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I. Introduc tion 

This paper 1s a user's guide to empirical estimation of s tochastic produc tion 

fu nc tions using the flexible, moment-based approach. The purpose is to provide the 

appl ied r esearcher with a working knowle dge of moment-based es timation. This 

kno w ledge includes a di scussion o f possible problems and some ava ilab le solution 

techniques. 

The pape r is organized as follows. The second section speci fies the reduced form 

equa tions tha t will be used in es timation. The third sect ion describes the econometric 

techniques used to estimate these equations. Section 4 gives an example of how to 

im plement the t echnique on actua l data. There is a discussion of problems t hat migh t 

a ri se a nd possible solutions. Conclusions a re drawn in section 5. 

2. Specifying the Reduced Form Equations 

The econome tri c ia n wishes to es ti ma te the dis t ribut ion of crop yields (or any other 

random variable), whic h is s tochas ti c but dependent upon in put choices. When t he range 

of possible yields is finite the yield distribution can be estirna ted arbi trarily closely from 

knowledge o f the moments of the dis tri bution func tion (Feller). Since the dis t ribution 

depends on input cho ice it fo llows that the moments depend on input choice. The 

reduced form equations provide empiricall y estima ble re latio nships amo ng moments and 

inputs . 

Since the observations conta in diffe re nt in put combinat ions , the FMB approach 

implies that each of the n yield observations is drawn from a different ra ndom 

distribution. The n di s tributio n func tio ns a nd hence the ir moments a r e systematica lly 

re lated to the in puts. The reduced for m equations wil l be econo1netric spec ifi ca tions o f 

the r e la t ionshi ps among moments and inputs. 

The centra l momen t o f d is tribution is de fined to be 

E [Yj]for i = 1 and E [(Y(E[Yy )iJfor i _.'.:. 2. These moments are deno ted by \J ij i=l, . ... 

Fo r the jth observa tion the expec ted va lue o f o utput is equal to the first momen t o f the 



distribution, that is E [ Y;] = µ1 j• Hence E [Y) = µ1, where µ! is the n x 1 co lumn vector of 

distribution means. Since each moment will depend on the input choices 

E ( Y;) = f(Xj) a nd hence E [Y) = f(X). Assuming that f is linear and using Yi as an 

observation on µlj (since E [Yi)= µl j) results in 

(I) Y=Xf31+e:1, 

Where e: l is an n x I vector of er rors with E( e: 1) = O. Equation (I) so far is identical with 

the us ua l econometric estimation of yields as a function of inputs. However, the 

interpretation of (I) as a re lationship explaining only one aspect of the influence of inputs 

or yields has important consequences that will be explored later. 

Taking expectations of (I) shows that E(Y) = XB 1 and Y-E [ Y) = e: 
1
. Hence an 

2 2 n empiricall y observable second moment variab le is the n x l vector e: l .:_ [ e: lj ] i=t· 

2 Assuming that µ 2j is a linear function of Xi and usin g e: lj as an observation on J.J 
2

j 

res ults in 

(2) 

Similarly, the equa ti on for the ith central moment ca n be written as 

for i > I, where the n x I vector e: 
1
1 = re:. i] n 

- l' 1j j = l• 

The equations (1) and (3) are the se t of reduce d form equations relating moments of 

the yield distr ibution function to inputs. 

Throughout thi s paper t he theoretica l di scussion will be applied to data on 

Senegalese peanut yields. The data se t con ta ins n observ a tions on output and k inputs 
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denoted by the n x l column vector Y and the n x k matrix X. Table I shows the data on 

peanut fie ld trials from 1961 to 1982 under different soil preparation and ferti lizer 

applications. Three types of soil preparations used: i) no preparation, ii) hand tilling, and 

iii) tilling with animal traction. Fertili ze r was applied at three different rates: 0 kg/ha, 

150 kg/ha, and 200 kg/ha. For each soil preparation and fertilizer application the eel I 

entry shows the yie ld in kg/ha achieved that year. Yie lds wil l be the dependent variable 

in this analysis; ferti lizer application, soil preparation, and dummy variables for years 

will be the independent variables. Soil preparation is represented by 0- 1 durnmy variables 

for hand tilling and tilling with animal traction. 

