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Economic Efficiency of Alternative Bycatch-Reduction Policies and Bycatch Reduction 

Devices 

 

Abstract: This paper examines the ability of two new policies to reduce bycatch of 

red snapper by the shrimp fishery in the Gulf of Mexico: Fractional License and Fractional 

Gear Programs, as proposed by Townsend, reduce bycatch by reducing the effort levels of 

shrimp vessels. The policies are evaluated both theoretically and using a simulation model, 

and they are compared with the current regulatory policy requiring shrimp vessels to use 

bycatch reduction devices to rebuild red snapper stocks. We find that either a FL program or 

a FG program could reduce effort and the related problem of bycatch resulting in improving 

red snapper stocks, while at the same time increasing economic welfare in the fishery 

compared with the impacts of bycatch reduction devices. 

 

Key Words: Fractional License, Fractional Gear, Bycatch, Effort Reduction, Shrimp, Red-

Snapper. 
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I. Introduction 

Bycatch or incidental catch is a common problem in most fisheries around the world. 

Between 18 and 40 million tons are discarded annually by commercial fisheries, making up 

20-25% of total harvest  (Alverson et al., 1994). Bycatch not only reduces fish population, 

but also wastes a potentially valuable food source. These issues have led to international 

efforts to reduce bycatch (FAO, 1995; Japanese Fisheries Agency, 1995). In the United 

States, bycatch issues are addressed in the Magnuson Fishery Conservation and Management 

Act (MFCMA). 

Regulations to reduce bycatch and discards have been focused primarily on gear 

modification such as bycatch reduction devices (BRDs) rather than effort reduction. For 

example, BRDs have been used in the Australian commercial trawl fishery (Government of 

Western Australian, New South Wales Fisheries) and the commercial shrimp fishery in 

United States. In an effort to reduce bycatch by shrimp vessels, the 1998 Amendment 9 to the 

Fishery Management Plan for the shrimp fishery of the Gulf of Mexico mandated the use of 

certified BRDs on most shrimp trawls in federal waters in the Gulf of Mexico. However, two 

problems exist with the current bycatch policy. First, the use of BRDs has imposed 

substantial costs on shrimp vessels due mainly to a loss of shrimp from their nets (Gillig et 

al., 2001). Second, BRDs have not achieved the 50% reduction of juvenile red snapper 

bycatch that is the goal set by the National Marine Fisheries Service (1995).1   

                                                 

1Gillig et al. (2001) reports bycatch reduction rates of 0% for fish less than 1 year old and 

44.5% 1 year old fish.  
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An alternative to gear modifications, would be to diminish the level of bycatch by 

reducing effort in the shrimp fishery. Effort reduction is quite attractive because it can benefit 

both the targeted and non-targeted species and increase the economic value of both fisheries. 

Pascoe (1997) insisted that the most desirable way to tackle the bycatch problem is to reduce 

the total effort toward fishing. For example, effort reduction has been identified as the most 

effective way to reduce bycatch of Baltic harbor porpoises (ASCOBANS). Similarly, the 

International Council for the Exploration of the Sea (ICES) recommended effort reduction in 

European Union fisheries so that bycatch was reduced effectively in European Union waters 

of Danish and UK fisheries (ICES 2002).  

In the U.S., however, some effort reduction policies are either illegal or infeasible. 

The MFCMA prohibits policies that reduce effort through taxation and, in recent years, there 

has been a moratorium on the use of individual transferable quotas (ITQ). Even if the ITQ 

moratorium were eliminated, Rettig (1995, p. 448) comments that “ITQ programs are 

rejected as unworkable in the US Gulf shrimp fishery, where shrimp can be transferred to 

small trucks in a vast number of bayous.”    

