
(130.0) (36,130) (24,807,000)
192.5 100,310 20,031,840
(130.0) (36,130) (24,807,000)
-609.3 1,220 543,312

(130.0) (36,130) (24,807,000)
769.0 113,180 -8,680,435
(130.0) (30,130) (24,807,000)
R2-.31 R2=.21 R2-10.113




553.76
-153.00
-247.24
-530.59
-245.18
-225.30
-259.74

162.39

61.39

158.89

188.88
-383.11
-256.46
-366.05

123.82

555.38
-167.48
-101.60

7.88

-87.89

293.87
-180.47

231.93

197.80

288.37
-265.49

-29.61

TABLE 3A
FIRST MOMENT REGRESSION ERRORS

OLS ERRORS
223.99 -161.78 =11.23
127.86 -99.46 -424.35
-13.92 -388.09 -384.09
6.40 -155.18 66.04
-269.84 216.04 -13.08
208.02 366.80 44,42
118.09 425.75 19.75
222.61 -24.83 -3.49
-161.93 -93.82 426.50
38.11 -227.65 -70.10
-46.00 2.66 177
-14.79 48.03 . -148.96
I3 -37.05 -89.83
-148.71 -201.83 -65.95
-180.84 25193 -52.44
57 289.88 43.83
-16.25 50.29 64.63
101.06 -5.82 -100.49
28.10 -74.67 219.88
-10.01 -87.35 167.75
54.19 13.02 -50.97
-145.47 -13.06 4.15
43.26 -51.84 77.03
-592.85 154.92 -17.45
4.20 251.87 -2.12
2.72 215.28 -91.38
-126.95 258.15 -367.50

131.10
218.97
81.74
27.26
175.58
-211.74%
-74.83
505.39
21.28
144.23
584.10
-40.12
34.39
181.71
245.38
-194.70
142.51
-34.71
130.21
-195.90
-106.14
193.37
14.69
293.37
-245.71
-180.49
-227.72



546.24
-162.74
-277.75
-560.11
-284.68
-284.13

306.02

202.10

65.22

180.84
-169.14
-384.15
-256.51
-376.08

94.46

538.57

-98.29

~97.27

33.20

-64.79

296.20
-177.15

225.27

171.82

274.93

192.93

-22.41

250.73
89.25
-62.71
8.10
-295.89
195.87
154.29
192.08
-148.37
94.33
=55.14
-34.11
108.70
-14.5.29
-163.52
7.89
-17.31
114.62
87.69
-15.78
38.24
-110.93
55.06
-572.16
73.25
5.04
-110.01

15

TABLE 3B
GLS ERRORS

-205.28
-128.3¢4
-453.30
-152.97
216.02
346.01
399.47
-61.08
113.93
-241.68
3.25
12,79
-2.37
-172.37
64.61
293.07
43.51
=393
-35.32
-83.38
-19.34
21.98
-19.01
166.97
258.43
211.87
235.41

-60.45
-492.90
-433.61

102.51

-41.97

-1.12
24.69

-31.30

447.06

-89.85

-37.30
-169.01

-23.88

-65.37

-63.52

78.30
71.29

-79.93

203.50

132.04

-67.65

73.47
80.98
-30.16
35.65

-81.34

-343.57

95.32
197.09
114.70
-6.50
156.43
=273.71
-69.38
508.61
33.21
13792
591.69
22.30
30.09
192.03
212.88
-159.78
175.22
-22.78
127.28
-184.94
-40.33
192.45
28.39
264.24
-207.42
144.42
~e124%2




Independent
Variable

Constant
Soil Prep. #2
Soil Prep. #3

Fertilizer

Dummy-1966
Dummy-1967
Dummy-1968
Dummy-1969

Dummy-1970

Dummy-1971
Dummy-1972
Dummy-1973
Dummy-1974

Dummy-1975

Dummy-1976
Dummy-1977
Dummy-1978
Dummy-1979
Dummy-1980

Dummy-1981

TABLE &
GLS REGRESSION ANALYSIS OF THE STOCHASTIC
YIELD FUNCTION FOR PEANUTS

First Second
Moment (kg/ha) Moment (kg/ha)2
2112 13,908
(58.4) (11,702)
2.4 -10,273
(43.2) (11,021)
30.0 -20,220
(43.2) (10,364)
2.80 19
(0.2) (23)
442.1 25,579
(90.4) ; (28,252)
-82.4 20,139
(57.7) (8309)
371.6 1972
(54.6) (6934)
-146.2 37,056
(79.2) (20,401)
-73.0 631
(53.1) (6322)
611.1 28,884
(90.7) g (28,513)
335.1 -3029
(44.3) (3506)
523.7 6598
(49.7) (5508)
7iz.2 22,873
(83.5) (23,693)
56.2 128,372
(141.2) (77,168)
832.1 37,528
(94.8) (31,989)
=828.2 7295
(46.0) (6744)
405.4 38,674
(114.4) (39,438)
-141.3 94,748
(133.8) (75,191)
-640.6 -4429
(46.0) (3135)
800.2 92,114
(162.7) (84,690)
RZ =0.80 RZ - 0.20

L el o
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