3. Estima t ing the Re duced Form Equa t ions 

Although the OLS estimator 13 1 = (X
1xr1 X 'y is an unbiased estimator of !31, the 

OLS es ti mates of the standard err ors of 13 1 are biased because the covar iance ma tr ix 

E [ e:1 e:{ ]is not of form a2I (Antle). Equation (2) implies that the diagonal of E [e:1e: tJ is 

equal to then x I vector xa 2. Similarly, E [e:i e:iJhas diagonal equal to then x 1 vector 

X B2i - Diagonal ((XB i)(XBi)'). 

The above results imply that the simplest, internally consistent, estimation 

procedure is to use a GLS regression where the covariance ma tr ix for equation i has form 

a 2 

0 

WI 

There are two important consequences. First, hypothesis t esting using the OLS 

covariance matrix will be inaccurate. Second, XB 2i should be positive for all i and for 

each observation, for this is a nece ssary condition that E [e: i/J be positive (here e:i/ is 

the diagonal elemen t in position j, j in the covariance matrix E[e:-e:~]) 
l l . 
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A the ore tically correc t method fo r estima ting equa ti ons (I) and (3) is gi ven by 

Antle . First, use the OLS es t imator B1 to cons truc t e: 1
1 for a ll needed i. Second, 

es tima te equation 2i t aking t he estimat ion resul ts from equa t ion i as given and imposing 

cons traints on Bii so tha t t he variance terms from equation i a re nonnega ti ve. Third , 

calcul a te the GLS regression of equa tion i using t he const rained var iance es t imates from 

eq ua tion 2i . Four th, repeat steps 2 and 3 fo r the desi red moment i. 

4. Impleme nting the GLS Procedure . 

This section discusses some of the problems that can a r ise in FMB estimation of 

probability dis tributions. I t is not a complete listing and t he proposed solutions are 

ne i the r gua r an teed nor exhaustive. The pur pose of this sect ion is t o provide a starting 

point from which t he app lied econome trician can proceed quickly to obtain results. 

a. OLS Es t imation 

The resul ts of the OLS regressions of the Senegalese peanu t data are shown in 

Table 2. Each type of soil prepara tion increases mean yields as seen by the positive 

coeffi c ients in the f irs t rn ornen t regression. Fe rtili zer a l ~o increases mean yie lds, with 

the estimated coefficien t of 2.89 implying that app lication at the recommended rate of 

150 kg/ha will increase yields by 433 kg/ha. This figure agrees with agronomic intuition 

on increased yields . Soil preparation has a nega t ive effect on variance, indica ted by t he 

negative sign in the second moment regression. Fer t i lizer a lso has a negative effect. 

This is somewhat surprising since it is general ly considered that ferti lizer has only a 

small effect in bad years but a large effec t in good years, leading to an increased 

dispe r sion of yields. The OLS regressions suggest that this is not so, al though the sign of 

t his coef ficient changes to posit ive in t he GLS regressions. In the thi rd moment 

regression hand tilling has a positive coefficient while tilling with animal traction and 

fertilizer have negative signs. Although the third moment is related to the skewness of 

the distribution there is very little intuition as to the effec ts of so il preparation and 

fertilizer on skewness. 
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The standard er rors reported for the three regressions in Table 2 are calculated 

from the OLS covariance matrix. Recall that t hese errors are biased: the improve d 

efficiency from the GLS estimation will generally produce smaller errors. This will be 

especially important in regards to the peanut data since none of the coefficients are 

significant at the 5% level based on the OLS sta tistics. Standard errors will be discussed 

further in subsec tion C. 

b. Choice of Depe nde nt Va riables 

Using the errors from O LS es tima tion of equation (l) to cons truc t the depende nt 

variables for the re ma ining e quations is incongruous wi th the rej ectio n of OLS me thods in 

favor of GLS me thods for e s timating the parameter vecto r s1• An alte rna tive procedure 

would be to use the GLS err ors fr om equa tion l to reestimate a constraine d equa tion (2), 

to use the rees tima ted (2) to construc t a se c ond GLS regression fo r (l), and re pea t until 

conver gence is reached. 

