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NONPARAMETRIC ANALYSIS OF PRODUCTION EFFICIENCY 

I- Introduction: 

Much research has focused on the economic analysis of technical and allocative efficiency 

in production. The analysis has fallen into two broad categories: parametric and nonparametric. 

The parametric approach relies on a parametric specification of the production function, cost 

function or profit function (e.g., Forsund et al.; Bauer). It provides a consistent framework for 

investigating econometrically the technical and allocative efficiency of firms. However, it requires 

imposing parametric restrictions on the technology and the distribution of the inefficiency terms 

(Bauer). Alternatively, the nonparametric approach has been developed following the work of 

Afriat, Hanoch and Rothschild, Diewert and Parkan, and Varian. It has the advantage of 

imposing no a priori restriction on the underlying technology (e.g., Seiford and Thrall; Fare et al.). 

Banker and Maindiratta proposed a nonparametric approach to the measurement of 

production efficiency. Their method is based on inner-bound and outer-bound representations of 

the underlying technology. For a given data set on production activities, the inner bound is 

obtained from data envelopment analysis (DEA) involving all the observations on inputs and 

outputs. The outer bound is obtained from a modification to the Afriat-V arian weak axiom of 

profit maximization (W APM) applied to a subset of data points found to be consistent with profit 

maximizing behavior. These bounds can provide a basis for estimating technical and allocative 

efficiency indexes for each observation. 

{Fi this paper, we evaluate the Banker-Maindiratta approach and propose an alternative 

method for nonparametric production efficiency analysis. We argue that the Banker-Maindiratta 

approach suffers from a fundamental asymmetry: under production inefficiencies, the number of 
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observations used to evaluate the upper-bound representation of the technology is smaller (and 

possibly much smaller) than the number of observations used to evaluate its inner-bound 

counterpart. This asymmetry can generate somewhat unrealistic representations of the 

technology. We propose an alternative nonparametric approach which does not suffer from this 

asymmetry problem. The method relies on the concept of "effective inputs and outputs", which 

can differ from actual inputs and outputs due to technical inefficiencies and/or technical change. 
__.J 

We define an "effective technology" corresponding to these effective quantities and use it as the 

reference technology in the evaluation of technical and allocative efficiency. The approach is 

illustrated in an empirical application to US agriculture. Based on those data, the Banker-

Maindiratta upper-bound estimate of the technology uses a single data point, generating a linear 

production frontier with infinite Allen elasticities of substitution. This appears to be a rather 

unrealistic representation of the real world. In contrast, our "effective technology" approach 

relies on all data points in the sample for both the inner-bound and outer-bound estimates. The 

empirical results from the two approaches are compared and contrasted. They both indicate the 

existence of a large gap between the upper-bound and lower-bound representations of the 

technology. This suggests that the data, together with production theory, may not be rich enough 

to provide a precise estimation of technology and production behavior. 

II- Nonparametric Production Analysis: 

This section reviews some key results on nonparametric analysis of production activities 

obtained by Afriat, Hanoch and Rothschild, Diewert and Parkan, and Varian. It also sets up the 

notation for the rest of the paper. Consider a competitive firm choosing (y, x) where y = (y1> ... , 
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y.J' ~ 0 is a (mx l) vector of outputs, and x = (x., .. ., xJ' ~ 0 is a (nx l) vector of inputs. We 

focus on a general multi-input multi-output joint technology represented by the feasible set F c 

R+mxR_0
, where (y, -x) E F. We assume throughout the paper that the production set Fis non

empty, convex and negative monotonic.1' 

Assume that the firm behaves in a way consistent with the profit maximization hypothesis. 

Let p = (p., .. . , p.J' > 0 denote the (mx 1) vector of output prices, and r = (r" ... , rJ' > 0 be the 

(nx l) vector of input prices. Then, the firm production decisions are made as follows: 

1t(p, r) = mIDCy,x {p'y - r'x : (y, -x) E F}, 

where 1t{p, r) is the indirect profit function. The solution to (1) gives the profit maximizing 

output supplies and input demand correspondences denoted by y·(p, r) and x°(p, r) . 

(1) 

Consider that the firm is observed malcing production decisions "C times. Let T be the set 

of these observations: T = { I, 2, ... , "C }. The t-th observation on production decisions is denoted 

by (y0 xJ, with corresponding prices (p,, r.), t ET. We define economic rationality for production 

decisions in terms of profit maximizing behavior as stated in equation (1). We will say that a 

production set F rationalizes the data {(yu Xi; p., xJ: t E T} ify, = y°(p0 r.) and Xi = x·(p., r.) , t E 

T. A key linkage between observable behavior and production theory is given next. 

Proposition 1: (Afiiat; Varian) 

The following conditions are equivalent: 

a) There exists a production set that rationalizes the data { (y., Xi; p" r.): t E T} 

according to (1) . 
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b) The data satisfy the Weak Axiom of Profit Maximization (W APM): 

p,'y, - r,·~ ~ p,'y. - r.'x.. t E T, s E T. 