The primary goal of this paper is to conduct an economic analysis of alternative 

policies aimed at reducing the effort levels, thereby reducing the bycatch. The policies 

considered are called fractional license (FL) (Townsend 1992) and fractional gear (FG) 

(Townsend and Pooley 1995). Under a FL program, vessels are granted rights to a partial 

license rather than a complete license. The fractional rights can then be traded among the 

vessels so that only a portion of the original vessels remain. Under a FG program, vessels are 

given limited rights to use fishing gear, but can increase their gear by purchasing rights from 

other vessels.  
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Such programs are increasingly receiving attention by fisheries management 

agencies. FG programs have been used in the Southern and Western Australia rock lobster 

fisheries. In the Southern program a 15% reduction in the number of lobster pots was 

achieved (Staniford 1988) and a 10% reduction was sought in the Western rock lobster 

fishery (Jarrett 1999). In these programs, vessels are granted permits for a specific number of 

lobster pots. For example, when a 10% reduction in effort is required, the management 

agency would simply reduce each vessel's permits by 10%. Vessels are then allowed to trade 

permits among themselves as long as the total number of pots does not exceed the cap. In the 

U.S., a program similar to a 50% FL program is being considered for the Gulf shrimp fishery 

(Gulf of Mexico Fishery Management Council, 2003)2. 

Despite the growing interest by managers, however, a complete and comparative 

analysis of such approaches is lacking in the literature. Stanford provides a theoretical and 

empirical model of FG programs for the Southern Australia Rock Lobster fishery. Here we 

add analysis of theoretical and simulation-based analysis of the FL and FG programs and 

evaluate their ability to reduce effort and bycatch of juvenile red snapper in the shrimp 

fishery of the Gulf of Mexico. We first build theoretical models for FL and FG policies, 

building on work by Anderson and Staniford. We then present simulation analysis of the FL 

and FG policies for the joint shrimp-red snapper fisheries, which are incorporated into a 

                                                 

2 This is one of the proposed options in Amendment 14 of the Fishery Management Plan for 

the Shrimp Fishery of the Gulf of Mexico.  In this option shrimp vessels in the economic 

exclusive zone would be required to acquire two permits and retire one of them. 
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modified version of the General Bioeconomic Fishery Simulation Model (GBFSM) initially 

developed by Grant and Griffin (1979).  

II. Theory of FL and FG Programs 

A. Theoretical model of an heterogeneous open-access fishery 

Anderson (1989) provides a basic model of an open-access (OA) fishery with 

heterogeneous vessels. Figure 1, adapted from Anderson (1989), shows three representative 

vessels that have different cost structures and the consequent industry effort supply curve. 

When the market price is constant, average revenue (AR) per unit of effort can be derived 

from a standard concave sustainable revenue curve leading to the downward sloping AR 

curve in the far right graph in the Figure 1. The aggregate supply (AS) curve is the horizontal 

aggregation of supply curves of the vessels, i.e. the marginal cost (MC) curves above the 

average cost (AC) curves.  

The equilibrium effort level of the OA fishery will be where the AS curve intersects 

the AR curve. At this effort level, the AR per unit of effort is R0 and each vessel will operate 

at the effort level at which its MC equals R0. Notice that the first and second vessels earn rent 

at the OA equilibrium equal to (R0−a)e1, and (R0−f)e2, respectively. Anderson (1989) called 

this “open-access highliner rent.” The curves have been drawn so that the third vessel is 

marginal and earns zero rent. Since the efficient effort level of the fishery would be where 

the MC equals marginal revenue (MR), the OA equilibrium is inefficient and reducing effort 

would increase welfare in the fishery. 
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B. A theoretical model of FL and FG programs 

Building on the OA model, we now explore the theoretical properties of FL and FG 

programs. As formulated by Townsend (1992) and Townsend and Pooley, a FL program 

permanently eliminates a portion of the licenses from the fishery. This is accomplished by 

granting each vessel a tradable FL right, i.e. a right to a portion of a full license, yet 

establishing that a vessel can operate only if it obtains a full license. Through trading, some 

vessels complete their licenses and the remaining vessels exit the fishery. In a FG, system the 

tradable right is gear-indexed (Townsend 1992) and fishermen can use no more gear than the 

amount for which they hold a license. The two programs differ, therefore, in that the FL right 

is with respect to a discrete input and the vessel can only operate if it completes the right, 

while the right in a FG program is continuous and vessels can operate, perhaps less 

efficiently, with less than their original level of gear.  

