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THE SOURCE OF TECHNICAL CHANGE IN ITALIAN 
AGRICULTURE: 

A LATENT VARIABLE APPROACH 

By 

Roberto Esposti and Pierpaolo Pierani 

Abstract 

An alternative approach to the measurement of technical change is proposed. It is based 
on the explicit introduction of the variable "state of technology" into the dual 
representation of production. A theoretical hypothesis about generation of technical 
progress in the agricultural sector is formulated By adding measurement error equations 
the model can be viewed as a MIMIC model. A maximum likelihood technique involving 
the implicit covariance matrix provides the estimation of the parameters of the model. 
Moreover, a Bayesian estimation of the latent variable is obtained This approach is 
applied to the Italian agricultural sector during the period 1961-1991. The results 
provide some evidence about the source and the nature of technical change. 

Keywords: Italian agriculture, technical change, latent variable, MIMIC model, cost 

function. 



Introduction 

Economists are unanimously convinced that technical change is one of the most 

relevant growth engines. Nevertheless, they largely disagree about the correct way to 

represent and measure it. Different theoretical paradigms and approaches often differ 

deeply on this issue, and disapproval is sometimes expressed about the way the 

mainstream economic theory has dealt with the issue so far. Despite the relevance of the 

theoretical debate, what makes technical change one of the most studied subject in the 

literature of last decades is its empirical relevance. This relevance is particularly 

highlighted by the great amount of growth accounting exercises that can be found in the 

literature. 

In this paper we try to reconcile empirical measurement and theoretical explanation 

of technical change in an unique analytic framework. The object of our analysis is 

technological growth in Italian agriculture. Starting from the end of the second world war, 

this sector has gained high output growth rates although labor has constantly decreased 

and the level of capitalization is commonly considered insufficient. In other words, output 

growth can be only partially explained by the growth in inputs use. Empirically, 

productivity growth due to technjcal progress is just a residual component of output 

growth. The issue is how we can give a theoretical economic content and explanation to 

this empirical measure. 

In the traditional approach, this residual is considered itself an expression of 

technical change and its measure, known as Total Factor Productivity (TFP) growth, 

constitutes a natural way to measure technical change in a sector. Therefore, we would 

conclude that a high rate of technical progress has been achieved in Italian agriculture 

during this period. Unfortunately, although some studies were carried out to correctly 

measure the dimension of this TFP growth (Pierani and Rizzi, 1992 and 1994; Esposti and 

Pierani, 1995), no attempt was made to explain this high rate of growth. Actually, the 

traditional approach itself, being based on a residual measure, can not achieve an 

explanation of the phenomenon. 
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Main purpose of this paper is twofold: to provide a measure of technical change in 

Italian agriculture between 1961 and 1991; and to gain some insight on causes and 

processes that determined this growth. The traditional approach, does not seem to be ideal 

when the focus is both on the measure and on the representation of the processes that 

generates technical advance. We propose an alternative approach based on the concept of 

technology as a latent variable. Technological level explicitly enters the production 

process as a particular input, while the economic process generating it is formally 

specified. This theoretical framework can be represented in a unified structural form in the 

so called MJMIC (Multiple Indicators and Multiple Causes) model. 

The paper is organized as follow. In the first section we briefly survey the relevant 

literature about measurement and representation of technical change, focusing on the 

traditional Solow approach, its recent evolution and the basic critique to this kind of 

framework. In the second section, we describe the theoretical model designed to represent 

the evolution ofltalian agriculture. It is essentially a dual representation of the production 

technology. Due to the presence of the latent technology variable as an explicit argument, 

it can be viewed as a MIMIC model. Briefly we deal with the econometric implications 

and issues involved in the estimation of this kind of model. In the third section the data set 

is described. Finally, in the forth section and in the conclusions, we present the results of 

the estimation providing an interpretation of the most relevant empirical results. 

1. What does "a theory oftecl111ical change" mean? 

Robert Solow (1957) is usually acknowledged as the first who attempted to 

investigate technical change within an appropriate and compatible production theory. The 

result of that analysis was surprising: technical change, measured as an output growth 

residual in U.S. manufacturing between 1909 and 1949, turned out to explain more than 

85% of the per man income growth. Actually, it was not an original result. Several other 

economists (Tinbergen, 1942; Schmookler, 1952) had previously attempted to measure 

the residual and all of them found out that component of growth was surprisingly high. 
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The reason why Solow work was considered a seminal one is that residual measure 

was coherently embedded in the neoclassical representation of production: from Solow 

upward, the measure of the residual is no more seen as a "measure of our ignorance"; it is 

"simply" the shift upward of the production frontier, that is technical change. 

To a great extent, this representation of technical advance is intuitively appealing. 

It is generally accepted that technical progress generates an increase in factors 

productivity and therefore in the level of output that a given vector of inputs is able to 

produce. Nevertheless, some aspects of that analysis seemed to be critical from the very 

beginning. After all, if we measure technical change as a shift of production function we 

still have a problem of finding a porper representation of the production function. 

A great effort and a lot of literature as focused on this issue. The basic idea is that 

residual measure can still be useful but we need to be careful in the representation of 

production condition. Flexible functional forms have been used and most of the initial 

Solow assumptions have been relaxed. Subequilibrium due to quasi-fixed factors, mark-up 

pricing, adjustment cost, non constant returns to scale and inefficiencies were introduced 

(Morrison, 1992). This kind of literature is really worthwhile in refining original residual 

measure. However, there is still some feeling that we are getting only a better "measure of 

our ignorance". 