Given (2), there exists a family of convex, negative monotonic production sets F that: 

- rationalizes the data in T according to (1), 

- satisfies Fe F c F°, where 

(2) 

F = {(y, -x): L ET y,6, :!> y; L ET "161 ~ x; L ET 6, =I; 6, ~ O; x ~ 0, y ~ 0},(3) 

and 

F° = {(y, -x): p1'y- r1'x s p1'y1 - r,'Xi, t ET; x ~ O; y ~ O} . (4) 

Proposition 1 establishes conditions for the existence of a production set that can 

rationalize observable production behavior. Equation (2) states that the t-th profit (p1'y1 - r/zj is 

at least as large as the profit that could have been obtained using any other observed production 

decision (p1'y1 - r1'x.), s E T. It gives necessary and sufficient conditions for the data { (y" ~; p0 r J: 

t E T} to be consistent with profit maximization (I). This is useful as a means of testing the 

relevance of production theory in particular situations. Perhaps more importantly, proposition 1 

provides a basis for recovering some representations of the underlying production technology. 

More specifically, it identifies a whole family of production sets that are consistent with the data 

and the profit maximization hypothesis. This family is bounded by Fin (3) and P0 in (4). 

Proposition I states that F; in (3) gives the tightest inner bound while P0 in (4) is the tightest outer 

bound representation of the underlying technology. These representations are of considerable 

interest since they are empirically tractable and provide all the information necessary to conduct 

production efficiency analysis. 
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ill- Production Efficiency: 

In this section, we provide a brief review of production efficiency analysis. We also 

review the Banker-Maindiratta nonparametric approach to efficiency analysis when not all data 

points are consistent with production theory. 

Technical Efficiency: 

First, the concept of technical efficiency relates to the question of whether a finn uses the 

best available technology in its production process. Following the work ofDebreu, Farrell, 

Farrell and Fieldhouse, and Fare et al. , technical efficiency can be defined as the minimal 

proportion by which a vector of inputs x can be rescaled while still producing outputs y.21 For a 

finn choosing the output-input vector (y, x), this corresponds to the Farrell technical efficiency 

index, TE: 

TE(y, x, F) = infk {k: (y, -kx) E F, k E R. }. (5) 

In general, 0 < TE ~ 1, where TE = 1 implies that the finn is producing on the production frontier 

and is said to be technically efficient. Alternatively, TE < 1 implies that the finn is not technically 

efficient. In this case, (1 - TE) is the largest proportional reduction in inputs x that can be 

achieved in the production of outputs y. Alternatively, (I - TE) can be written as [r'x - (TE) 

r'x)/(r'x), indicating that (I - TE) can be interpreted as the largest percentage cost saving that can 

be achieved by moving the finn toward the frontier isoquant through a radial rescaling of all 

inputs x. 
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Allocative Efficiency: 

Following Farrell, and Farrell and Fieldhouse, the concept of allocative efficiency is related 

to the ability of the firm to choose inputs in a cost minimizing way.ll It reflects whether a 

technically efficient firm produces at the lowest possible cost. For an observed choice (y, x), this 

generates the Farrell index of allocative efficiency, AE: 

AE(r ,y ,F) 
C(r ,y,F) 

(TE)r 'x 

Mini:{r 1x: (y ,-x) e F} 

(TE)r 'x 
(6) 

where C(r, y, F) is the cost function under technology F, and [(TE) x] is a technically efficient 

input vector from (5). In general, 0 < AE ~ 1, where AE = 1 corresponds to cost minimizing 

behavior where the firm is said to be allocatively efficient. Alternatively, AE < 1 implies allocative 

inefficiency. In this case, (1 - AE) measures the maximal proportion of cost the firm can save by 

behaving in a cost minimizing way. 

The two indexes TE in (5) and AE in (6) can be combined into an overall index, OE, as 

follows: 

OE = TE · AE = C(r, y, F)/(r'x), (7) 

where 0 < OE ~ 1. Then OE = 1 implies that the firm is both technically and allocatively efficient. 

