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A Convolutions Approach to Measuring the Differences in Benefit Estimates 
from Dichotomous Choice Contingent Valuation Studies 

Dichotomous choice formats are now applied frequently in 
contingent valuation studies, but previously developed 
significance tests for differences in empirical distributions 
of benefit measures have either invoked normality assumptions 
or used non-overlapping confidence interval criteria. This 
paper demonstrates that such methods will generally not be 
appropriate, and develops an exact empirical test, based on 
the method of convolutions, for assessing the statistical 
significance between distributio ns of dichotomous choice 
contingent valuation welfare estimates. Application of the 
proposed convolutions approach is illustrated in a case study 
using two alternative techniques of generating empirical 
distributions from dichotomous choice data. 



A Convolution s Ap p r oach t o Measuring t he Differences in Benefit Estimates 
fro m Dichot omous Cho i ce Contingent Valuation Studies 

Intro du ction 

The dichotomous choice contingent valuation method (DC-CVM) has a 

number of widely dis cussed advantages over other contingent valuation 

elicitation tech n i ques such as payment cards, bidding games , and open 

e nded/direct questions [31, 9] . Most notabl y , the take- it-or- leave-it 

format of DC-CVM closely resembles decisions regularly made in the 

marketplace or voting booth, is easily incorporated into mail surveys, 

a nd is thought to impose less burden on respondents . This approach is 

i ncentive-compatible and may be less subject to strategic response than 

o ther elicitation methods [20 , 29]. 

One drawback of the dichotomous choice techni que is its relative 

inefficiency in collecting information about individual values [18 , 12]. 

A "Yes" or "No" to a dichotomous choice question merely provides an 

indication of the direction of the relationship between the hypothetical 

cost or ' bid' value and t he individual's true wil l ingness to pay. A 

"Yes" response, for example, indicates that the suggested cost is les s 

than the actual va l ue that the individual places on the project. 

Since willingness to pay is not directly elicited from each 

individual more complex statistical techniques are required to infer the 

a verage or total Hicksian surplus value . 1 Data generated by the 

d ichotomous choice technique are generally analyzed using qualitative 

r esponse models based on normal or logistic density functions. 

Estimates of the surplus value are recovered from the estimated 

p a rameters in the qualitative response model or by numerical 

integration. The p r ecision of these welfare estimates has , until 

r ecently, been largely u nk nown , a fact which h inders direct statisti cal 

comparisons of benefit estimates obtained using different populations or 

hypothetical scenarios. Such comparisons are essential to assessing the 

validity and reliability of the dichotomous choice method. The ability 

to statistically compare distributions would also be important to 



assessing the impact of information , embedding, intertemporal 

considerations and other factors on contingent values. Previously, 

analyses of these impacts have been relegated to other valuation 

techniques (e.g., 2, 8 , 23, 28). 

2 

As a proxy for variance estimates, early studies into the 

application and the validity of the dichotomous choice technique (e.g., 

3, 4) relied on traditional statistical tests of the estimated 

coefficients to provide an indicator of the robustness of their derived 

welfare measures [13]. Log likelihood ratio tests were used to test the 

hypothesis that the estimated coefficients were equal across elicitation 

methods and estimation techniques. This approach has some very obvious 

limitations. First, even with a single population or elicitation 

technique, goodness of fit statistics do not necessarily translate into 

precision of the welfare estimates2 • For example, a very 'flat' 

response function across bids may satisfy goodness of fit statistics but 

provide a willingness to pay estimate with a high coefficient of 

variation. Statistical differences across regression equations are also 

not sufficient to conclude that the equations will provide different 

estimates of willingness to pay. It is possible that two significantly 

different response functions, that are not stochastically dominant in 

the first degree, will provide the exact same estimate of willingness to 

pay. 

Taylor series or Delta Method approximations of variance 

circumvent some of the limitations associated with the above approach. 

However, it is questionable whether these approximations will 

appropriately characterize the distributions of many of the benefit 

measures which typically involve complex non-linear functions of 

parameters. Indeed, evidence from other studies suggest that the linear 

approximations of variance can provide biased estimates of the variance 

of functions of estimated parameters [25, 26] In addition, linear 

approximations can not be applied to estimators of mean willingness to 
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pay that do not have closed-form solutions (e.g., 10). 