Three jus t ifi ca ti ons fo r the sim ple , OLS e stirna ti on of de pe nde nt variables a re 

a va ilable. Firs t, the OLS es tim ation B1 is unbiased and .hence the £ 1
1 a re unbiased 

es t i ma to rs of µi. Second, the itera te d es tirna ti on procedure may no t s igni f icantl y a lte r 

the error. Third , if the i te ra ti on procedure does no t conve rge the n some artifi c ia l 

s topping po int mus t be imposed, whic h will lead to the sa me conceptua l prob lems as 

s topping after the O LS es ti 1na tion of de pe nde nt va riab les. 

An exam ina t ion o f the es ti ma ted e rrors is provide d in Ta ble 3. The f irs t co lumn 

s ho ws the errors from O LS regression, EJ.= Y-X 1.3 1• The second co lum n s hows t he er ro rs 

from GLS es timates based on cons tr ained seco nd mome nt regressions. 

c . Im posing the Constra ints 

The cons tra ined es ti ma ti on fo r mome nt 2i should be thought o f a s choos ing a n 

es ti m a to r B 2i which min imizes the s um of square d errors subj ec t to a cons t rain t tha t 

XB 2i <C where C is a n n x vec to r of cons tra ins. If i= I the n C=O; If 

whic h is a cons tan t in the 2ith mome nt regression. The re are n 

cons t ra in ts involved, one fo r e ac h obse rvation . 

...__ ______________________________ __ - - --- - -- - -
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The econometrics l i te r a ture conta ins seve ral me t hods for calculating cons trained 

es timations; t he techniq ue used in t his paper is the Lagrangian multiplier (for a survey o f 

techniques see Judge e t a l., Appendix B). The problem with imposing Lagrangian 

m ul t ipl iers whe n each obser va tio n is constrained is t hat there are as many multiplie rs as 

constrain t s. Each o f t hese m ultiplie r s must be es t ima ted toge t her with the parame t e r 

vector B, wh ich leads to an underde t e rrn ined syst em when there is only one yield 

observation associated with each input combinat ion. However , it is likely t ha t not al l the 

constraints will be binding. The Kuhn-Tucker theorem implies that the multiplier on a 

non- binding constra int is zero (Lue nberger, p. 249). Hence the econometrician need 

estimate the multipliers o nly for binding constraints. 

Algebraically the cons tra ined minirniza tion problem is 

(4) MIN (Y-XB)' (Y-XB) s. t . Xl3 ::_ C . 

The so lution for 13 1s 

(5) I I I 
B = (X X)- X (Y- ,\)

1 

whic h shows tha t the es tirn a ted B depends on know ledge of the A. 

A num er ical m e thod which uses t he Kuhn-Tucker condition 1s ou tlined in Table 4. 

I I I Firs t, note tha t the uncons traine d estimates Bo= (XX)- X Y, can be written as a solu tion 

to the eq ua ti o n, A0 B = D0 where A0 = I nxn a nd D0 = x+Y. Second, c heck to see if any 

constraints are viola te d. If the r e is a violation pick the worst violation, observation j, 

where worst can be defined in terms of absolute va lue o r percentage de viation. The third 

s t ep is to fi nd an expression for the constrained, optimal 13. The es ti rna te of 8 i that 

rninimi zes SSE s ubjec t to the cons tr .:i int will be written as a solut ion to A 
1 

B 

a nd D 1 ca n be construc ted from A0 and D0. Concantenating the column Xj +y to the 
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right border of A0 captures the effect of the matrix A. in e quation (5) when entry j is the 

only nonzero entry. The constraint XjB=Cj is imposed with eq uality by a dding to Ao a 

::~',::"
0

; c~~u•;h:: :~i:o>r·::" c;;:Jtr::•i:: ~"r:!J•he k•1" ,;~ .. 1:~:1,h1051~: 1:
0~:·::::~ 

X. 0 C. 
J J these equations. 

The solu tion 8 1 = A 1-I D 1 may s till violate the covari ance cons tra int s. The fifth 

step wil l accommodate these constraints. Check again to see if a n y constra ints a re 

violated. If ther e are still viol a tions, then fo llow the above pr ocedure for constraining 

the (new) wors t viola tion by constructing A2 and o
2 

from ,'\ 
1 

and D
1
. 