After all, increase in productivity is with no doubt a critical aspect of the growth of 

all economies and it is actually the fundamental outcome of technical advance but it can 

not be identified with technical change. As economists, to know how much total factor 

productivity increases is not a great achievement if we can not know how actually this is 

determined, what kind of process is working behind it. 

This is the second, and to us more fundamental, critique to Solow approach: a 

residual measure of technical change means that it is exogenously determined, measured 

but essentially not explained. Even in this context a lot of literature was produced trying to 

partially explain technical change with the innovations embodied in new-generation capital 

(Salter, 1960; Solow, 1962) and with some additional variable as expenditures in R&D, 

accumulation in human capital, spillover effects (Griliches, 1964; Stoneman, 1983). 
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To a certain extent, our analysis refers to this kind of literature in which both the 

effort of explaining and the effort of measuring technical change are fulfilled. Basically, the 

claim is that an economic theory of technical change must necessarily attempt to represent 

the economic process that generates it and not only to capture its final result that is 

increase in TFP. 

An interesting general view of the problem is provided by Nelson (1981 ): technical 

change can be represented in two distinct moments, a change phase and a coordination 

phase. In the first phase, innovations are generated and are introduced in a production 

system (like a firm or a sector); then, within the production context these innovations are 

selected, compared to the old ones and an observable outcome is determined. This 

outcome is Total Factor Productivity. The coordination process is actuaJly the phase the 

traditional approach typically focuses on: innovations coming from the dark are suddenly 

available to producers that introduce them in their production process getting a new 

production frontier. 

The usual representation of production technology can be therefore a useful tool if 

we combine it with a representation of the change process. In other words, we can still use 

a production function, or its dual, to define the final outcome of the innovation process 

but we need to express an hypothesis for the generation of this innovation. This is what we 

pursue in our model. 

2. Measuring technical change with a MIMIC model 

Following Jo reskog and Sorbom (1989), let's indicate with 77 = (77,, 7]2, . .. , 7]m) a 

vector of endogenous latent variables describing the dynamics of the state of the 

agricultural sector and with ~ = ( ~1• ~2, ... , ~n) a latent vector of independent variables 

representing the exogenous evolution conditioning the state dynamics. At any time t, we 

can express analytically the relation between these two vectors with this system of 

structural equations: 

(1) 77=B77+I'~+~ 
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where B (mxm) and r (mxn) are two coefficient matrices and ~ = (~1 , ~2, ... , ~m) is a 

vector of stochastic disturbances. The elements of the r matrix take into account the 

impact of the exogenous variables on the state, while the elements in B express the 

feedback effect of each endogenous variable on the state vector excluding itself (i.e. all 

diagonal elements are zeros). Furthermore, we assume that ~and ; are uncorrelated and 

that (J-B) is a non-singular matrix. 

In general, all or some of the elements of the T/ e ; vectors cannot be directly 

observed. Actually, we can only observe vectors y = 0'1,Y2, ... ,Yp) and x = (x1,X2, ... ,xq) 

related to the previous ones according to these measurement equations: 

(2) y = AyT/ + e 

(3) x =Ax;+ 8 

where Ay,x are coefficient matrices, the e and 8 error terms are reciprocally uncorrelated, 

and both are uncorrelated with ~ and with respective latent vectors, while there can be 

correlation between disturbances of the respective system of equations. 

The general model (1) can be effectively applied to technical change analysis. In 

fact, the evolution of the system, represented by the state vector, identifies what we called 

the coordination process. The vector of the exogenous variables represents in tum the 

change process that is the introduction of innovations in the system. More explicitly, in 

our case the state constitutes the production process in the agricultural sector: based upon 

exogenous market prices and level of technology, it defines the optimal combination of 

input and output in agricultural production. 

We represent production technology from the dual with a long run cost function. 

Differently from the traditional approaches, technical change is identified neither with the 

TFP growth nor with the logarithmic derivative of the aggregate cost function with 

respect to time1
. The level of technology E is an explicit argument of the cost function 

that therefore is defined as follows: 

(4) C = C(p,q,E) 

1 It can be shown that the use of a proxy instead of the latent variable determines biased and 
inconsistent parameter estimates whenever a significant measurement error is present (Gao, 1994; 
Gao and Reynolds, 1994). 
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where C is the minimized total cost, q is the aggregate output level, p is the vector of 

inputs prices; in our case we consider these aggregate inputs: XM = materials; XL = labor; x K 

= capital; xr= land. E represents the stock of knowledge: it enters the production process 

as the traditional physical inputs. Therefore, in this model, q, p and E are given. 

An analytical specification of the input demand system depends on the functional 

form of (4). In order to choose the cost function form, a main requirement is the ex-ante 

restrictions imposed on the substitution matrix. According to this, flexible functional forms 

are widely employed in the recent literature. But another important issue has recently 

risen. The wide use of flexible functional form relies on the implicit assumption that data 

series are stationary. Being the variables expressed in levels, we can't exclude in these 

cases inconsistent estimates of the parameters and spurious results (Clark and 

Younglblood, 1992; Granger and Newbold, 198 1 ). 