Alternatively, OE < 1 indicates that the firm is not efficient, (1 - OE) measuring the proportional 

reduction in cost that the firm can achieve by becoming both technically and allocatively efficient. 
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Banker and Maindiratta's approach: 

The evaluation of the efficiency indexes just discussed require an empirically tractable 

representation of the underlying technology F. Nonparametric methods can be used for this 

purpose. However, the results presented in section II assume that all data points in T are 

consistent with the profit maximization hypothesis. When we allow for the possibility of 

production inefficiencies, this assumption may not be satisfied. Thus, there is a need to extend the 

nonparametric analysis reported in section II to generate a representation of the underlying 

technology F which does not assume that profit maximizing behavior is necessarily satisfied for all 

observations in T. Such an extension has been proposed by Banker and Maindiratta. In the 

situation where equation (2) is not satisfied for all s, t E T, Banker and Maindiratta proposed a 

method relying on the subset of data points that are consistent with profit maximization. This 

subset is given by: 

(8) 

Clearly, the criterion function 11, in (8) always satisfies 111 ~ 0 for all t E T. And 11, = 0 only if 

there does not exist any data point s E T such that p1'y1 - r,'Xi < p1'y1 - r,'Xs, i.e. such that equation 

(2) is violated. As a result, any observation in E ~ T is necessarily consistent with profit 

maximization with respect to all data points in T. For this reason, Banker and Maindiratta call E 

the "efficient subset" of T. Banker and Maindiratta obtained the following results. 

Proposition 2: (Banker and Maindiratta) 

Assuming that E is non-empty, the following conditions are equivalent: 
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a) There exists a production set that rationalizes the data {(y0 "1; p0 ri): t EE} 

according to (1), and satisfies (y0 -xJ E F for all t ET. 

b) The data satisfy the Weak Axiom of Profit Maximization (W APM): 

p1'y1 - r/"1 ~ p1'y1 - r1'x., t E E, s E T. 

Given (9), there exists a family of convex, negative monotonic production sets F that: 

- satisfies (y0 -xJ E F for all t E T, 

- rationalizes the data in E according to (I), 

- satisfies F c F c FE0
, where Fis given in (3) and 

FE0 = {(y, -x): p1
1y- r,'x ~ p1'y1 - r/"1, t EE; x ~ O; y ~ O} . 

(9) 

(10) 

Note that proposition 2 reduces to proposition 1 when E = T. Since we are interested in 

production inefficiencies, we focus here on the case where 0 c E c T, i.e. where Eis a non-empty 

proper subset of T. Clearly, the observations in E are consistent with profit maximizing behavior, 

implying that their efficiency cannot be refuted by the data. In contrast, the observations that are 

in T but not in E are inconsistent with profit maximization. Moreover, Fin (3) and FE0 in (10) 

can be used as inner bounds and outer bounds representations of the underlying technology F. In 

tum, such representations can be used to evaluate production efficiency indexes and provide 

useful insights on the nature and magnitude of the inefficiencies. 

This well defined approach proposed by Banker and Maindiratta has one drawback. 

Under production inefficiencies, the efficient subset E can be smaller than the set T. This means 

that the number of observations in E used to evaluate the outer-bound representation FE0 can be 

smaller (and possibly much smaller) than the number of observations in T used to evaluate its 
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inner-bound counterpart. This implies an asymmetry in the evaluation of the bounds on 

technology. This asymmetry could be fairly undesirable. For example, ifE were to consist of 

only a few data points, the associated technology FE 0 would have few kinks, implying a relatively 

flat production frontier. Although not inconsistent with production theory, such a representation 

of the real world may be somewhat unrealistic. This point will be further illustrated in an 

empirical application presented in section V below. This suggests a need to explore some 

alternative approach to nonparametric representations of technology under production 

inefficiencies. This is the topic of the next section. 

IV- An Alternative Approach: 

In this section, we propose an alternative approach to the estimation of bounds on 

technology. In contrast with the Banker-Maindiratta approach, our method relies on all sample 

observations for both the upper bound and the lower bound representations. As such, our 

approach does not suffer from the asymmetry problem just discussed. 

We propose a distinction between actual quantities (y1, xJ and "effective quantities" 

denoted by (Y0 XJ. This can be done through an "augmentation hypothesis" . Following Chavas 

and Cox, or Cox and Chavas, assume that actual and effective quantities are related through the 

functional relationships: 

Yit = Y(yi., ~J; j = I, ... , m, and X;, = X(X;0 BJ; i = I, ... , n; t ET, (11) 

where Yi(Yi• .), j = I , ... , m, and X;(X;, .), i = I , ... , n, are one-to-one increasing functions, and ~1 

and Bi, are technology indexes associated with the t-th observation. This states, intuitively, that 
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the technology indexes A and B can "augment" the actual quantities into effective quantities. 