The number of repe titions needed is dependent on the quality of the data and the 

explanatory power of the model. For example , the constraint on the second rnoment 

regr ession determining 8 2 is that X8 2 = 0. Since the dependent variable in this 

reg ression, e:1
2, is nonnegative by construction, the predicted va lues XB 2 will be nega tive 

only because of large sampling error or specification error. Hence it is not expec ted that 

the covar iance cons traint will be binding for a large num~er of observations. However, 

note that each tim e a multiplier is required, a linear rela t ionship among the elements o f 

8 is imposed. Th us the g reate r the number of multipliers imposed the Jess flexibility is 

le ft for B in mini mizing SSE (although Bi = 0 for a ll moments i will a lways satis fy al l 

constraints). Th is minimization is generally the economically re levant part of the 

regression (Bi = 0 is uninformative). Hence, an increase in the number of multipliers 

needed to impose the constraints means a cor responding decrease in the information 

conten t of t he results. 

c. Using t he Cons trained Results as GLS Weights 

Successful completion of the constrained estimation of the 2ith momen t regression 

allows the econometrician to compute the i th moment GLS covariance matrix V under 

the assumptions made above. Specifically, the diagonal of V will be the vector X B
2

i - c, 

where C = 0 if i=I and C= X B2i - [ (XBi(j,I) / ) ~=l if i .::_ 2; the off-diago nal e lements of 

V a re zero. 
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Since the GLS estimator Band the standard deviations of t he estimated coefficient 

depend on y-l problems will arise whenever a constraint has been imposed. Imposing the 

covariance constraint on observation i implies that vii= 0, and hence that V is singular. 

If the model is correctly specified cons traint i will be binding when there is a large 

sample e rror associated with observation i. Hence the econometrician may wish to omit 

the effect of this observa tion in calculating and the standard errors of the estimated 

coefficients. This can be done by defining v-1 to be the n x n d iagonal matrix with 

diagonal elements vii-I when vii = O and 0 when vii = 0 . An al ternative procedure is to 

use the mean of the nonzero vii as a proxy for the values of the vii constrained to equal 

zero (this implies renormalization of V so that tV:n) J. Finally, t he econometrician could 

e liminate the observation entirely. The justifica t ion for this is similar to t he 

justification for removing outliers when there is an a prior i belief that the outlying 

observation represents measurement error, and of course problems with removal of 

outliers apply to the methods discussed here. 

The second moment regression of peanut yields resulted in eleven of the o ne 

hundred thirty- five observations having predicted values (first moment variance) 

essentially equal to zer o. Of the zero values five were directly constrained to be zero; 

six were indirectly forced to zero by the imposition of the five constraints. The fact 

that five constrain t s affected e leven observations may be due to the use of dummy 

variables as independen t variables, since alter ing the coefficient on soil preparation 1'll 

(for example) affects forty-five observations in exactly the same manner . 

The GLS regressio n are presented in Table 4. In the first moment regression each 

coeffi cien t has the same sign as in the OLS regression. The coefficients generally have 

the same order of magnitude in the GLS and OLS regressions. Soil preparation seems to 

be economically unimportant and is statistically insignificant. Fer tilizer is high ly 

1This suggestion is due t o John Hoehn. 
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significant, and application of the recommended 150 kg/ha dose increases average yields 

by 420 kg/ha. This is only 3% difCcrent from the OLS figure, which is not surprising since 

this coefficient is highly significant according both the GLS and the OLS standard error 

estimates. The GLS coefficients on the soil preparation variables are much smaller than 

their OLS counterparts, although none a re s tatistically significant. 

The advantage of t he FM[) approach over OLS methods for estimating the yield 

equa tions is apparen t from a comparison of the estimated standard errors. For the year 

dummy variables the O LS standa r d errors are clearly nonsense. However, some of the 

problems with equality of O LS s tandard errors acr oss coeffici e nts is due to the 

combina tion of many dummy variables and the GAUSS pr ocedure for calculating the 

s tandard e r rors. Even so, the grea te r precision o f the GLS method is apparent. For 

example, the coeffi c ie n t on Dummy-1969 is insignifi cant at the 10% level in the OLS 

regression but s ign ificant at the 10% level in the GLS regression. 