Considering that most of the variables of these models (prices, output level, R&D 

expenditures, education level, etc.) grow following clear time trends, one possible solution 

is to differentiate the series. Assuming trend-stationary processes, this solution avoids the 

risk of spurious regressions (Plosser and Schwert, 1978). Foil owing Gao and Reynolds 

(1994), we adopt a differential demand system, an extended Rotterdam model, that can be 

viewed as a fist order Taylor series approximation of a general demand system (Barnett, 

1979; Theil, 1980) 2 . 

In this case, we can formulate the following factor demand system: 

(5) s,d(logx,) = Lkµikd(logpk)+ we,d(logq) + P;d0og2), i = 1, .. , 4 

where: s, is the i-th input cost share; d~ogxJ, d~ogpir) and d~og.3) represent, respectively, 

logarithmic variations of the i-th input quantity, of the k-th input price and of the state of 

technology; w is the cost flexibility3
, while B, is the i-th input marginal cost share; µ1k is the 

Slutsky coefficient; p, = s1ri, where r, = qlogxJI qlog.3} represents the technological 

1 
In Appendix I we report Dickey-Fuller tests for all data series employed in this study. The results 

highlight that for none of them we can reject the null hypothesis of unit root, that is of non- stationary 
series. Therefore, the choice of a differential demand system see111s a sensible solution to avoid 
spurious results and inconsistent esti111ates. 
3 

Jn this paper we assu111e CO = I being the only value consistent with an aggregate cost function 
(Chambers, 1988). 
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elasticity of the i-th input. We observe neutral technical change for the i-th factor if f3; = 0 

Vi ; if this is true we can't reject the hypothesis of Hicks-neutral technical change. 

The cost minimizing hypothesis implied by (5), imposes some restrictions on the 

parameters (Selvanathan, 1989). More specifically, symmetry (µ;k = Jlk;), homogeneity of 

4 
degree 0 of the demand functions with respect to prices ( L: µ ik = o. ; = I. ... .4) and 

k=I 

4 4 
adding-up with respect to output and technology ( L: /J; = o. L: ()1 = I) are imposed. 

i=l i= l 

The second task of the model is to specify the process that generates E . First of 

all, we assume that the farmer is viewed as an adopter rather than a generator of 

innovations. This seems consistent with the basic feature of the Italian agricultural sector: 

prevalent small farms, price-taker behavior with farmers incapable of own innovative 

strategies. In this context, technological knowledge can be seen as a public good. 

Therefore, technical progress constitutes a Marshalian positive externality. 

In this framework, technical change in agriculture can be modeled specifying the 

exogenous generation of innovations and his gradual adoption within the sector. 

Considering Italian agriculture most of the innovations are originally generated in other 

sector or/and in other countries. Then, these opportunities can be actually converted in 

actual and effective innovations for the farmers through an adaptation and a diffusion 

effort; both are basically carried on by public R&D and Extension expenditures. When 

feasible innovations are made available to correctly informed farmers, the extent and the 

speed of the adoption depends on their technical capability and innovative attitude. In 

short, we indicate this capability and attitude as the level of human capital within the 

sector. 

This general representation of the innovation process can be synthetically modeled 

as follows. We assume that technological level in Italian agriculture is defined by this 

technology generation junction: 

(6) E= S g(R, I, H) 

where S is the international and intersectorial spillover on the Italian agricultural sector, 

that is technical knowledge generated in other countries and other sectors that can be 
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potentially useful in the agricultural production4
. R represents the public agricultural 

research; I expresses the diffusion of information within the sector determined by public 

extension services. Finally, His the human capital. By assumption, S, R, I, and H are stock 

variables and they are exogenously determined5
. 

Actually, what we are interested in is the variation in the level of technology (E ). 

Differentiating (6) with respect to time we get6 : 

. . . 
(7) 3 = S+(o lng / o lnR)R+(Olng I Oln/)I+ (o lng / o lnH)H 

where 3 = o ln 3 I a 1. If we indicate with eR, e1, e CH the elasticities with respect to E, 

assuming them constant, we can rewrite (7) as follows : 

. 
(8) 3 = S+&R R+&1 l +&H H 

We can consider the potential spillover as a constant quota of the whole new 

technological knowledge produced at intersectorial and international level8, therefore . . 
r I = s I T . Then: 

(9) 3 = r r T + r R R+ r i I+ r H H 

Equation (9) defines the innovation process in the Italian agricultural sector. 

Adding (9) to the differential demand system representing the coordination process, the 

general model (I) can be expressed as follows: 

4 
We separate explicitly this variable in the expression of the technology generation function being it 

a prerequisite to have innovative opportunities al sectoria/ level. 
j The basic idea is that technology level is a stock of knowledge; this stock varies with the variations 
of the stocks that contributes to generate ii. 
6 

Therefore, we assume that g() is a continuous and differentiable f unction . . 
7 

Given the generic variable A , we denote A = o In A I a . 
8 

Actually, not the whole new technological and scientific knowledge is potentially relevant for the 
agricultural sector. The S variable is an expression of this actual potential as a constant quota of the 
entire production of new knowledge. 
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sLd ln xL 
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. 
T . 
R 

0 0 0 0 
. - Yr .. YR Y1 YH 0 0 0 0 

. 
I 

P M 0 0 0 sMdln XM 0 0 0 0 µ MM µ ML µ MK BM H 
= + 

PL 0 0 0 sLdlnxL 0 0 0 0 µ ML µ u µ MK BL dln{pM/Pr ) 

/3K 0 0 0 sKdlnxK 0 0 0 0 µ MK µ MK µ KK BK din (PL/ Pr ) 

din (PK/Pr ) 
dlnq 

(10) 

In eq. (10) the differential demand system is rewritten in terms of relative prices 

with land price (Pr) as the numeraire. Therefore, we drop the land demand equation and 

we estimate a system of three differential demand equations with symmetry imposed. 