We consider first the case of a FL program using Figure 2. Building on Figure 1, we 

consider here the case of a program with three vessels and a FL program that grants each 

boat a 2/3 FL right. In other words, one vessel will have to leave the fishery, selling its right 

to the other two vessels. Because only two of the three vessels can remain in the fishery, the 

AS curve will shift upward, leading to a new equilibrium at the intersection between the AS1 

and AR with E2 units of aggregate effort and an AR of R1. If the vessels held a full license 

right, they would fish at the effort levels where their MC equals R1, i.e., e1
2, e2

2 and e3
2, 

leading to annual rents of Π1=(R1−b)e1
2, Π2=(R1−g)e2

2 and Π3=(R1−k)e3
2, respectively. These 
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potential profits will determine the vessels’ willingness to pay (WTP) to complete their 

licenses and their willingness to accept (WTA) to sell their licenses.3 

Assuming that trading leads to a permanent transfer of the right from one vessel to 

another, each vessel's WTP to complete its license will equal the present value of future 

annual rents, say Π1, Π2 and Π3. When an α percent FL is granted to a vessel with annual 

rent πi, the WTP and the WTA per percentage of a full license is Πi/100. The WTP and WTA 

per percentages of a license are Πi/100 to each vessel i=1,2,3. Obviously, vessels will be 

willing to pay only if they can purchase 100-α percentages of a license to complete their 

license. In Figure 2, the equilibrium price per percentage of a FL will be between Π2/100 and 

Π3/100, i.e., greater than or equal to the third vessel's WTP and less than or equal to the 

second vessel's WTA. At this equilibrium price the third vessel will sell all fractions of its 

license and exit the fishery. The first and second vessels, whose WTP and WTA per 

percentage of a license are greater than the equilibrium price, will buy the fractions from the 

third vessel, and create e1
2  and e2

2 units of fishing effort, respectively. Note that because 

vessels 1 and 2 increase their effort in response to the higher AR, aggregate effort does not 

fall all the way to E1=e1
1+e2

1. Hence, effort will typically fall by less than α%. 

The model of a FG program is similar and is presented in Figure 3 based on 

Staniford. Each vessel’s costs are a function of multiple inputs, including the gear to be 

                                                 

3 We assume here that neither buyers nor sellers exhibit market power in the market. While 

this appears implausible in the case presented here with only two buyer and one seller, in true 

market with many buyers and sellers, such an assumption is more reasonable.  
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regulated, k. For simplicity, we assume zero fixed costs so that a vessel’s profits are now 

equal to the area below the AR and above the MC curve. We start after an α% reduction in 

the vessels’ gear, so that they have rights to use k1
1, k2

1 and k3
1 units of gear. Because the gear is 

restricted, the MC curves of the vessels will kink up at the point where the efficient 

generation of effort uses these gear levels, at the points marked b, f and g. The MC curves 

under the gear limitation before trading are shown as MC1(k1
1), MC2(k2

1) and MC3(k3
1) in 

Figure 3, and sum to AS1. The intersection of the AR and AS1 curves determines the 

increased revenue R1 per unit of effort that would result without trading. The lower set of 

graphs indicate the marginal WTP and WTA for rights to gear. The annual rent of the first 

vessel under a FG before the trade of gear units is the area R1abc.  

Hence, the minimum amount that the vessel would be willing to accept to 

permanently give up the entire right is the present value of this amount, equal to the area 

Oefk1
1 in the lower left-hand graph in Figure 3. The area adb is, on the other hand, the annual 

increase in rents obtained by returning to the cost minimizing level of capital under AR=R1. 

The associated WTP to purchase gear rights sufficient to return the vessel to the original 

level is captured in area Oeg in the lower left-hand graph. Likewise, the WTA and WTP 

curves are drawn for the second and third vessels.  