The second rnoment GLS es ti ma tes are similar to t he second momen t O LS 

estimates, a lthough the standard e rrors are again very differen t . It is inte resting to note 

tha t the fertili ze r coeffi cien t swi tched signs, although it is not s ign fi can t in either 

regression. 

Problem s with es timating the sixth moment cons t rained estimation prevented GLS 

estim ation of a t hi rd moment reg ression. The prob lem is tha t the magnitude of the 

e lemen ts o[ the depende nt variable in the sixth moment regression can be very 

different. For example , the dependen t variables for observation 112 is the fir s t rnornent 

error for the observation, - 593, raised to the six th power. This is of order 10 16. However 

for observation 29 the dependent variab le is 2.08. The GAUSS inversion procedure 

ca nnot easily hand le suc h wide discrepencies in e lement size, and hence it was not 

possible to pe rforrn the calcula tions necessar y to es timate a constrained sixth moment 

regression. Solutions are to write a subrou tine confor rnalizing matrices or else to move 

to a language with thi s capability bu ilt in, suc h as APL. 
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While the programming problem can probably be solved, a more severe criticism is 

that the OLS regression indica tes tha t the inputs have very little explanatory power in 

the third moment regression. Thus it appears best to limit the analysis to the first two 

moments. 

4. Conclusions 

This paper has pointed out some of the problems that occur when using a flexible, 

moment-based approach to s tochas ti c produc tion ana lysis. The Senegalese peanu t data 

used in thi s paper illus trate some o f these pr ob lems. Proposed solution ar e im plemented 

on the peanut data in order to test their e ffi c iency and to derive econometric results. 

The problems in using the F MB method on Senegalese peanu t da t a worsen as higher 

moments a r e es timated. Third and higher moment s cause extreme problems, implying 

tha t the data may not be amenab le to more than mean-vari ance analysis. 

The FMB approach appears to have a significant a dvan tage over the nonstochastic 

func tion approach even in estimating only the yield function (J). The FMB approac h 

accoun ts for heteroskedasticity in (J) and significan tl y improves the precision of the 

estimated parameters. 



l l 

TABLE 1 

SENEGALESE PEANUT YIELDS 

SOIL PREPARATION 0 l 

Fert = Fe rt = Fert = 
Year Okg/ha 150kg/ha 200kg/ha 

1966 2200 l 925 2150 
1967 1380 1656 1897 
1968 1378 2001 2341 
1969 1005 l 205 1570 
1970 1234 1267 1673 
1971 1660 2463 2897 
1972 1636 1929 2180 
1973 1607 2316 2155 
1974 1436 2069 2377 
1975 1465 1888 2283 
1976 1766 2814 2645 
1977 745 948 
1978 1588 1909 
1979 106 1 1330 
1980 1110 1291 
198 1 1876 2977 
1982 1644 1802 

SOIL PREPARATION 12 

Fe rt = F ert = Fe rt = 
Year Okg/ha 150kg/ha 200kg/ha 

1966 1837 2075 2062 
1967 1226 1532 1599 
1968 1344 2040 2 134 
1969 978 1116 1677 
!970 1279 14 20 1778 
197 1 1656 2077 2566 
1972 1494 1908 2017 
1973 1741 2354 2418 
1974 1394 2450 2465 
1975 1862 153 1 1756 
1976 1662 2535 2589 
1977 776 883 
1978 2056 2398 
1979 1328 2177 
1980 1020 1147 
198 J 2182 2873 
1982 1747 1858 
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TABLE 1 (CONTINUED) 

SENEGALESE PEANUT YIELDS 

SOIL PREPARATION 113 

Fert = Fert = Fert = 
Year Okg/ha 150kg/ha 200kg/ha 

1966 1737 2150 2062 
1967 1267 1677 1552 
1968 1548 2250 2204 
1969 1319 1765 1393 
1970 1316 1668 1673 
197 1 1808 2278 2294 
1972 1581 2102. 2140 
1973 1702 2238 2241 
1974 2111 2575 2780 
1975 1133 11 70 1540 
1976 2390 2685 2447 
1977 896 969 
1978 2072 2497 
1979 1477 1961 
1980 !005 1260 
1981 2309 2886 
1982 1575 1863 
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TABLE 2 