Using ( 11 ), assume that problem (I) takes the form: 

n(p" r,, ~. BJ = mctXy,x [p.'y - r,'x : (Y(y, AJ, -X(x, BJ) E F], t E T, (12) 

where~ = (A1" •.• , A...J' is a (mx 1) parameter vector and B, = (B 11, ... , BnJ' is a (nx 1) parameter 

vector. The production technology Fin (12) is an "effective technology" expressed in terms of 

effective quantities: (Y., -XJ E F, Y, = (Y1" ..• , Y mJ' and X. = (X10 •. ., XiiJ' being vectors of 

effective quantities for the t-th observation with Yjt ~ Y(yi•• A;J and~.~ X(Xj,, BJ. 

The functions in (11), being one-to-one, can be inverted and expressed equivalently as: yjt 

= y(Yi., A;J, j = 1, .. ., m, and Xj, = x(~,, BiJ; i = 1, ... , n; t E T. Then, equation (12) can be 

alternatively written as: 

n(p,, r., ~ BJ = maxv x [p,'y(Y, AJ - r,'x(X, BJ: (Y, -X) E F], t E T. (12') 

Many specifications for the functions y(Y, A) and x(~, BJ are possible. Two of these 

specifications appear particularly appealing:il the scaling hypothesis corresponding to the 

multiplicative specification Yi = Y J A; and Xj = ~ Bi; and the translating hypothesis corresponding 

to the additive specification Yi = Yi - A; and Xj = ~+Bi. For simplicity, we will focus here on the 

translating hypothesis.ll Under translating, equation (12') becomes: 

n(p,,r.,~,BJ = maxvx [p,'(Y-AJ- r,'(X+BJ: (Y, -X) E F] 

= - p,'~ - r/B, + maxv x [p,'Y - r/X: (Y, -X) E F], ( 13) 
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fort ET. Equation (13) is a standard profit maximizing problem similar to (1), except that it 

involves the effective quantities (Y, X). The associated "augmented" Weak Axiom of Profit 

Maximization (corresponding to (2)) is: 

or 

Next, consider the following optimization problem: 

(14) 

(14') 

minA.8 [L1a (I,; <X;1 ~1 +Li Pit Bii): equation (14'); A ~ 0, B ~ O; Y1 ~ 0, ~ ~ 0, t E T], (15) 

where the <X and P are positive parameters.§' Note that the solution to (15) for the A's and B's is 

necessarily consistent with the WAPM conditions (14) or (14') . Obtaining this solution is 

straightforward since {15) is a standard linear programming problem. Using the solution from 

{15) for the A's and B's, we can obtain the corresponding effective quantities: Y1 = y1 + A, and ~ 

= Xi - B1, t E T . Since these effective quantities necessarily satisfy the W APM condition ( 14) for 

all s, t E T, it follows that all the results presented in proposition 1 apply with respect to the 

effective quantities (Y, -X) E Fe. And with A ~ 0 and B ~ 0 from (15), it follows that y1 s Y1 and 

Xi ~ ~. implying that (y., -xi) E Fe for all t E T. The "effective technology" Fe can thus be 

interpreted as the technology that is "as close to the data as possible" while satisfying W APM in 

( 14) for all data points. Substituting {Y, X) for (y, x), equation (3) gives an inner bound 

representation of the effective technology, P ;, while equation (4) gives its outer bound 

representation, Fc0
• Note that, in contrast to the Banker-Maindiratta approach, the evaluation of 
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the outer-bound representation F° uses all the data points in T. These inner and outer bounds can 

then be used to estimate production efficiency indexes. 

V- An Application: 

In this section, we illustrate the usefulness of the results presented above in the context of 

time series data on U.S. agriculture. The analysis uses the data developed by Capalbo and Vo on 

U.S. agriculture. It involves annual data covering the period 1948-1983 on the prices and 

quantities of agricultural outputs and inputs. Outputs consist of six categories: ( 1) small grains; 

(2) coarse grains; (3) field crops; (4) fruits; (5) vegetables; and (6) animal products. Inputs 

consist often categories: (1) family labor; (2) hired labor; (3) land; (4) structures; (5) other 

capital; (6) energy; (7) fertilizer; (8) pesticides; (9) feed and seed; and (10) miscellaneous. The 

quantity indexes are all equal to 1 in 1977. The price indexes are implicit prices defined such that 

price multiplied by quantity equals expenditure. 

The nonparametric methods discussed above are applied to this data set. The W APM 

condition (2) is evaluated for all data points. A number of data points are found to violate 

W APM in (2) . In this situation, we want to evaluate the bounds on technology. As discussed in 

section ill and IV, we consider two options: either working with the "efficient subset" E in (5), as 

proposed by Banker and Maindiratta; or using the "effective quantity" approach. 

In the context of the data set, we evaluate the efficient subset E given in (5) to find that E 

= { 1982}, i.e. that the 1982 data point is the only point which does not violate W APM in (2). 