Moreover, imposing homogeneity and adding-up restrictions allows to get the parameters 

of the equation dropped. It results: /3r = - (/3M + /3L + f3K) , µw = - (JJMM + /JML + !JMK}, 

µLT = - (JJML + µu + µiK), µKT = - (µMK + µLK + µKK), µrr = !'MM + 21JML + 2µMK + µu + 

2µLK + µ/(}(, Br = J - ( ~ + el + eK J . . 
As it should be clear, the only latent variable in T/ is the technical change 3 ; all the 

other variables are observable. Various proxies for technical have been used in the 

literature. The more widely employed is the growth of TFP. Although we follow this 

. 
stream, we emphasize that in our approach 3 and TFP growth can not be considered 

equivalent due to the existence of measurement errors. 

As in (2) and (3), the presence of unobservable variables requires the introduction 

of measurement equations. Through these equations, latent variable econometrics (Aigner 

and Deistler, 1989) describes the unobserved vector explicitly talcing account of the error 

with which the proxy measures the phenomenon. In our model, the system of 

measurement equations results: 

+~ 
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TFP A. ,, 0 0 0 ... E, 

sMdlnxM 0 1 0 0 sMdlnxM 0 
(11) = + 

sLdlnxL 0 0 1 0 sLdln xL 0 

sKdlnxK 0 0 0 sKdln XK 0 

The model (10)-(11) is a special case of LISREL (Linear Structural Model with 

Latent Variables) model defined in (1 ), (2) and (3) . It is usually called MIMIC model 

(Multiple Indicators and Multiple Causes) for the presence of only one latent vector T/ 

(Jo reskog and Goldberger, 1975; Bollen, 1989). In this case, in fact, we assume that x = 

,;; exogenous variables are therefore observed without measurement errors. 

Using LISREL 7.2 software, model (10)-(11) is estimated with a maXJmum 

likelihood procedure9
. 

3. The Data Set 

Prices and quantities for materials, land, capitaJ and labor are Fisher aggregates 

based on elementary data of the AGRJFIT database (Caiumi et al., 1995)10
; the TFP 

growth data come from Pierani and Rizzi ( 1994) 11
. 

The variables of the eq. (9) are defined as follows. Concerning with the technology 

spillover ( T), we try to take into account aJl innovations produced at an intersectorial and 

international level to capture the idea of a spread technological advance. The only data 

series available for the period and that can represent this idea are the data about both 

domestic and foreign patent demands in United States. Even if patent data are often 

criticized as indicators of technological advance, we can agree with Griliches ( 1994) to 

consider the number of patent demands presented at a given time t as an effect of the 

recent R&D expenditures and all the past knowledge stock. In other words, we consider 

9 A more detailed description of the applied econometric procedure is presented in Appendix 2. A 
complete analysis of the econometric and identification issues of the MIMIC model can be found in 
Bollen (J 989). 
10 ft is a recent database of the Italian agriculture from 1951to 1991. 
11 It 's a measure that explicitly takes into account the short-run subequilibrium due to quasi-fixity of 
some factors, in particular f amily labor and capital (Morrison, 1992). 
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this variable a good proxy of the general technological knowledge that can potentially spill 

over the agricultural sector12 (Griliches, 1994). 

For R&D and extension expenditures in the Italian agricultural sector (R and I 

variables) we use public expenditures as reported by Ministries accountings. These are 

data about research funding by the Italian Ministry of Agriculture and Forestry, about 

expenditures of the specialized public research institutes and expenditures of public 

University Faculties of Agriculture and Animal Science. Extension expenditures are 

obtained both from the Ministry of Agriculture and Forestry accounting and from public 

local extension services. All these expenditure data are expressed in billions of constant 

price Italian lira. 

As previously emphasized, we need stock data to estimate the model presented. To 

convert expenditure data into stock data we adopted the method proposed by Park 

( 1995) 13
. It is basically an application of the perpetual inventory method to R&D 

expenditure. The only difference is that a three years lag is considered before the new 

expense is recorded. 

Finally, concerning with human capital variable (H), we follow the methodology in 

Gao and Reynolds (1994) using the average years of schooling of agricultural workers. 

These data allowed us to define stock series starting from 1961 to 1991. Therefore, our 

analysis refers to this period 14
. 

4. Estimation results 

Parameter estimates of the MIMIC model are reported in matrix form in table 1; in 

table 2 respective elasticities are reported. Matrix B estimates provide information about 

the bias of technological change. While materials and capital bias seem to be not 

statistically significant, we observe a technical change clearly labor using. Therefore, the 

12 We choose US patents being the only ones available for a long period. Moreover, due to its 
technological leadership and its open economy, US patents can be considered good indicators of 
technological advance over countries. 
13 We apply a depreciation rate of 0,3 for the R&D, as in Park, and of 0,5 for the stock relative to 
extension expenditures. 
14 More information about data series can be obtained by contacting us. 