Recently, Cameron (13] offered an alternative to these techniques 

by providing an analytical solution for the variance of median 

willingness to pay from logit and probit models (see also Kealy, 

Montgomery and Dovidio [24]). A caveat to this analytical approach is 

that the median, which equals the non-truncated mean for symmetrical 

distributions, is not universally accepted as a welfare measure among 

contingent valuation practitioners. Quite simply, the use of the median 

as a welfare measure is not consistent with Pareto efficiency (22, 18, 

19, 10, 15]. Moreover, it is not uncommon for median estimates to have 

negative values, a result that is somewhat "disturbing" and 

"unreasonable" for most resources [7]. 

Empirical 'simulation' techniques offer another method to 

estimating confidence intervals for welfare measures [27, 33, 25, 1, 

15]. In contrast to the Cameron approach these techniques are more 

universal in that they can be applied to any function of the parameters 

estimated in logit or probit models. Furthermore, empirical approaches 

are able to capture the non-linear nature of most welfare estimates and 

are equally applicable to welfare measures that do not have a closed­

form solution. While these methods are very computer intensive, they 

are becoming increasingly popular among contingent valuation 

practitioners. 

Although these empirical techniques have provided great insights 

into the distribution and precision of point estimates of welfare 

measures derived from DC-CVM, relatively little effort has been devoted 

to applying these methods to exploring the difference between 

distributions of welfare measures based on different samples or 

estimation techniques. The objective of this paper is to develop a 

statistical approach, based on the method of convolutions, that provides 

an exact estimate of the significance of the difference between two 

empirical distributions. This technique relies only on the empirical 



distributions already calculated in the estimat ion of confidence 

intervals of individual point estimates and therefore offers a ready 

extension of existing and future techniques of generating empirical 

distributions. 
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The remainder of the paper is organized as follows. To provide a 

beginning point for the analysis the second section briefly reviews and 

discusses empirical methods that have been previously applied to 

estimating confidence intervals for DC-CVM . The third section provides 

a critique of methods that have either been implicitly or explicitly 

suggested for comparing the empirical distributions of point estimates. 

The proposed convolutions approach to comparing empirical distributions 

of welfare estimates is developed in the fourth sect ion . This technique 

is applied in the fifth section to the evaluation of differences in 

willingness to pay for alternative water flow scenar ios for Grand Canyon 

white-water boaters. 

Me thods f or Appr oxi mating Empir i cal Di stributio ns 

Duffield and Patterson (DP) and Park, Loomis and Creel (PLC) have 

recently suggested two alternative techniques of estimating empirical 

distributions for benefit estimates from DC-CVM. While these techniques 

share the same phi l osophy of resampling, the two methods differ quite a 

bit in applicati on. The DP approach e mploys a monte- carlo or 

bootstrapping technique that samples from the estimated binomial 

distributions for each bid level to create a 'pseudo data set' for which 

new parameter coefficients a r e estimated. This process is repeated a 

large number of times to generate an approximate empirical distribution 

of the desired welfare measur es. PLC apply Krinsky and Ro bb's (KR) 

method that instead samples from the variance-covariance matrix to 

create approximate empirical distributions of welfare measures 

calculated from legit parameters. 

Some underlying concepts and notation need to be provided in order 
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to apply these models and to evaluate their differences. The 

dichotomous choice model presented here is motivated by a tolerance or 

expenditure difference approach which provides a basis for the DP 

analysis [12, 18, 19, 15) . Alternatively, as is presented in PLC, an 

indirect util i ty difference approach can also be invoked [18 , 30). To 

simplify this presentation the bid value is assumed throughout to be the 

only independent variable. 

An assumption underlying the tolerance approach is that each 

individual has a true maximum value that he or she places on a resource 

or proposed project . Let the distribution of this value for the 

population, which shall be represented by willingness to pay (WTP), be 

characterized by the cumulative density function G(A) where A is a 

continuum of dollar amounts. Within this framework, the probability of 

a "Yes", ~(A), response to a bid value , A, is given by 

n(A)=Pr(true WTP>A) 1-G(A) ( 1) 

Estimation of ~(A) (or G(A)) is accomplished by distributing bids 

A
1

, ••• ~ across l, ••• ,n individuals with ~n . For each individual a 

Yes/No response (r
0

) is obtained. This sampling strategy provides a 

data set of n observations (n, J\n 1 r
0
), from which ~(A) is estimated 

non-parametrically (as in Kristrom [27]) or parametrically by assuming 

some underlying distribution. Most commonly in DC- CVM the following 

standard logistic distribution is assumed 

n (A)= [l+e-<u•llAl] -1 (2) 

which produces estimates ~' ~' ;(A) and an estimated variance covariance 

matrix~. For notational convenience, let ft= [ ~ ~). 