OLS REGRESSIONS ANALYSIS OF THE STOCHASTIC 
YIELD FUNCTION FOR PEANUTS 

First Momen t Second Moment Third Moment 

Constant 1203.6 29, 790 2,230,276 
(105.4 ) (29,355) (20 , 155,000) Soil Prep 112 3 l.9 - 25,661 6,1 63,772 
(48 .4) (13,4 39) (9 ,241,000) Prep 113 82.9 -27 ,294 -4,423,582 
(49 . l) 13,654) (9,241,000) Fert 2.89 -41.2 -18,459 
(0.26) (73.2) (50 ,303) 

Dumrny-1966 442.6 43,947 15,721,540 
(119.6) (33,258) (22,835 ,000) Dummy-196 7 -47 .6 13,7 57 -1,573,500 
(119 .6) (33,258) (2 2 ,8 3 5,000) Dummy- 1963 336. l 11 ,864 -449,040 
(119.6) (33 ,258) (22 ,835,000) Dummy- 1969 -187.4 3 l ,648 -4,094, l 49 
(119.6) (33 ,258) (22,835 ,000) Dumrny- 1970 -100.7 10,984 -2,418,870 
(119.6) (33,258) (22,835,000) 

Dumrny-1971 609.4 44,363 12,323,365 
019.3) (33,258) (22,835,000) Dummy-1 972 304.5 411 -l,195,370 
(119 .8) (33 ,314) (22,871 ,000) Dumrny-1973 502.8 10,428 -841, l 24 
(119.8) (33,312) (22,071,000) Dumrny-1974 656.7 38,737 -7,687,941 
(1 19.8) 38,737) (22,871,000) Dumrny-197 5 42.4 126,86 l 1,314,848 
(119.8) (JJ,312) (22,871,000) 

Oumrny- 1976 809 .6 52, 130 -1,849,094 
(119.8) (33 ,312) (22,871,000) Oumrny-1977 -873.7 -3526 435 ,209 (130.0) (36, 130) (24,807 ,000) Dumrny-1978 338.5 52 ,446 -4J214 , 151 (130.0) (36, l 30) (24,807 ,000) Dumrny- 1979 192.5 100,310 20,031,840 
(130.0) (36, 130) (24,807 ,000) Dummy-1980 -609.3 1,220 543 ,312 
(I 30.0) (36 ,130) (24,807 ,000) ::)umrny-1981 769.0 113,180 -3,680,435 
(I JO.O) (JO, 130) (24,807 ,000) 

2 R =.8 I 2 R =.21 R2: fo.113 
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TABLE JA 
FIRST MOMENT REGRESSION ERRORS 

OLS ERRORS 

553.76 223.99 -16 1.78 -11.23 131.10 
-1 53.00 127.86 -99.46 -424.35 218.97 
-247.24 -13.92 -38 8.09 -384.09 81.74 
- 530.59 6.40 -1 55. 18 66.04 27.26 
-245.1 8 -269.84 216.04 -13.08 17 5. 58 
-225.30 208.02 366.80 44.42 -211.74 
- 259.74 118.09 425.7 5 19.75 -74.83 

162. 39 222.61 -24.83 -8. 49 505.39 
61.39 -161.93 -93.82 426.50 21.28 

158.89 38. l l -227.65 -70. l 0 144.23 
188 .88 -46.00 2.66 l.77 584.1 0 

-383. l l -14.79 48.03 -148.96 -40. l 2 
-256.46 77.53 - 37.05 -89.83 34.39 
- 366.05 -148. 71 - 201.83 -65.95 181.7 J 
123.82 -1 80.84 55.93 - 52.44 245. 38 
555.38 - 57.77 289.88 43.88 -194.70 

-1 67.48 -16. 25 50.29 64 .63 142.51 
-101.60 J 01.06 -5 .82 -1 00.49 -34.7 l 

7.88 28.10 - 74 .67 219.88 130.21 
-87 .89 -10.01 -87.35 167.75 - l 95 .90 
293.37 54.19 13.02 -50.97 - 106.1 4 