12 

empirical evidence rejects the hypothesis of Hicks-neutral technical change and indicates a 

bias toward labor and against land. This result is somewhat surprising if compared to 

previous studies (Gao and Reynolds, 1994) where, whenever neutrality is rejected, labor 

saving and capital using technical change is frequently observed. 

Nevertheless, these results often refer to structural agricultural conditions deeply 

different from Italian agriculture. In the Italian case, in fact, small family farms are 

predominant and excess labor and capital and land scarcity is indeed the rule. Therefore, 

what we observe is a technological path consistent with these structural constraints. This 

path allows to detain labor force in the sector rising its productivity with respect to the 

other factors. Loolcing at the literature, this technological evolution seems to be quite 

original. However, there is no economic reason to think that technical evolution in the 

agricultural sector should be inevitably oriented toward an increasing level of 

capitalization. A higher level of capital per worker is indeed observed but this is above aJJ 

an effect of relative prices change rather than of technological change. 

According to these results, however, it is not easy to conclude if this kind of path 

is actually an optimal one. In other words, a labor using technical change can be due to the 

labor excess constraint itself Family farms may select innovations that allow to increase 

labor productivity, being not easy for family labor fo rce to be employed in other sectors. 

According to this scenario, the observed technological path is the only feasible, while 

potentially better technological solutions can't be actually afforded. 

Moreover, according to the exogeneity of innovations we assumed in our analysis, 

we could legitimately claim that this technological path is determined by voluntary choices 

of the institutional agents. In our hypothesis, they have under control the variables we 

considered as causes of technical change, and in particular R&D and Extension services. 

Some useful information about the institutional explanation of technical change can 

be derived from estimates of matrix I' . Both variations in spillover and extension stocks 

turn out to be not statistically significant. Therefore, their marginal impact on the Italian 

agricultural sector seems unclear. On the contrary, R&D and human capital stocks result 

to have a positive and significant marginal impact on the sectorial technological level. 
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These results suggest that R&D and agricultural worker education have been important 

growth factor in Italian agriculture during this period. 

Conventional information about production technology can be obtained by the 

estimates of µy and Bi . and by factor demand elasticities in tab.215
. Most of the price 

coefficients are statistically significant. The signs of direct price effects are correctly 

negative for materials, labor and capital, although not significant for the latter, while it 

turns out to be positive for land. However, it is not possible to check if this result is 

statistically relevant lacking an estimate of standard error for this parameter. 

Cross price coefficient estimates provide empirical evidence of complementarity 

between materials and capital, material and land, labor and land. Moreover, labor is 

substitute of both materials and capital. Therefore, the conventional alternative between an 

intensive use of a capital and materials and an intensive use of labor emerges. In this sense, 

our results seem to confirm what came out in previous analyses (Pierani and Rizzi, 1992; 

Gao and Reynolds, 1994). 

Some useful information can be obtained looking at elasticities (table 2). 

Compensated price elasticities are quite small with respect to output and technology 

elasticities. This would confirm that in the long run factors demands are only partially 

determined by evolution of relative prices. In particular, looking at the demand of labor, it 

results that marginal impact of technological change is the most important factor while 

output and relative prices have relatively small impacts. 

This result seems to be quite relevant in the explanation of the structural evolution 

of the Italian agriculture. In fact, the share of labor constantly decreased during this period 

having been substituted by materials and capital. According to our resu lts, this effect is 

entirely determined by the great increase in labor relative price (fig. 1 ), while technological 

bias is working on the other direction. Therefore, observed technological path worked in 

opposition to relative prices change controlling the progressive reduction of agricultural 

working force. Clearly, these results substantially reject the traditional hypothesis of 

induced innovation. 

15 Elasticities are calculated using sample averages of factor shares. 



14 

As shown in fig. I, relative price of labor increased during the entire period. If the 

induced innovation hypothesis was working for the case under study, we should observe a 

labor saving technical change. So, we can conclude that for Italian agriculture induced 

innovation hypothesis is inconsistent. Actually, other empirical evidence of the failure of 

the hypothesis can be found in the literature (Olmstead and Rhode, 1993). However, this 

is not entirely surprising. Induced innovation hypothesis requires precise conditions to 

work. On the market side, it requires the existence of active and competitive markets in 

which prices can effectively signal relative factors scarcity. In the case of Italian 

agriculture, increase of relative price of labor doesn ' t seem to be an effect of endogenous 

labor scarcity in the sector but the effect of exogenous forces16
. 

Moreover, even if markets correctly signaled relative scarcity, there should still be 

research and extension activities to provide innovations in the direction required. In our 

case, these activities are prevalently provided by public institutions. Therefore, it is 

essentially a political choice that determines the direction of innovative activities. 

Agricultural policies biased toward small family farms can indeed promote labor using 

innovations despite the market signaling. 

At the bottom of tab.1 we report some statistical indicators of the goodness of fit 

of the model (foreskog and So rbom, 1989; Bollen, 1989; Bollen and Long, 1993). First of 

all, the estimate of the variance of the error term e1 turns out to be significantly different 

from 0. Actually, this is an important result; it shows that we can' t substitute the latent 

variable with the indicator variable without introducing a bias due to measurement errors 

(Fuller, 1987). In other words, introducing TFP measure in the demand system would 

eventually give inconsistent estimates. 