In turn , ;(A) can be used to estimate desired welfare parameters. 

For example, mean willingness to pay in DC-CVM has been shown to be: 



E(WTP);Jrt(A)dA (3) 

0 

where Eis the expectation operator (19]. 

Within this framework, the DP approach to estimating an 

approximate empirical distribution involves three steps. 

1. 
. . 

U~ing a fandom number generator, a pseudo-response vector (£ = 

2. 

3. 

r 1 , • • • ,r
0

) is generated by letting r 1 , • •• ,r
0 

beAobservations from 
independent bernoulli distributions for each ~(~). 

• • IJ. • 
Reestimate equation (2) with£ to obtain~ and~ (A), and other 
desired values such as E(WTP) from equation (3). 

Repeat steps 1 and 2 a large number (8) of times to obtain an 
empirical distribution of the desired parameters. 

As such, the DP method is a monte-carlo approach. 

The KR simulation method is a resampling approach that uses the 

information on the distribution of the estimated coefficients provided 

in the variance-covariance matrix (L) to create an empirical 

distribution and confidence interval for a function of the estimated 

parameters. The essence of the approach, as applied to DC-CVM, is as 

follows. Assuming that the true parameter vector fl has a multinomial 
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normal distribution, N(fi,L), a series of random draws (B') is made from 
A 

the approximated distribution N(a,t). For each drawing, (~i), a new 

i(A) is estimated, along with other desired values such as E(WTP) from 

equation ( 3) . Empirical distributions of the desired estimates a·re 

generated using the complete set of random draws . PLC argue that this 

technique is relevant to DC-CVM because variance-covariance matrices of 

the maximum likelihood estimation methods typically used in estimating 

the coefficients in equation (2) have asymptotic multinomial normal 

properties3 • 

If we accept the estimates of fi and L and the multinomial no rmal 

distributional assumptions then an infinite number of draws should lead 



to the precise distribution of the desired function of the estimated 

parameters using the PLC technique. The same result is predicted for 

the DP method. In practice, however, a trade-off between accurate 

estimation of the empirical distribution and computational time is 

recognized, and B and B' are determined by the number of repetitions 

that provide stable endpoints for the confidence intervals. Both PLC 

and DP suggest that 1000 repetitions will provide a reasonably accurate 

measure of confidence intervals. 

7 

Once the distributions have been estimated, there are two possible 

avenues for approximating a (1-a) confidence interval. The first 

approach is to assume that the empirical distribution is normal and 

construct a standard two-sided confidence interval. As will be 

discussed later, this normality assumption maybe somewhat naive in many 

cases. A second 'percentile' based approach is to construct an 

approximate (l-a) confidence interval by dropping (B*a/2 or B'*a/2) 

observations from each tail. 

At this point in time, it is not clear which of these techniques 

is superior . Both have certain advantages and disadvantages. The 

advantage of the PLC approach is that coefficients are sampled directly, 

and, thus, it requires relatively little computing power to construct 

approximate empirical distributions . This contrasts with the DP method 

which requires reestimation of the coefficients for each replication, an 

important fact when iterative estimation processes do not converge 

rapidly. On the other hand, the PLC assumption that the variance­

covariance matrix is asymptotically multinomial normal distributed may 

not be relevant to estimates from small samples. 



8 

A Critique of Past Methods for Evaluating Differences in DC-CVM Welfare 

Estimates 

Given approximate distributions and confidence intervals for 

welfare estimates, the question arises about how to statistically 

compare these approximate distributions. Two techniques for comparing 

empirical distributions have been proposed in the literature. The 

first, as implicitly suggested by Krinsky and Robb, is that if the 

simulated distributions are approximately normal then classical 

statistical procedures for estimating differences can be applied. For 

instance, assuming equal and known standard errors (STDERR) for two 

normal distributions, the null hypothesis that the 'true' mean of the 

first distribution (µ1 ) is equal to the ' true' mean of the second 

distribution (µ2) is tested using the following difference formula, 

<x1-~> Z=-----
./2•STDERR 

-N(O,l) (4) 

where z is the test statistic, Xi are the sample means, and n is the 

number of observations [36, p. 101]. As noted, the z value has a 

standard normal distribution. In the framework of PLC and DP, the 

standard error of the mean is approximated by the estimated standard 

deviation of the empirical distribution of the mean estimate [15). 