This is due in large part to the high rate oftechnicaJ progress in U.S. agriculture (e.g ., Capalbo 

and Antle; Cox and Chavas). Indeed, technical progress expands the production set, which makes 

... 
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"older" data points appear technically inefficient and thus inconsistent with profit maximization 

based on a stable technology. In our case, the fact that the efficient set E consists of a single data 

point has strong implications for Banker and Maindiratta's approach. It implies that the boundary 

of the production set FE0 given in (10) is in fact linear in x and y. This means for example that the 

elasticities of substitution among any two inputs are infinite. This also means that the solution to 

the profit maximization problem (I) based on FE0 either is zero or it is unbounded.2' This suggests 

that the outer bound production set FE0 in (10) is "too flat" and does not give a realistic 

representation of U.S. agricultural technology. 

We evaluate indexes of technical efficiency (TE), allocative efficiency (AE) and overall 

efficiency (OE) at each data point. First, this is done following the Banker-Maindiratta 

representations of the technology.11 The estimate of TE at time t based on the inner-bound 

representation Fis obtained as TEi = TE(y0 x., F) from (5), where Fis given in (3). The estimate 

of OE at time t based on the inner-bound representation F is denoted by OEi, It is obtained from 

(7) after solving numerically for C(r1, Yu F) = mi11x [ r/x: (y" -x) E F], t ET. The corresponding 

allocative efficiency index AEi is then calculated as AEi = OEiffEi from (7).21 Estimates of 

technical, overall, and allocative efficiency indexes are similarly obtained based on the Banker

Maindiratta outer-bound representation of the technology FE0 given in (10). These indexes are 

denoted by TE0
, OE0

, and AE0
, respectively.lQI The results are reported in Table 1. 

Next, the efficiency indexes TE, AE and OE are estimated following the "effective 

quantity" approach proposed above. Under translating, the technology parameters A and B are 

obtained by solving equation (15) with exit = 1 and Pii = Lill Using the solution for A and B from 

( 15), the corresponding effective quantities are computed as: Y, = y1 + ~ and Xi = x. -B,. The A's 
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and B's measure the difference between actual quantities (y, x) and effective quantities (Y, X) and 

account for technical change and/or technical inefficiencies in U.S. agriculture over the last 

decades (Cox and Chavas). After substituting (Y, X) for (y, x), the inner bound representation of 

the effective technology, P 1
, is obtained from (3), while its outer bound representation, pco is 

obtained from ( 4). The associated technical, allocative and overall efficiency indexes are again 

estimated from (5), (6) and (7). They are denoted by TEci, AEci, and OEci when based on the 

inner-bound representation F, and by TEco, AEco, and OE00 when based on the outer-bound 

representation F .w The results are reported in Table 2. 

In comparing Table 1 with Table 2, the estimates of production efficiency indexes based 

on inner-bound representations of technology are fairly similar. The results based on F (using the 

Banker-Maindiratta approach reported in Table 1) or based on P (using the "effective 

.technology" approach reported in Table 2) indicate that most observations are either efficient or 

very close to being efficient. The lowest index of overall efficiency OEi in Table 1 is 0.967 for 

1951 and 1959. And the lowest index of overall efficiency OEci in Table 2 is 0.957 for 1978. 

Recall that these indexes can be interpreted as upper-bound estimates of overall efficiency indexes 

OE in (7). It follows that, using either approach, it is possible to interpret the data in such a way 

that the U.S. agricultural sector is subject to little technical and allocative inefficiencies during the 

sample period. 

This contrasts sharply with the production efficiency indexes based on outer-bound 

representations of technology. Indeed, the corresponding efficiency indexes take values that can 

be much smaller than one (see Tables 1 and 2). For example, the technical efficiency index TE0 

(based on the Banker-Maindiratta outer-bound representation FE0
) is as low as 0.656 in 1950 (see 

.. 

. I 
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Table 1). And the technical efficiency index TEco (based on the outer-bound representation of the 

effective technology Fco) is as low as 0.628 in 1949 (see Table 2). Recall that these indexes can 

be interpreted as lower-bound estimates of technical efficiency. This suggests that it is possible to 

interpret the data in such a way that the U.S. agricultural sector is subject to important technical 

inefficiencies and/or technical change during the sample period. This would be consistent with 

previous parametric evidence reporting a high rate of technical progress in U.S. agriculture over 

the last few decades (e.g., Antle and Capalbo). Note that, in the absence of technical inefficiency, 

our index TE in (5) becomes an input-based productivity index which uses Fas the reference 

technology (see Caves et al .) . Thus, if we were willing to assume away technical inefficiencies, 

the TE indexes reported in Tables 1 and 2 could be interpreted as productivity indexes measuring 

the rate of technical progress in U.S. agriculture. With this interpretation in mind, the indexes 

TE0 in Table l as well as TEco in Table 2 would suggest important and fairly steady technical 

progress in U.S. agriculture from 1948 to 1983. However, TEco tends to increase a little faster 

over time than TE0
• In other words, on average, the Banker-Maindiratta approach (reported in 

Table 1) would identify less technical inefficiencies and/or technical progress compared to the 

"effective technology" approach (reported in Table 2). 