As we have drawn the figure, at the equilibrium price per unit of the FG right, P, the 

first vessel buys the k1
* gear rights from the third vessel, and the second vessel’s gear rights 

remain at k2
1. The trade causes the MC of the first vessel shifts rightward and the MC of the 

third vessel shifts leftward. Trade will move gear rights to the first vessel from the third 

vessel as long as the marginal increase in the first vessel’s profits is greater than the marginal 
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reduction in the third vessel's profit. As discussed by Staniford, the AS shifts rightward as a 

result of trading since the first vessel is more efficient in creating effort. This leads to a new 

equilibrium AR, R2. At the equilibrium, the vessels will create e1
2, e2

1 and e3
2 units of effort, 

leading to a reduction in the total effort of the fishery from E0 to E2. As was true in the FL 

market, the effort reduction is less than proportional to the reduction in the gear. In this case 

there are two effects. First, vessels will tend to increase their effort in response to higher AR. 

Second, they will substitute other inputs for the gear that has been restricted.  

Through the theoretical models we see that either FL or FG can achieve a reduction in 

fishing effort. In general, neither can achieve the socially optimal level of effort. Because the 

programs leave room for vessels to expand their effort by, for example, increasing the time 

spent fishing or using more of unregulated inputs such as horsepower, the programs will still 

lead to an open access equilibrium where the social marginal cost is greater than the social 

marginal revenue. Furthermore, these approaches would typically not lead to the cost-

minimizing allocation of inputs. Finally, the reduction in effort (and bycatch) will typically 

be less than proportional to the reduction in the rights allocated. Nonetheless, these programs 

have advantages over other approaches because the transferability of the rights allows more 

cost-effective vessels to use the rights and, thereby, increases industry profits. Based on 

theory alone, it is not possible to rank the two policies in terms of either economic efficiency 

or their ability to reduce bycatch. With the help of a simulation model, however, in the next 

section we can carry out such comparative analysis in the context of a specific fishery. 
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III. A Simulation Model of FL and FG Programs 

We now present a simulation model that has been developed to study the potential 

implications of FL and FG programs in the Gulf of Mexico shrimp fishery. Our simulation 

analysis makes use of GBFSM, which was originally developed to predict how alternative 

management policies would affect fisheries (Grant et al. 1981) and has been used extensively 

for analyzing the effects of management policies in the Gulf of Mexico (Blomo et al. 1978; 

Grant and Griffin 1979; Griffin and Stoll 1981; Griffin and Oliver 1991; Griffin et al. 1993; 

Gillig et al. 2001). The model is described in depth in this journal in Funk et al. (2003), and 

in much more detail at http://gbfsm.tamu.edu.  GBFSM consists of two main parts: a 

biological submodel and an economic submodel. The biological submodel represents the 

recruitment, growth, movement and mortality of shrimp and finfish. Fish mortality is due to 

both natural causes and fishing. Effort targeted toward shrimp leads to incidental bycatch of 

finfish. When a management policy is imposed on GBFSM, the biological submodel is used 

to calculate the changes in days fished and landings of shrimp and red snapper. The 

economic submodel then calculates the economic impact on commercial fishermen in terms 

of costs, revenues, and rent for each vessel class in each area, and the impact on consumer 

surplus associated with the recreational red snapper fishery (Gillig et al. 2001). Unless entry 

is restricted by regulations, vessels enter and exit the fishery if rents are positive. 

In the current study, the FL and FG programs are applied to the Gulf of Mexico’s 

shrimp fishery with six separate rights markets across the Gulf: one in each state’s waters, 

and one covering the federal waters across the gulf. The model of the FL and FG programs 

involves three main steps. First, vessel sizes and gear of all licensed vessels in the Gulf are 
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simulated. Second, profits of the vessels are simulated. Based on each vessel’s simulated 

profit function, it is possible to simulate the WTP and WTA for rights for the FL program 

and for the FG program. Finally, markets for these FL and FG rights are simulated and the 

market is cleared, reducing the number of vessels participating and, in the FG case, the gear 

of each vessel. These three steps are discussed below with more technical discussion in the 

appendix.4 

Because of data limitations, a vessel’s effort is assumed to be a function of only two 

inputs: the vessel’s length and the length of the net that it drags, measured in the length of its 

footrope.5  The initial distribution of vessels by length is based on data provided by the 

Southeast Regional Office of NMFS for the beginning of the 1998 license year (National 

Marine Fisheries Service, 2000). The initial footrope length for each vessel is simulated 

assuming that, up to error terms from the empirical distribution, each vessel has chosen its 

gear to maximize the net present value (NPV) of the fishing profit.  