The goodness of fit indices (GFI/ 7 provide information about the fit of the whole 

MIMIC model (that is (I 0) and ( 11 )). They can be considered the analogues of the R2 in 

16 Due to increasing Unions bargaining power and income distribution policies, the increase of labor 
price in Italy during the considered period was actually a generalized phenomenon involving all 
sectors not only agriculture. 
17 Goodness of fl t indices are obtained as complement to I of the ratio between the value of the Fitting 
Function of the specified model and the value obtained without assuming any a priori specification. 
The Adjusted index corrects for the degrees of freedom (J oreskog e S drbom, 1989). 
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the classical regression model. On the contrary, Squared Multiple Correlation for TFP 

and Total Coefficient of Determination of structural equations provide only partial 

information about the fit of the model; the former refers only to measurement equations 

(11), the latter to the system of structural equations (10). So they can signal what 

component of the MIMIC model more affects the GFI. It turns out that the variation of 

TFP seems to be not a very good proxy of unobserved technical change. However, it is 

still the best proxy that is available. After all, it is just the consciousness our proxies are 

not so good that makes the use of a latent variable model a sensible alternative. 

4.1. Technical change measurement 

The second part of the estimation procedure (see appendix 2) involves 

estimation of the latent variable 3 . In table 3 we present the results obtained with the 

MIMIC model in comparison with two measures of TFP growth: the traditional one 

and a corrected version (Pierani and Rizzi, 1994) indicated as TFPcorr18
. In fig.2 these 

three indexes are drawn and in table 4 subperiods averages are reported. 

As can be easily noticed, the MIMIC estimate of the rate of technical change 

shows interesting differences with respect to the TFP measures. In the MIMIC case, the 

yearly average rate in the period is about 3, l %; this measure is higher than the 

conventional ones (1,9% and 2,3% respectively). Therefore, according to our results we 

can conclude that traditional technical change measure through TFP growth rates tends to 

underestimate technical progress. 

However, the most interesting differences emerge considering the subperiod 

averages. In the MIMIC results a sort of cyclical behavior in the long term seems to 

emerge. We observe high technological growth rates in the sixties, clear slow down in the 

seventies and the highest rates in the eighties. This result for the last subperiod can be 

partially explained by the definitive substitution of traditional agricultural organization 

18 This TFPcorr is the variable actually employed as indicator of technical change in the MIMIC 
model. 
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with more rational and modem systems even in the backward regions of the country 

(Esposti and Pierani, 1995). 

As in analogous studies (Gao and Reynolds, 1994), the MIMIC measure of 

technical change seems to be more smooth and regular in the short run . This is, in fact, 

one of the properties of this method. Due to the explicit presence of measurement errors, 

the latent variable estimation can take into account variations in the indicator variables that 

are not related to technology (particularly in agriculture, short-run factors like weather 

and price shocks can affect TFP measurement). 

Being smoother in the short run, the MIMIC measure more clearly reveals the long 

run behavior of technology. As can be seen in fig.1, in the long run the MIMIC measure 

differs from a linear trend more than TFP measures. Therefore the latent variable approach 

seems to be a good solution whenever the research goal is to highlight long run behavior 

rather then short run shocks. 

5. Conclusions 

The model presented in this paper appeals to the latent variable concept to 

represent and measure technological growth in the Italian agricultural sector. It is 

presented as an alternative approach with respect to the traditional TFP measure. It allows 

to get a measure of technical change partially distinguished from productivity growth. 

Theoretically these two concepts are linked, being higher productivity the final outcome of 

a technical advance, but they can't be considered perfectly corresponding, as the 

traditional approach does. Technical change is a complex economic and institutional 

process and understanding this process is at least as important as measuring the final 

result. 

A MIMIC model turns out to be useful being able to satisfy both these 

requirements: representing the generation process and measuring technical change. Its 

estimation is quite straightforward and provides consistent estimates of the structural 

parameters. It is even quite flexible allowing for dynamic and endogenous specification of 
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the generation process. However, these alternatives have not been explored in this study. 

The empirical results provide some evidence of the positive impact of public R&D 

expenditure on the agricultural technological level. Also relevant seems to be the increase 

of human capital expressed by education level. 

The most interesting empirical result seems to be the role played by technical 

progress in the structural evolution of the sector. Being labor using, technical advance 

partially compensate for the tendency to substitute labor with capital and materials due to 

their relatively lower market prices. 

MIMJC quantification of technical change turns out to be different from the TFP 

measures that seem to underestimate technological advance. The behavior of different 

measures over time is itself quite different. MIMIC result reveals a cyclic behavior in the 

long run. Particularly intense is the technological growth that emerges in the eighties, 

probably caused by declining of traditional and inefficient agricultural systems. 

A latent variable approach provides more information on the causes of technical 

change and seems to guarantee a more reliable measure in the long run. However, even in 

these models TFP measures are still necessary as proxies. Moreover, TFP measures are 

still relatively easier and less computationally expensive. Essentially, the choice between 

these alternative approaches depends on the final objective of the research project. 
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Table 1 - Parameter estimates of the MIMIC model (standard errors in parenthesis) 

B 

... SM ~log(xM ) SL~l og(xL) SK~log(xK) 
~ 

0,0000 0,0000 0,0000 0,0000 
.::. 