Based on our experience with estimating mean welfare measures from 

logistic functions, empirical distributions are skewed, and these 

'approximately normal ' conditions do not hold. This observed asymmetry 

is especially true for estimators of mean willingness to pay such as 

equation (3) in which the range of integration is truncated at a lower 

bound of zero. More generally, there is little reason to assume that 

non-linear functions of normal parameters will approximate a normal 

distribution. 

PLC avoid this issue by employing a non-overlapping confidence 
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interval c riterion to evaluate differences in point estimates. That i s , 

the differences in mean willingness to pay acro ss estimations are judged 

to be statistically significant at the 5 percent level if their 

empirical 95 percent confidence intervals do not overlap. In general , 

the actual significance of this non-overlapping confidence interval 

approach will not correspond to the stated level of the test. This 

point is demonstrated most simply for normal distributions using the 

analytical solution presented in equation (4). Recall that for a single 

normal distribution the 95 percent confidence interval for the mean of 

an estimate is def·ined as Xi ± 1. 9600* (STDERR). Again assuming that the 

standard errors for both distributions are known and equal, this implies 

that the critical difference in means, (X1 - X2), associated with the 

non-overlapping 95 confidence intervals would have to be at least 3.9200 

standard errors apart before they would be judged to be significantly 

different. Making this substitution, equation (4) becomes 

Z = (3 . 9200 •STDERR) = 3 . 9200 =Z . 77 2 
,f'2*STDERR ,/2 

The e s timated z value of 2 . 772 corresponds t o a significanc e level 

(which shall be referred to as a') of 0 . 0048 rather than the stated 

value of a =0.054 • 

(5) 

Clearly the non-overlapping c o nfidence interval criterion given by 

(l-a) confidence intervals does not correspond to the a level of 

significance for the normal case . In general, a lack of correspondence 

between a and a ' is expected. For the nor~al distribution above, the 

significanc e level is understated (i . e . a>a') and the test is more 

conservative than indicated. The degree of this differe nce be twee n a 

and a' will depend upo n the shape of the empirical distributions that 

are be ing c ompared . 

--------------- - ---- - - - - -
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The Method of Convolutions 

Another alternative - one that accommodates any distributional 

form - is based on the method of convolutions. This method is a well 

established technique used in statistics and mathematics to evaluate the 

sum of distributions of random variables and series [17, 32]. 

Let X and Y be independent random variables, with respective 

probability density functions fx(x) and fy(Y) · Then, for all valu es of 

X and Y 

f(x,y) =fx(x) fy(y) (6) 

The sum Z = X+Y is a new random variable, and the probability of the 

event Z=z is defined as the union of all combinations of x and y which 

sum to z. For continuous functions this relation is given explicitly as 

(7) 

which is called the convolution formula [32, p . 186]. Using only the 

far right hand side of equation (7), the cumulative density f unction 

Fz(Z0
) of the sum of X and Y is 

~ z• • 

Fz(Z0
) = J fz(Z) dz= J J fx(z-y) fy(y) dydz (8) 

For empirical applications with discrete observations, the dimensions of 

equation (8) can be reduced substantially . If fy(y) =O or fx(z- y)=O 

then fz(z)=O also. This implies that the range of the first integrand 

can be bounded by the minimum of the ordered y vector and the value of y 

for which (z-y) falls below the empirical distribution of fx(x). These 

values shall be denoted infy and supy , respectively. Similarly the 

second i ntegral can be bounded from below by the minimum possible value 
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for X+Y, denoted here as infz. In this manner equation (6) can be 

restated for discrete observations obtained from simulation procedures 

as5 

(9) 

where Fz(Z0
), fx(x) and fy(Y) are discrete approximations of Fz(Z0

), 

fx(x) and fy(Y)· The incremental values for y and z are defined by the 

desired level of precision and computational power. 

This analysis can be extended to the difference between two 

empirical distributions (for example two distributions of mean values 

calculated using either the PLC or the KR methods) by using equation (9) 

with Y redefined as -Y. Alternatively, a difference variable V= X-Y can 

be defined such that 

fv(v) = fx_y(v) = J fy(x-v) fx(x) dx= J fx(v+y) fy(y) dy (10) 

Analogues for equations (8) and (9) are readily derived. 