The second step is to simulate profits of the vessels in the fishery. As seen in the 

theoretical model, when faced with a fractional license or fractional gear, a boat owner will 

buy or sell licenses up to the point where the marginal value of a right is equal to the market 

price.  Hence, in order to simulate the effects of a FL or FG market, it was necessary to 

specify and estimate a parametric representation of the profit function for the vessels in the 

fishery.  Ideally, an annual profit function would be estimated.  However, the necessary cost 

and return data available were only available on a trip by trip basis.  Hence, a daily profit 

                                                 

4Substantially more detail is provided in Wui (2002) or Woodward, Griffin and Wui (2003). 

5Shrimp vessels use an otter trawl to catch shrimp. That trawl is measured by footrope length.  
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function was used, assuming that the ith vessel’s daily revenue and cost in period t, Rit
d and 

Cit
d, take the forms  

(1)     ( ) ( )( )0 1 2 0 1 2exp ln ln andd d
it it it Rit it it it CitR a a L a F C b b L b Fε ε= + + + = + + + , 

where Lit is the vessel’s length and Fit is the length of the vessel’s footrope.  These functional 

forms were particularly attractive because they allowed us to obtain analytical solutions for 

the market equilibrium. The econometric model and estimated parameters is discussed the 

appendix.  To annualize profits, vessels in each market are assumed to fish the average 

number of days for the market.6 Again drawing residuals from the empirical distributions, we 

then simulated profit functions for each vessel in the heterogeneous fleet.  

The equilibrium of the FL market is relatively straightforward and is the direct 

application of the theoretical model as presented in Figure 2. After each vessel’s profits are 

simulated, its WTP and WTA for FL rights can be calculated as the present value of future 

annual rents, Πi . Vessels are then ordered and the vessels with the lowest WTP exit the 

fishery. The market-clearing price per FL percentage is then calculated as the highest WTA 

of an exiting vessel.   

As seen in Figure 3, the equilibrium of the FG model is somewhat more complicated 

because the price affects not only the level of gear that a boat desires to hold, but also the 

decision of whether or not the vessel chooses to remain in the fishery.  Simulating the FG 

                                                 

6 The number of days for each market was calculated at the end of each simulated year as the 

ratio of number of days simulated by GBFSM divided by the number of licenses in the 

market.   
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market, therefore, requires an iterative two step process. First an equilibrium price is found 

holding the number of vessels participating constant and assuming that each vessel  

maximizes the present value of its profits.  Then the number of vessels is adjusted after 

eliminating from the fishery those vessels that would prefer to exit the fishery and sell their 

entire allocation of rights. This two-step process is repeated until an equilibrium is found 

where all vessels in the fishery are holding the profit maximizing level of gear and vessels 

that would prefer to exit the fishery sell all of their gear rights. To avoid unreasonable 

combinations of gear and boat length, we assume that the length of a vessel’s footrope cannot 

change by more than 20%.  

After imposing a FL or FG program, the fleet is then reintroduced into the main 

GBFSM modules to simulate harvests, stock changes and economic benefits. For the current 

analysis, GBFSM is initialized so that the shrimp fishery is at a bioeconomic equilibrium 

where average rents are zero. The introduction of a FL or FG policy pushes the fishery out of 

equilibrium and the fishery moves towards a new equilibrium over the next several years. 

This results in a change in the producers' and consumers' surplus. To calculate the PV of the 

benefits of a policy, the annual discount rate of 7% is used as required in the Guidelines and 

Discount Rates for Benefit-Cost Analysis of Federal Programs (Executive Office of the 

President).  