SM~og(xM) -0,0765 0,0000 0,0000 0,0000 
(0,1756) 

SL~log(xL ) 0,8289*** 0,0000 0,0000 0,0000 
(0,2918) 

SK~log(xK) -0.2903 0,0000 0,0000 0,0000 
{0,1810) 

r 
T R I H ~aJpM/pT) ~aJpL/pT) ~aJpK/PT) 

-0,0364 0,3644** -0,0759 0,2909* 
.::. (0,141) (0,159) {0, 129) (0,149) 

SM ~log(xM ) 0,0000 0,0000 0,0000 0,0000 

SL~log(x L ) 0,0000 0,0000 0,0000 0,0000 

sKf1log(xK) 0,0000 0,0000 0,0000 0,0000 

e 19 

8 

&, &2 &3 &4 
0,0004*** 0.0000 0.0000 0.0000 
(0,000 1) 

Squared Multiple Correlation ofTFP 
Total Coefficient of Determination of structural equations 
Goodness of Fil Index 
Adjusted Goodness of Fit Index 

0,0000 

-0,0699*** 
(0,0 177) 

0,0927*** 
(0,0178) 

-0,0143** 
(0,0077) 

0,0000 

0,0927*** 
(0,0178) 

-0,0857*** 
(0,0232) 
0,0207** 
(0,0103) 

0,335 
0,842 
0,790 
0,389 

0,0000 

-0,0143** 
(0,0077) 
0.0207** 
(0,0104) 
-0,0 137 
(0,009) 

*, **, *** : parameters statistically different from zero respectively at 10%, 5%, I% significance level 

19 It is the estimate of the variance of error terms of the measurement equations. 

~aJq) 

0,0000 

0,6114*** 
(0, 1949) 
0,1194 

{0,2365) 
0,2645 

(0,2241) 
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Table. 2 - Compensated price, output and technological elasticities7° 

PM PL PK Pr Output 

Materials (M) -0,2947 0,3903 -0,0602 -0,0358 2,5750 

Labor (L) 0, 1878 -0,1736 0,0419 -0,056 1 0,2419 

Capital (C) -0,0688 0, 1000 -0,0659 0,0307 l ,2734 

Land (T) -0,1386 -0,4518 0,1190 0,47 13 0,0766 

Figure 1 - Relative prices of inputs 
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20 Elasticities with respect lo land are calculated obtaining land parameters from restrictions 
described in section 2. However, lacking estimates of their standard errors we can not have 
information about their statistical significance. 
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Table 3 - Technical change rates and technology indices: a comparison between different 

approaches 

Technical Change Rate Technology Index 

MIMIC TFP TFPcorr. MIMIC TFP TFPcorr. 

1960 - - - I I I 

1961 -0,0 144 0,0740 0,0 139 0,9855 1,0740 1,0 139 

1962 -0,0 151 -0,0 185 0,0058 0,9706 1,054 1 1,0 198 

1963 -0,0210 0,0096 0,0 191 0,950 1 1,0643 1,0393 

1964 0,0065 0,0760 0,0053 0,9564 I, 1451 1,0448 

1965 0,0387 0,0112 0,0292 0,9935 1, 1580 1,0753 

1966 0,0835 0,0175 0,0322 1,0765 1,1782 1,1099 

1967 0,0966 0,0557 0,0 164 1, 1805 1,2439 1,128 1 

1968 0,0885 -0,0 112 0,0298 1,2850 1,2299 1, 16 17 

1969 0,0595 0,0268 0,0002 1,3615 1,2629 1, 16 19 

1970 0,0375 0,0268 0,0 108 1,4 127 1,2967 1, 1745 

197 1 0,0243 0,0043 0,0206 1,4470 1,3023 1,1987 

1972 0,0299 -0,0594 0,0299 1,4903 1,2249 1,2345 

1973 0,0 158 0,0976 0,0345 1,5139 1,3445 1,2771 

1974 0,0027 -0,0027 -0,0 147 1,5 18 1 1,3409 1,2584 

1975 -0,0089 0,0333 0,0 138 1,5044 1,3855 1,2757 

1976 0,00 16 -0,0215 0,05 16 1,5069 1,3557 1,34 15 

1977 0,0 193 0,0035 0,0087 1,5360 1,3605 1,3532 

1978 0,0284 0,0296 0,0278 1,5797 1,4007 1,3908 

1979 0,0206 0,0372 0,0 155 1,6 123 1,4529 l ,41 24 

1980 0,0289 0,0304 0,0073 1,659 1 1,4970 1,4227 

198 1 0,0575 0,0084 0,0377 1,7546 1,5096 1,4763 

1982 0,06 14 -0,0026 0,0223 1,8623 1,5057 l ,5093 

1983 0,06 15 0,0905 0,0237 1,9769 1,64 19 1,5450 

1984 0,04 18 -0,045 1 0,0525 2,0598 l,5679 l ,626 1 

1985 0,0543 0,0109 0,0383 2, 17 17 l,5850 1,6884 

1986 0,0524 0,04 18 0,0256 2,2856 1,6512 1,73 17 

1987 0,0555 0,0284 0,0500 2,41 25 l ,698 1 1,8 182 

1988 0,0383 -0,0 110 -0,0243 2,5050 1,6794 1,7740 

1989 0,0256 0,0 193 0,0564 2,5692 1,7 119 1,874 1 

1990 0,0153 -0,00 15 0,024 1 2,6086 1,7093 1,9193 

199 1 0,0 113 0,0577 0,0580 2,6380 1,8079 2,0306 
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Table 4 - Technical change yearly averages by subperiods 

MIMIC TFP TFPcorr. 