The allocative efficiency (AE) and overall efficiency (OE) indexes based on outer bound 

representations of technology can also be much smaller than one. For example, the smallest value 

of0E0 (based on the Banker-Maindiratta outer-bound representation FE0
) is 0.083 for 1950 (see 

Table I). And the smallest value of OE co (based on the outer-bound representation of the 

effective technology Fco) is 0.118 for 1950 (see Table 2). Recall that these estimates can be 

interpreted as lower-bound estimates of overall efficiency. They suggest that it is possible to 

.__ _________________ - - - - -



16 

interpret the data in such a way that the U.S. agricultural sector has been subject to very large 

inefficiencies during the sample period. These measures show that large inefficiencies 

characterize the early part of the sample, and that such inefficiencies have been greatly reduced in 

the latter part of the sample (see Tables l and 2). They indicate that a large part of the overall 

inefficiencies are in fact alJocative inefficiencies. The allocative efficiency indexes AE0 in Table 1 

and AEco in Table 2 tend to rise over time. They are very low in the late 1940's and early 1950's 

and become close to one in the early l 980's.lll Also, the AE0 index in Table 1 starts lower and 

rises faster than AEco in Table 2. This indicates that the Banker-Maindiratta approach tends to 

find higher levels of alJocative inefficiencies that the "effective technology" approach. 

These results have some important implications. First, they indicate how the Banker

Maindiratta approach can differ from our proposed "effective technology" approach. Tables 1 

and 2 suggest that, compared the Banker-Maindiratta approach, our approach tends to give lower 

technical efficiency indexes, higher allocative efficiency indexes, and higher overall efficiency 

indexes. Second, these results indicate that, using either approach, the gap between the inner

bound and outer-bound representations of technology is guite large. This gap is illustrated by 

finding very little inefficiencies using the inner-bound representations of technology, while 

uncovering very large inefficiencies using the outer-bound representations of technology. This 

shows that these data (along with the theory) are unable to provide tight estimates of the 

underlying technology. In other words, there seems to be a fairly wide range of technologies that 

are consistent with the data and production theory. This suggests that, for a given data set, the 

production technology is largely underidentified: there are possibly many different representations 

of the underlying technology that are consistent with both the data and the theory. In this 
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context, empirical searches (e.g. through the parametric testing of alternative functional forms) for 

a "true technology" may be futile. The nonparametric bounds discussed here could help better 

assess the range of identification (or underidentification) of the underlying technology, and better 

evaluate the strength of the information that can be recovered from a particular data set. 

VI- Conclusion: 

After reviewing the Banker-Maindiratta approach to production efficiency analysis, this 

paper proposes an alternative nonparametric method to estimate inner bounds and outer bounds 

of a technology and their associated technical, allocative, and overall efficiency indexes. The 

proposed method relies on the characterization of an "effective technology". Compared the 

Banker-Maindiratta approach, it has the advantage of using all the data points in the estimation of 

both bounds. This was illustrated in an empirical application for which the Banker-Maindiratta 

approach generated an outer-bound representation that was deemed somewhat unrealistic. The 

empirical results from the two approaches were compared and contrasted. Compared to the 

Banker-Maindiratta approach, our "effective technology" approach tends to generate lower 

technical efficiency indexes, but higher allocative and overall efficiency indexes. Using either 

approach, the gap between the inner-bound and outer-bound representations of the technology is 

found to be quite large. This indicates an underidentification of the underlying technology, i.e. 

many possible representations of the production technology can be found to be consistent with 

both the data and the theory. Two important implications follow. First, based on those data, 

parametric attempts to find a single "true representation" of the technology are likely to be futil e. 

Second, it would be helpful to assess the range of identification of a technology that is possible 

...., 
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from a particular production data set. The nonparametric bounds discussed in this paper should 

help economists better assess this range, allowing them to become more aware of the strengths as 

well as limitations of their data, and to better evaluate their informational content. 