IV. Results of Simulation Analysis 

Four scenarios will be examined in this paper (Table 1): Base, BRDs, FL, and FG. As 

shown in Table 1, the Base scenario replicates the 1998 policy mix, including a cap on the 

total allowable red snapper catch (TAC), a bag limit per trip, etc. However, in the Base 
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scenario it is assumed that the BRDs are not used. To facilitate comparisons with the 

alternative scenarios, in the Base scenario the model is calibrated so that the shrimp fishery is 

in OA equilibrium. This is accomplished by adjusting the opportunity cost of the average 

vessel owner until there is no entry or exit. As a result of this calibration, predictions as to the 

relative impacts of the policies are clearer, but quantitative predictions of the model should 

be regarded with caution. 

Each of the other scenarios then add one additional policy on top of the suite of base-

case policies. The BRD case simulates the fishery with BRDs imposed on shrimp fishery. 

Five FL and five FG scenarios are evaluated with reductions of 10, 20, 30, 40 and 50% in 

number of licenses and in the total length of footrope, respectively. In the FL (FG) scenarios, 

a one-time reduction in shrimp licenses (footrope) occurs at the end of the first year of the 

simulation, and the FL (FG) markets determines who will remain in the shrimp fishery at the 

beginning of the second year. The FL (FG) markets continue to operate at the end of each 

year, although no additional reduction in licenses (gear) is imposed. Each scenario is 

evaluated from 1998 to 2032, a thirty-five year time period.  

A. Base Scenario 

Because the Base scenario is calibrated at the open-access equilibrium, real fishing 

effort is constant at 226.9 thousands fishing days across the Gulf of Mexico over the 35-year 

simulation period .7 Without BRDs in the shrimp fishery and under the 1998 policy suite for 

the red snapper fishery, the model predicts that red snapper stocks will decline from 33.7 

                                                 

7Real effort is calculated by multiplying the relative fishing power of a vessel class by the 

nominal fishing days of that vessel class (Griffin, Shah, and Nance 1997).  
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million pounds in 1998 to 16.2 million pounds by 2032. As a result of these falling stocks, 

bycatch of red snapper is predicted to decrease over time despite the constant effort in the 

shrimp fishery. The NPV of shrimp producer and consumer surplus over the 35-years was 

$1,277 millions, as shown in Figure 4.  

B. BRD Scenario 

When BRDs are added to the Base scenario management policies there are two 

consequences as shown in Figure 4. First, because of the decline in red snapper mortality, the 

model predicts a red snapper spawning stock biomass by year 2032 of 188 million pounds, 

much greater than the stock predicted under the Base scenario. Second, BRDs lead to a 

reduction in harvests and an increase in operating costs in the shrimp fishery. Even though 

the market price for shrimp is predicted to increase, the quantity effect dominates because of 

the inflexibility of shrimp price (Gillig, Capps and Griffin 1998) so that both producer and 

consumer surplus fall. Producer surplus is also negatively affected by the $100 increase in 

the annual cost per vessel for purchasing and installing the BRDs. In net, therefore, the 

increase in red snapper stock comes at a cost of slightly more than five percent of the 

producer and consumer surplus in the shrimp fishery. 

C. FL Scenario 

While BRDs reduce bycatch directly, a FL policy reduces it indirectly by attempting 

to reduce effort through a reduction in the number of licenses. As seen in Figure 4, as the FL 

rate increases, the spawning stock biomass of red snapper shows ever increasing levels of 

recovery. Indeed, with FL rates of 40 or 50%, higher red snapper spawning stock biomass is 

achieved than with the BRD scenario. Unlike the BRD scenario, however, the FL program 
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leads to economic benefits for the shrimp fishery. For example, a 40% FL policy is predicted 

to lead to more than a 30% increase in the producer’s surplus in the shrimp fishery, so that 

even taking into account a 5% decline in consumer surplus, the present value of total surplus 

for the shrimp fishery is predicted to increase by 32%. Over the range of policies considered, 

we find greater reductions in the number of licenses in the fishery lead to ever increasing 

levels of total surplus and spawning stock of red snapper.8  

D. FG Scenario 

As in the FL scenarios, the FG programs tend to increase surplus in the shrimp fishery 