The above equations can be directly applied to the information 

provided from the full PLC or DP empirical distributions. As in the PLC 

method, the distribution of the differences will generally not be known, 

and an empirical approach to estimating confidence intervals is 

necessary. The creation of (1-o) empirical confidence intervals for the 

convoluted values is subtly different from the PLC approach. For the 

percentile approach suggested in PLC and DP each simulated observation 

has equal probability, and a fixed number of observations (B*o/2 or 

B'*a/2) is dropped from each tail of the ranked empirical values. In 

contrast, the convoluted values will not necessarily have equal 

probabilities of occurrence , and the points of truncation must be 
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determined from the cumulative distribution functions for the 

convolution . Adopting a 'percentile approach' [16] the lower bound and 

upper bound of the confidence intervals are respectively defined as 

( 11) 

And, 

( 12 ) 

is the approximate (1-o) central confidence interval for z. 

Combining the principle of the two sided difference in means test 

with a percentile approach, the null hypothesis that the difference 

between Y and X equals zero is accepted at the o level of significance 

if the approximate (1-o) confidence interval includes zero and rejected 

otherwise. Alternatively, assuming that the distributions are ordered 

in a descending fashion, the approximate significance of the difference 

between distributions is determined by twice the value of the cumulative 

distribution function at the convoluted value of zero. 

Appli c atio n t o Grand Canyon White Water Rafting 

In this section the convolutions method is applied to evaluating 

the differences between four flow scenarios for commercial white water 

boaters in the Grand Canyon. In order to focus on the convolutions 

method, the model presented here is intentionally simplistic - only the 

bid value is included as an independent variable in the statistical 

analysis. More sophisticated models and a greater description of the 

study are presented in Bishop et al. [SJ, Bishop et al . [6) and Boyle, 

Welsh and Bishop [10) . 

The amount of water flowing in the Colorado river is controlled by 

releases from the Glen Canyon Dam . These flow levels , measured in cubic 



feet per second (cfs), have a direct and indirect effect on important 

trip attributes: 

"Time at attraction sights , such as Indian ruins and side 
canyons with pleasing scenery, and for layovers, depends on 
the speed of the current . The size and the number of rapids 
are affected by dam releases. Boaters, particularly those on 
commercial trips, enjoy fairly large rapids that depend on 
substantial flows . At relatively low flows and flood flows, 
passengers, particularly those on commercial oar powered 
trips, may have to walk around rapids. This is generally 
considered undesirable by passengers. Flood flows may raise 
concerns about safety in the minds of boaters. Some risk at 
rapids makes the trip more exciting, but higher flows (say 
40,000 cfs and above) may be perceived to be hazardous by 
many. The lack of crowding is also important to many boaters . 
High and flood flows can contribute to crowding at beaches and 
attraction sites by inundating beaches" (6, p. 11-12] 
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Apparently, somewhere between the abject terror and congestion of flood 

waters and the inconvenience and occasional dangers of low flows lies an 

optimal rate of release that maximizes recreation quality for each 

boater. 

Given the above considerations, the surplus value associated with 

each flow level can be defined implicitly by 

(13) 

where V(.) is the indirect utility function, Y is income, Hj is the 

Hicksian compensating surplus (willingness to pay), fj is the jth flow 

being evaluated, 1 indicates that the trip is taken, and 0 represents no 

trip. Because boaters only experience the flow level on their 

individual trip, it is important to note that the scenarios evaluated 

here are hypothetical and are based on descriptions provided in the 

valuation study (10). 

Using the linear formulation of the difference function individual 

logit equations were estimated to predict willingness to pay under four 

different scenarios -- 5,000 cfs, 13,000 cfs, 22,000 cfs and 40,000 cfs. 

Each respondent was asked to indicated whether a trip would have been 



worthwhile at various levels of expense. As presented in Table 1, the 

estimations are fairly robust. Individual parameters are all 

significant at the 5 percent level. 6 High x2 values for the equations 

also indicate that each equation is significant at this level. 

In addition, as demonstrated in Table 2, each of the estimated 

equations is significantly different from the estimates for the other 

three flow levels. Thus, we can conclude that written descriptions of 

trips taken at different flow levels do significantly affect the 

distribution of willingness to pay among commercial boaters . 
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Whether this leads to significant differences in Hicksian surplus 

is a different question, one that can only be answered by comparing 

distributions of willingness to pay estimates. Formally the hypothesis 

being tested is that 

where Hj and Hk are the Hicksian surpluses associated with different 

flow scenarios. 