.. 
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Table 1- Production Efficiency Indexes: Banker-Maindiratta's Approach 

Technical Efficiency Allocative Efficiency Overall Efficiency 
TE' TE0 AE' AEO OE' OE0 

I 
1948 1.000 0.669 1.000 0.127 1.000 0.085 
1949 1.000 0.661 0.994 0.131 0.994 0.087 
1950 l.000 0.656 0.974 0.126 0.974 0.083 
1951 1.000 0.671 0.967 0.127 0.967 0.086 
1952 1.000 0.687 0.978 0.135 0.978 0.093 
1953 1.000 0.703 0.999 0.162 0.999 0.114 
1954 1.000 0.705 0.985 0.157 0.985 0.111 
1955 1.000 0.708 0.975 0.176 0.975 0.125 
1956 1.000 0.751 1.000 0.197 1.000 0.148 
1957 l.000 0.733 1.000 0.237 1.000 0.174 
1958 1.000 0.752 1.000 0.231 1.000 0.174 
1959 1.000 0.740 0.967 0.257 0.967 0.190 
1960 1.000 0.755 0.982 0.287 0.982 0.217 
1961 1.000 0.765 0.977 0.287 0.977 0.220 
1962 1.000 0.778 0.986 0.288 0.986 0.224 
1963 1.000 0.790 0.993 0.298 0.993 0.236 
1964 1.000 0.804 1.000 0.314 1.000 0.252 
1965 1.000 0.801 0.992 0.308 0.992 0.246 
1966 l.000 0.806 1.000 0.358 1.000 0.288 
1967 1.000 0.821 1.000 0.403 1.000 0.331 
1968 1.000 0.825 1.000 0.444 1.000 0.366 
1969 1.000 0.832 1.000 0.480 1.000 0.399 
1970 1.000 0.818 0.992 0.515 0.992 0.421 
1971 1.000 0.851 1.000 0.501 l.000 0.426 
1972 l.000 0.857 0.997 0.479 0.997 0.411 
1973 1.000 0.867 0.981 0.480 0.981 0.416 
1974 1.000 0.885 1.000 0.565 1.000 0.500 
1975 1.000 0.892 l.000 0.602 l.000 0.537 
1976 1.000 0.898 1.000 0.640 1.000 0.575 
1977 l.000 0.923 1.000 0.693 l.000 0.640 
1978 1.000 0.905 0.980 0.740 0.980 0.670 
1979 1.000 0.942 0.983 0.786 0.983 0.741 
1980 1.000 0.940 1.000 0.886 1.000 0.833 
1981 1.000 0.991 1.000 0.904 1.000 0.896 
1982 1.000 1.000 1.000 1.000 1.000 1.000 
1983 1.000 0.935 1.000 0.872 1.000 0.815 
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Table 2- Production Efficiency Indexes: "Effective Quantity" Approach 

Technical Efficiency Allocative Efficiency Overall Efficiency 
TE"; TE00 AE0

' 
AEOO OE0

' OE00 

1948 1.000 0.636 0.996 0.206 0.996 0.131 
1949 1.000 0.628 0.994 0.200 0.994 0.126 
1950 1.000 0.623 0.974 0.189 0.974 0.118 
1951 1.000 0.638 0.966 0.212 0.966 0.135 
1952 0.997 0.654 0.995 0.248 0.993 0.162 
1953 1.000 0.669 0.980 0.307 0.980 0.206 
1954 1.000 0.671 0.979 0.293 0.979 0.197 
1955 0.996 0.674 0.977 0.333 0.973 0.225 
1956 1.000 0.716 0.997 0.432 0.997 0.309 
1957 1.000 0.698 1.000 0.459 1.000 0.320 
1958 1.000 0.717 1.000 0.486 1.000 0.348 
1959 1.000 0.706 0.994 0.545 0.994 0.385 
1960 1.000 0.721 0.974 0.578 0.974 0.417 
1961 1.000 0.731 0.973 0.610 0.973 0.446 
1962 1.000 0.744 0.980 0.617 0.980 0.459 
1963 1.000 0.755 0.980 0.646 0.980 0.488 
1964 1.000 0.769 1.000 0.663 l.000 0.510 
1965 1.000 0.767 1.000 0.731 1.000 0.561 
1966 1.000 0.772 0.987 0.690 0.987 0.533 
1967 1.000 0.786 0.994 0.739 0.994 0,581 
1968 l.000 0.790 0.999 0.764 0.999 0.604 
1969 1.000 0.797 0.998 0.780 0.998 .0622 
1970 1.000 0.784 0.978 0.795 0.978 0.623 
1971 1.000 0.816 0.987 0.838 0.987 0.684 
1972 0.998 0.823 0.968 0.842 0.966 0.694 
1973 0.986 0.833 0.972 0.818 0.959 0.682 
1974 l.000 0.851 0.994 0.871 0.994 0.741 
1975 1.000 0.858 0.997 0.946 0.997 0.812 
1976 l.000 0.864 0.989 0.931 0.989 0.805 
1977 1.000 0.890 0.995 0.966 0.995 0.859 
1978 0.990 0.872 0.967 0.951 0.957 0.830 
1979 0.989 0.909 0.985 0.990 0.974 0.900 
1980 1.000 0.907 1.000 1.000 1.000 0.907 
1981 1.000 l.000 1.000 1.000 1.000 1.000 
1982 1.000 1.000 1.000 1.000 1.000 1.000 
1983 1.000 0.902 0.999 0.991 0.999 0.893 
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Footnotes 

1. The set F is said to be negative monotonic if z E F and z' !> z implies that z' E F. This is 
basically a "free disposal" assumption. 