while at the same time helping the recovery of the red snapper stocks. However, the FG 

program is not as cost effective as the FL program. As seen in Figure 4, to reach a stock level 

comparable of that achieved through BRDs, the model estimates that a 40% reduction in gear 

would be required, while only slightly more than 30% of the licenses would achieve the same 

stock recovery. Moreover, although FG programs tend to increase the NPV of surplus in the 

shrimp fishery, for comparable red snapper stock levels, the economic benefits to the shrimp 

fishery are strictly dominated by those achieved through a FL program. The economic 

disadvantage of the FG programs is probably attributable to the fact that the FG program 

tends to push vessels away from their cost minimizing input allocation. In fact, at the 20% 

level, the FG program actually causes a slight decline in total surplus in the fishery relative to 

the Base scenario.  

                                                 

8Obviously, the precision of the model’s prediction will decline as policies depart further 

from the status quo. We are confident in the qualitative nature of the results, but quantitative 

predictions should be viewed with some caution. 
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V. Conclusions and Discussion 

If a policy objective is to reduce bycatch, we find that effort reduction is an attractive 

alternative to an input-based BRD policy. FL or FG are ways to achieve effort reduction and 

merit consideration. While BRDs tackle the bycatch problem directly by restricting the trawls 

of shrimp vessels without considering the economic consequences, FL or FG programs solve 

the bycatch problem indirectly by reducing effort. Hence, FL or FG policies address both the 

bycatch problem and the problem of excess capacity in the shrimp fishery. Effort reduction is 

always difficult to achieve in practice because fishermen are typically reluctant to stop or 

scale back their fishing. However, in FL or FG programs, fishermen are given limited rights 

to fish, which they can voluntarily sell if this ends up being more profitable. Hence, as 

Townsend (1992) noted, FL or FG programs might be implemented more easily than many 

other effort reduction policies.9  

Our empirical analysis of the shrimp and red snapper fisheries of the Gulf of Mexico, 

finds that FL or FG policies are preferred to the current BRD policy since these approaches 

can lead to equivalent benefits to the red snapper fishery, while at the same time providing 

economic benefits to the shrimp fishery. The results should be interpreted with some degree 

of caution as high FL and FG rates could induce fundamental changes in the shrimp fishery 

that cannot be anticipated based on existing data. With this caveat, however, we believe that 

there is strong support for our qualitative conclusion: effort reduction through transferable 

                                                 

9 We have not addressed any cost that might be required to implement or enforce a FL or the 

FG program. 
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rights programs such as FL or FG is an appealing alternative to the problem of bycatch in 

fisheries.  
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Table 1. The management policy scenarios of shrimp and red snapper fisheries 

evaluated using GBFSM 

Management 
Policy Scenarios 

 Policy Description 

Basea  

Total Allowable Catch (TAC) =9.12 million pounds in red 
snapper 
TAC allocation 
        Commercial red snapper =51% 
        Recreational red snapper=49% + a 10% overage b 
Recreational bag limit in red snapper=4 fish/trip 
Split commercial season in Red snapper 
Size limits for both recreational and commercial fishermen 

BRDs a, c  
(1998 current 
policies) 

Base + 

All the offshore shrimp vessels are required to use BRDs except 
lower Florida and part of upper Florida. 
Reduction of age 0 red snapper=0% 
Reduction of age 1 red snapper=44.5% 
Shrimp loss=6.5% 
Survival rate of shrimp loss=50% 

FL Base + Shrimp license reductions of 10,20,30,40 or 50% 
FG Base + Shrimp gear reductions of 10, 20, 30, 40 or 50% 

a Source: Gillig et al, 2001. 
bA 10 percent overage is used as a conservative attempt to account for the inability of current 
monitoring procedure to accurately track harvest to facilitate closure when the allocation is 
filled. The average overage for the 1997 and 1998 fishing seasons is 23 percent. 
c The use of the Super Shooter Turtle Exclusive Device and fisheye BRD (allowing different 
placement positions). 
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Figure 1. Open access fishery with heterogeneous vessels (adapted from Anderson) 
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Figure 2. FL granted to vessels and their WTP and WTA  
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Figure 3. FG granted to vessels and their WTP and WTA (adapted from Staniford)
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Figure 4. Tradeoff between the change from the base year scenario in the present value of total (producer and consumer) 

surplus of shrimp fishery and in the red snapper spawning stock biomass (in year 2032) under FL and FG scenarios  
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Appendix: Specification and estimation of profit function 