(14) 

Estimated means and their distributions for each scenario were 

created using the following closed-form solution of equation (3) (19]. 

E(WTP) = p ln (l+e" ) (15) 

where o and p correspond to the coefficients defined in equation (2) . 

In calculating the empirical distributions, intervals for fiy and fiz were 

set at 1. Critical points on these distributions are presented in Table 

3 for both the PLC and DP methods. Evaluation of this table indicates 

four important aspects of these distributions that merit further 

discussion. First, as hypothesized, Hicksian surplus appears to be 

maximized at some intermediate flow level . Second, there is 

considerable overlap between most of the estimated distributions, which 
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indicates that statistical differences between equations may not 

necessarily translate into differences in willingness to pay. Third, as 

demonstrated by the high skewness coefficients in Table 3, most 

distributions are significantly skewed and apparently deviate from 

normality. As a result of this latter observation, classical difference 

tests based on normality assumptions are not relevant here. The only 

apparent exception to this generalization is found in the DF estimate 

for flow levels of 40,000 cfs. 

The fourth interesting aspect of Table 3 is that, in spite of the 

difference between methods, the PLC and DF resampling procedures provide 

remarkably similar estimates of means and medians. In this application 

the estimates across methods never deviate by more than 2.8 percent for 

the mean and 1.7 percent for the median. Although the differences 

between the upper and lower tails vary more widely across estimation 

methods, the different techniques again provide very similar estimates. 

On the other hand, it is interesting to note that the DP approach is 

less skewed across all flow scenarios. 

Using the convolutions method detailed in this paper for either 

the DP or the PLC approach, the null hypothesis is rejected for all 

pairs except 13 and 40 cfs. As demonstrated in Table 4, this is the 

only combination of flows for which the approximate 95 percent 

confidence interval for the difference includes zero. Alternatively 

stated, a is less than 5 for all other pairwise combinations . For the 

null hypothesis H13 = H40 the significance level is approximately 14.59 

for the PLC distribution and 13.47 using the DF approach7 • 

Thus, the application of either the PLC or the DP estimates 

results in the same rejection/acceptance conclusions at the 5 percent 

level in this example. Estimates of the exact significance are also 

reasonably similar, but do, however, deviate in a systematic manner with 

the DP approach providing slightly lower estimates of significance 

across all pairwise comparisons. As with the observation of relative 
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skewness made above, we do not know whether this is an anomaly of the 

data and estimation techniques used here or is an indication of 

underlying biases in the two approaches . For the moment, we assert that 

the deviation in estimates i s not large enough to merit concern. 

Summary a nd Co n c l usio ns 

Dichotomous choice formats are now applied frequently in 

contingent valuation studies, but previously developed significance 

tests for differences in empirical distributions of benefit measures 

have either invoked normality assumptions or used non-overlapping 

confidence interval criteria. This paper demonstrates that such methods 

will generally not be appropriate, and develops a exact empirical test, 

based on the method of convolutions, for assessing the statistical 

eignif icance between distributions of dichotomous choice contingent 

valuation welfare estimates. Application of the proposed convolutions 

approach is illustrated in a case study using two alternative techniques 

of generating empirical distributions from dichotomous choice data. 

Thie convolutions approach is not limited to the two methods of 

generating distributions applied in this paper. It is applicable to any 

method which generates empirical distributions. Moreover, the 

convolutions formula is not limited to dichotomous choice contingent 

valuation. The technique is very general and could be applied to any 

other parameter estimates for which empirical distributions are utilized 

and comparisons across distributions are desired. 
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NOTES: 

1. Here, the surplus measure is broadly interpreted to include all possible 
welfare measures suggested in the valuation literature. The intention is to 
abstract from the important debates over the mean versus the median, equivalent 
versus compensating variation and surplus, and willingness to pay and willingness 
to accept approaches. 

2. This point has been noted elsewhere for elasticities [14). 

3. Duffield and Patterson, citing Smith , Saven and Robertson, and Jennings, note 
that this assumption may not be valid for small samples. 