1961-1991 0,0312 0,0193 0,0231 

1961-1971 0,0342 0,0243 0,0166 

1972-1981 0,0138 0,0149 0,0211 

1982-1991 0,0431 0,0165 0,0294 

Figure 2 - Technology Index in different approaches 
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Appendix 1 

A 1. Dickey-Fuller tests 

Variable DF Significance 

Level 

SM (Materials share) -0.5705 0.2259 

SL (Labor share) -3 .1732 0.1065 

SK (Capital share) -2.3309 0.2986 

Sr (Land share) -2.1948 0.3424 

log (q) -2.6189 0.2174 

log (xM) -1.8004 0.4862 

log (xL) -2.4134 0.2737 

log (xK) 1.4147 1.0000 

log (xr) -1.5250 0.5961 

log (PM) -0.8439 0.8535 

log (PL) -1.8968 0.4491 

log (pK) -2.2236 0.3329 

log (Pr) -1 .8695 0.4596 

R -0.3595 0.9717 

T 0.0454 1.0000 

I 0.4666 1.0000 

H 0.4991 1.0000 
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Appendix2 

In this appendix we briefly describe the estimation procedure we adopted. MIMIC model 
is a special case of the broader LISREL model A LISREL model is usually estimated appealing to 
the concept of implicit covariance matrix (Jo reskog and Sorbom, 1989; Bollen 1989). We follow a 
two-stages procedure: first we estimate structural parameters of the model (10)-(11); then, we 
employ a Bayesian estimator to estimate rates of technical change (Joreskog e Sorbom, 1989) 21

. 

The implicit covariance matrix approach differs substantially from the traditional 
estimation of linear equations. In this case we don 't look for parameters that minimize some 
function of the residuals, but we look for parameters that minimize the "difference" between the 
sample variance-covariance matrix of the observed variables and the covariance matrix implied by 
the specified model. Therefore the underlying hypothesis is that the covariance matrix is function 
of the parameters of the model. If the model was correctly specified and parameters were known, 
we could ex'Press the population covariance matrix as follows: 

(A.I) L = lf..B) 

where L is the covariance matrix at population level, ()is the vector of the parameters of the 

model and L( ()) is the covariance matrix expressed as function of the parameters of the specified 
model under the hypothesis the model is correct. 

More concretely, L matrix represents variances and covariances of the vectors of 

observed variables in the LISREL model (1)-(3), that is y e X . Therefore, lf..B) can be 

ex'Pressed as follows (Bollen, 1989): 

(A.2) 

In the MlMIC special case (A.2) becomes (Bollen , 1989): 

Ay(1-~t1 rsxx l 
sxx J 

where S xx is the covariance matrix of the exogenous variables X , 0 6 is the covariance matrix of 

the error terms e, 'I' is the covariance matrix of the error terms ~ . Expressed in this way, L matrix 
is the implicit covariance matrix of the MIMJC model. 
Therefore, under the hypothesis: 

L= L(8) 

21 More traditional estimation procedures for the MIMIC case can be found in Zellner (1970), 
Goldberger (1972), J6reskog and Goldberger (1975). A di.flerent estimation approach considers the 
MIMIC model a particular state-space model; so estimation is achieved applying the methodologies 
usually adopted in these cases (Watson and Engle, 1983). 
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we can estimate parameters looking for the values that minimize the "difference" between this 

l:( (}) matrix and the sample covariance matrix S actually observed. 
However, we need a criterion to define what we mean by ' difference" . This criterion is the 

so called Fitting Function (FF). It is a function of L(B) and S to minimize with respect to the 
parameters. Various FF s can apply; each of them g ives parameter estimates with different 
properties (Bollen, 1989). 1n our case, we use the maximum likelihood fitting function FM1. : its 
minimization gives maximum likelihood estimates of the parameters of the model22

. This function 
is expressed as follows (Anderson, 1989): 

where T is the number of observations. 
Once we get ML estimates of the parameters, we can move to the second stage of the 

estimation procedure, that is the estimation of the latent variable 3 . Again, the basic idea is to 
express this variable explicitly as a function of the parameters of tl1e model through its reduced 

form. Using the estimates previously obtained for these parameters, we can get 2 through tllis 
Bayesian estimator (Thompson, 1951 ; Gao and Reynolds, 1994)23

: 

From the 3 estimates we can easily obtain an index of the level of technology represented 

by 3 . This is j ust the cumulative index of the estimated annual ra tes of technical change. 

22 This approach requires multinormality assumption for the y and x variables (Bollen, 19 9). However this 
assumption can be partially relaxed (A nderson, 1989). 
13 This expression is not generally valid; ii is specific for the A/JMlC case and it is correct only for the 

estimation of the talent variable 3 , not of the entire T/ vector . 
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