2. Alternative measures of technical efficiency have been proposed in the literature. For example, 
an index of technical efficiency can be obtained by rescaling outputs instead of inputs (see Fare et 
al., chapter 4). Although input-based and output-based indexes of technical efficiency are 
identical under constant return to scale, they differ under variable return to scale (Fare et al. , p. 
132). More specifically, the input-based index of technical efficiency is lower (higher) than the 
corresponding output-based index under decreasing (increasing) returns to scale (Fare et al. , p. 
133). Also, Fare et al . have proposed analyzing technical efficiency without the "negative 
monotonicity" assumption (where our "strong disposability" assumption is replaced by a "weak 
disposabiJity" assumption). Finally, non-radial measures of technical efficiency have also been 
proposed (e.g., Fare et al., chapter 7) . 

3 . An alternative approach is to evaluate allocative efficiency in terms of profit maximizing 
behavior. This is the approach followed by Banker and Maindiratta, who proposed to define an 
allocative efficiency index in terms of a profit ratio (instead of a cost ratio as in equation (6)). 
Note that, in order to be meaningful, such an index requires profit to be positive, a condition that 
may not always be satisfied empirically. 

4. For example, see Pollak and Wales for the use of scaling and translating hypotheses in the 
context of consumer demand. 

5. In the context of scaling, equation ( 12') becomes: 
n(p.,r.,AuBi) = maxv,x [p/(Y/AJ - r/(X Bi): (Y, -X) E F] 

fort ET. The associated Weak Axiom of Profit Maximization is : 
p,'y, - ri':){1 ~ p/[Ys A/Ai] - r,'[Xs B/B,], s, t ET. 

Note that, in contrast with (14'), the above expression is nonlinear in A and B. This nonlinearity 
makes the scaling hypothesis a little more difficult to use empirically (compared to the translating 
hypothesis). This is the main reason why we focus our attention here on the translating 
hypothesis. 

6. The issue of the choice of the parameters a and P will discussed in the next section. 

7. Banker and Maindiratta proposed restricting the feasible set to fall within the range of the data. 
While this eliminates the possibility of finding unbounded solutions, it simply transforms the 
solution to problem (1) into a "bang-bang solution" which lies at the boundary of the data range. 
Note that such restrictions also tend to increase the estimated value of the efficiency indexes TE 
and OE. 

- - - ---- -----·- - - - - --- - - ----- --- - -------



8. In contrast with Banker and Maindiratta (who used profit ratios as efficiency indexes), we 
measure efficiency in terms of cost ratios as given in (5), (6) and (7). The reason is that, in our 
data, not all profits are positive, thus making profit ratios rather unattractive measures of 
efficiency. 

9. Note that TEi and OEi (both based on the inner bound representation F given in (3)) are 
upper-bound estimates of, respectively, technical efficiency and overall efficiency indexes. 
However, it does not follow that AEi = OEi!TEi is necessarily an upper-bound estimate of the 
allocative efficiency index. This is because the ratio of maxima is not necessarily the maximum of 
the ratio (see Banker and Maindiratta) . 

10. Note that TE0 and OE0 (based on the outer-bound representation of the technology FE0)can 
be interpreted as lower-bound estimates of technical and overall efficiency indexes, respectively. 

11. The choice for a and ~ was made on the basis that all output and input quantity indexes are 
equal to 1 for the year 1977. In other words, for that year, all agricultural inputs and outputs 
have the same index, thus making the corresponding A's and B's comparable. 

12. Again, TEci and OEci (based on the inner-bound representation of the effective technology P) 
can be interpreted as upper-bound estimates of technical and overall efficiency indexes, 
respectively. And TEco and OEco (based on the outer-bound representation of the effective 
technology Fco) can be interpreted as lower-bound estimates of technical and overall efficiency 
indexes, respectively. 

13 . Note that, in the context of technical progress, the rise in the allocative efficiency index over 
time is consistent with biased technical change in U.S. agriculture (e.g ., see Binswanger). Under 
biased technical change, the shift in the production frontier talces place in a non-homothetic way, 
which alters optimal factor proportions. Our estimated index of allocative efficiency could then 
simply reflect the changing optimal factor proportions over time, the index being higher (lower) 
for data points that are close to (far from) the reference technology. 

- -- -- - ---- --- - --- - - -------------