4. Conversely, equation (5) can be rearranged and solved for the difference 
between two means that corresponds to a non-overlapping confidence interval for 
a=0.05. Simple algebra and a critical value of 1.9600 indicate that the point 
where the two means is significantly different occurs when the means are 
approximately 2. 772 standard errors apart. At this distance, the non-overlapping 
two-sided confidence intervals only encompass approximately 87 percent of their 
respective distributions. 

5. Appendix 1 demonstrates this technique for simple distributions. 

6. Only the intercept term for 5, 000 cfs has what could be considered an 
unexpected sign. A plausible explanation for this negative coefficient is that 
hicksian surplus may be zero at low flows for many boaters. 

7. A different conclusion is reached if we apply the non-overlapping criteria 
advocated by PLC. Using their method we would conclude that only the estimated 
Hicksian values 13 and 22 cfs and 13 and 40 cf·s are not significantly different 
at the 5 percent level . The empirical confidence intervals for the differenc es 
between all other pairs do not overlap. Based on the previous discussion, this 
difference in acceptance/ rejection of the null hypo thesis H13 = H22 indicates 
t hat the use of the PLC criteria could actually lead to type II errors in policy 
relevant applications. 



TABLE 1 
Estimated Legit Equations for Different Flow Scenarios for 

Commercial White Water Boaters 

Conditions a·~ 5 CFS 

Intercept -0.5516 
(-2.1925) 

Bid Amount -0.0025 
(-4.1870) 

Model x2 28.1843 

McFadden R2 0.11 

N 297 

a 

b 
Asymtotic t-values in parentheses . 
to.05,295 = 1. 9600. 

13 CFS 22 CFS 

1.7978 1. 9752 
(5.8705) (5.8265) 

-0 .0040 -0.0035 
(-6.9497) (-6.6797) 

77.3268 60.7446 

0.19 0 .15 

297 297 

40 CFS 

0.9142 
(3.3095) 

-0.0030 
(-6.3404) 

58.7822 

0.16 

297 



TABLE 2 
x2 Values between Estimated Legit Equations for Different Flow Scenarios 

for Commercial White Water Bo atersa 

13 CFS 22 CFS 40 CFS 

5 CFS 74.84 96.89 34.57 

13 CFS 6 . 03 6.00 

22 CFS 18 . 10 

a x2 0.05,2 5.99 . 



TABLE 3 
Empirical Willingnes to Pay for Different Flow Scenarios Based on 1000 Draws 

Calcualated Based on 1000 Draws 

Flow from 

in Parameter 
Lower Tail Median Upper Tail Skewness 

1,000s Method Means Mean 5% 5% 

5 CFS KR/PLC 181 189 139 184 261 0.99 

DP 184 135 181 252 0.59 

13 CFS KR/PLC 485 489 433 486 558 0.45 

DP 488 428 486 553 0.21 

22 CFS KR/PLC 604 607 543 605 680 0 . 45 

DP 605 538 604 681 0 . 27 

40 CFS KR/PLC 415 419 353 417 497 0.40 

DP 416 346 415 488 0 . 07 

a 9o.Ol,lOOO = 0.180 (Table 34b; Tables for Statisticians and Biometricians ) . 

b KR/PLC refers to the Krinsky and Robb and Park, Loomis and Creel Technique. 
DP refers to the "bootstrap" method developed in Duffield and Patterson . 



TABLE 4 
Approximate 95 Percent Conidence Intervals and Significance Levels between 

Mean Willingness to Pay Estimates for Different Flow Scenarios 
for Commercial White Water Boaters Using KR/PLC Empirical Distributionsa,b 

5 CFS 

13 CFS 

22 CFS 

13 CFS 

[207,387] 
0 . 0000 

22 CFS 

[321,508] 
0.0000 

(23,211] 
1. 6526 

40 CFS 

[130 , 324] 
0 . 2180 

(-27,167] 
14.5910 

[87,288] 
0 . 0824 

a The set of numbers in the brackets corresponds to the approximate 
95 percent confidence interval associa ted with equation (10) 
in the text . 

b The numbers below the brackets indicates the approximate two­
sided significance level (a) evaluated at O. If a < 5 then 
the estimates are significantly differ ent at the 5 percent 
level. 