- 180.47 -145.4 7 -13.06 4.1 5 193.37 
23 1.93 48.26 -51.84 77.03 14.69 
197.80 -592.85 l 54.92 -17.45 293. 37 
288.37 4.20 25 1.37 -2.12 -245.71 

-265.49 2. 72 215.28 -91.38 - 180.49 
-29.61 -l 26.95 258 . 15 - 367.50 -227 .72 
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TABLE 38 
GLS ERRORS 

546.24 250.73 -205.28 -60.45 95.32 
-162.74 89.25 -128.34 -492.90 197.09 
-277.75 -62.71 -4 53.30 -433.61 114.70 
-560.11 8. 10 -152.97 102.51 -6 .50 
-284 .68 -295 .89 216.02 -41.97 156.43 
-284.13 195.87 346.01 -1.12 -273.7 1 
306.02 154. 29 399. 47 24.69 -69.38 
202. l 0 192.08 -61.08 -31.30 50S.6 l 
65.22 - 148.37 11 9.93 447.06 33.21 180.84 94.33 -241 .68 -39.85 137 .92 

-169.14 -55.14 3.25 - 37 .JO 591.69 
-384 .1 5 -3 4.11 12.29 -1 69.01 22.30 
-256.5 1 108.70 -5 .37 -23.S8 30.09 
-376.08 -1 45. 29 -172.37 -65.37 192.03 

94.46 -l 63. 52 64.61 -68.52 212.88 
538.57 7.89 293.07 78.30 -l 59.78 
-98.29 -17.31 43. 51 71.29 17 5.22 
-97.77 114.62 -31.93 -79.93 -22.78 
33.20 87 .69 -85 .32 203.50 127 .28 -64.79 -l 5.78 -83.38 132.04 -184.94 

296.20 38.24 -19.34 -67 .65 -40.33 
-177. 15 -11 0.93 21.98 7 3.47 l 92.45 
225. 27 55.06 -19.01 80.98 28.39 
171.82 -572.16 166.97 -30. 16 264.24 274 .93 73.25 258.43 35.65 -207.42 
192.93 5.04 211.87 - 81.34 144.42 -22.41 -11 0. 01 235.41 -343.57 -212.42 



Independent 
Variable 

Constant 

Soil P r ep. 112 

Soil P rep. 113 

F ertilizer 

Dummy-1966 

Dummy-1967 

Dummy-1968 

Dumm y- 1969 

Dummy-1970 

Dummy-197 l 

Dummy-1972 

Dummy- 1973 

Dummy-1974 

Dummy-1975 

Dummy- 1976 

Dummy- 1977 

Dummy-1 978 

Dummy-1979 

Dummy-1980 

Dummy-1981 
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TABLE 4 
GLS REGRESSION ANALYSIS OF THE STOCHASTIC 

YIELD FUNCTION FOR PEANUTS 

First Second 
Moment (kg/ha) Moment (kg/ha)2 

1211.7 13,908 
(58. 4) (l l ,702) 

2.4 -10,273 
( 4 3. 2) (l 1,021) 
30.0 -20,220 

(43.2) (l 0,364) 
2.80 19 

(0.2) (23) 

442.1 25 ,579 
(90. 4) (28,252) 
-82.4 20,139 
(57.7) (8309) 
371.6 1972 
(54.6) (6934) 

-146.2 37 ,056 
(79.2) (20,401) 
-73.0 63 l 
(53 . l) (6322) 

6 1 1. l 28,884 
(90.7) (28 ,5 13) 

335. l -3029 
(44. 3) (3506) 
523.7 6598 
(49 .7) (5508) 
717.2 22 ,373 
(83. 5) (23 ,693) 
56.2 128,372 

(141.2) (77' 168) 

832. l 37,523 
(94 .8) (J l ,989) 

-828.2 7295 
(46.0) (6744) 

405.4 38,674 
( l 14.4) (39,438) 
- 141.3 94,748 
(l 53 .8) (75,19 1) 
-640.6 -4429 

(46.0) (3 l 35) 
S00.2 92,114 

( l 62.7) (84,690) 

2 R = 0.80 2 R = 0.20 
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