It was assumed that the vessel’s daily profit revenue and cost were exponential and linear as 

specified in (1).  If gear, Fi, is permanent and we assume the fishery is believed to be in a steady 

state, a vessel owner would choose Fi to maximize the present value of net rents: 

(A.1) ( ) ( ) ( ) ( )
0

max 1 | |
i

t d d
it itF t

r F L F L r R C ri i i i i iπ π
∞

=

+ = = −∑  

where r is the daily discount rate.  The first-order condition for this problem can be written 

(A.2) ( ) ( ) ( ) ( ) ( )0 2 2 1 2ln ln ln ln 1it it RitF a a b a L aε = + − + + −  . 

From this expression we then arrive at the first of three equations estimated: 

(A.3) ( ) ( )0 1 2 2

2

ln ln ln
ln

1
i i j j ijk Rijk

ijk Fijk

a c YD d MD a L a b
F

a
ε

ε
+ + + + − +

= +
−

∑ ∑ , 

where ijkF  represents footrope size of ith year, jth market , kth vessel. iYD and jMD  represent ith 

year dummy variable and jth market dummy variable, respectively. The remaining two equations 

are the reduced form of the cost and revenue equations, leading to the three equations to be 

estimated empirically were: 

(A.4)    ( ) ( )1 2ln lnijk i i j j ijk FijkF YD MD Lγ α θ γ ε= + + + +∑ ∑  

(A.5)    
( )2

0

1 3 exp exp( ) exp( )
ijk i i j j

ijk ijk Fijk i i j j Cijk

C b e YD f MD

b L L YD MDγγ ε α θ ε

= + +

+ + +

∑ ∑
∏ ∏

 

(A.6)    ( ) ( )4 2 2ln lnijk i i j j ijk Fijk RijkR YD MD L aγ α θ γ ε ε= + + + + +∑ ∑ , 
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where, 0 2 2
1

2 2 2

ln ln
1 1 1

a a b
a a a

γ
 

= + − − − − 
, 1

2
21

a
a

γ =
−

, ( )3 2 1expbγ γ= , 4 0 2 1a aγ γ= + , 
21

i
i

c
a

α =
−

, 

and 
21

i
i

d
a

θ =
−

.  

The estimated coefficients were then transformed into the coefficients presented in Table A.1, 

which were used in the simulation model.  Where transformation of variables was necessary, the 

associated t-statistics are not reported. 
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Table A.1. The parameters of exponential revenue and linear cost functions  

Revenue Function Cost Function 

Coefficient Estimate 
absolute 
t-statistic Coefficient Estimate 

absolute  
t-statistic 

0a  3.615 * 0b  -401.79 8.72 

1a  0.688 * 1b  23.06 37.97 

2a  0.295 * 2b  13.70 * 

1θ  -0.072 13.76 1f  110.98 6.00 

2θ  -0.143 23.48 2f  146.92 6.70 

3θ  -0.137 19.64 3f  -244.24 9.90 

4θ  -0.074 17.55 4f  -51.54 3.29 

5θ  -0.029 6.03 5f  0.25 0.01 
2R  0.1182  2R  0.2357  

Note: The coefficients of the dummy variables associated with years are not shown because these 
were used only in the estimation, not in the simulation.  1998 was simulated as base year. 

αi ’s represent the constant and the coefficients of vessel size and footrope size in logarithmic 
value respectively (i=0, 1, 2). 

bi’s represent the constant, and the coefficients of vessel size and footrope size variables 
respectively (i=0, 1, 2). 

θi and fi’s represent the coefficients of ith market dummy variables (i=0, …,5). 