TABLE 5 
Approximate 95 Percent Conidence Intervals and Significance Levels between 

Mean Willingness to Pay Estimates for Different Flow Scenarios 
for Commercial White Water Boaters Using DP Empirical Distributionsa,b 

5 CFS 

13 CFS 

22 CFS 

13 CFS 

[215,387] 
0.0000 

22 CFS 

[330, 511) 
0.0000 

[25 , 210] 
1. 2088 

40 CFS 

[139,321] 
0.0000 

[-22,163] 
13. 4678 

[93,287] 
0.0002 

a The set of numbers in the brackets corresponds to the approximate 
95 percent confidence interval associated with equation (10) 
in the text. 

b The numbers below the brackets indicates the approximate two ­
sided significance level {a) evaluated at 0. If a < 5 then 
the estimates are significantly different at the 5 percent 
l evel. 



APPENDIX 1 
Demonstration of the Convolutions Approach using Simple Distributions 

Using simple distributions , this appendix provides an demonstration of the 

discrete convolution formula presented in equation (9) and the suggested 

statistical test for estimating the significance of the difference between two 

simple empirical distributions. Recall that equation (9) was specified as, 

where all parameters are defined in the text. 

( 9' ) 

Suppose that we are interested in evaluating the difference between the two 

following empirical distributions 

fx C. > fy ( . ) 

0 0 .OS 
1 0 • 3 
2 .1 .6 
3 .4 .OS 
4 .4 0 
s .1 0 

As noted in the text, equation (9), which is the additive form, can be used to 

generate a distribution of the difference between two empirical distributions by 

redefining Y as -Y. This redefinition yields 

fx (. ) fy (. ) 

-3 0 . OS 
-2 0 • 6 
-1 0 .3 

0 0 .OS 
1 0 0 
2 . 1 0 
3 .4 0 
4 .4 0 
s .1 0 



APPENDIX 1 (cont.) 

With this redefinition, the convolution formula results in the following 

distributions of the difference between the two distributions. 

Fz(-2)= .000 

fz(-1) = fx ( 2) fy (-3) .005 Fz(-1)= .005 

(l)(.05) 

fz(O) fx(2)fy(-2) + fx(3)fy(-3) = .080 Fz(O) = .085 

(.1)(.6) + ( . 4) ( . 05) 

fz(l) fx(2)fy(-1) + fx(3)fy(-2) + fx(4)fy(-3) .290 Fz(l) .375 

(.1)(.3) + (.4)(.6) + (.4)(.05) 

fz(2) = fx(2)fy(O) + fx(3)fy(_-l) + fx(4)fy(-2) +fx(5)fy(-3) = .370 Fz(2) .745 

( . 1) ( . 05) + (.4)(.3) + . (.4)(.6) + (.1)(.05) 

fz(3) fx(3)fy(O) + fx(4)fy(-l) + fx(5)fy(-2) .200 Fz(3) .945 

(.4)(.05) + (.4)(.3) + (.1)(.6) 

fz(4) = fx(4)fy(O) + fx(5)fy(-l) = .050 Fz(4) = .995 

( . 4) ( • 05) + (.1)(.3) 

fz(5) fx(5)fy(O) = .005 Fz(5) 1.000 

(.1)(.05) 

The significance of the differences between distributions is 0.085 , as 

demonstrated by Fz(O) on the above table. 



APPENDIX 2 
comparison of Convolutions Formula and Analytical Difference Between Means 

For validation purposes, this appendix demonstrates that the convolutions approach 

closely approximates the analytical solution for the differences in means. Recall 

that, for distributions with equal variance, the analytical solution for the 

difference in means is given by: 

z-__ x_1 -_x_2 __ 
1'2* (o/./ii) ,/2•STDERR 

-N(0,1) 

where z is the test statistic, Xi are the sample means, n is the number of 

observations, u is the standard deviation of the distribution, and STDERR is the 

associated standard error of the mean [Snedecor and Cochrane, 101). 

Suppose now that we are interested in comparing the means of two 

distributions with the following characteristi~s 

y 
x 

n 
1000 
1000 

x 
12 
12.75 

a 
10 
10 

Using the analytical formula presented above, yields 

Z= (12 . 75 - 12) •l . 677 
,/2•0.316 

STD ERR 
0.316 
0.316 

The test statistic 1.677 corresponds to a two tailed significance level of 0.0936. 

Alternatively , using the discrete convolutions formula presented in 

equation (9) with increments set at 0.01 provides a two tailed significance level 

of 0.098. The small difference between the analytical significance and the 

empirical significance calculated here is due to the random nature of the draws 

and the discreetness of the approach. 
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