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Abstract

This paper demonstrates the existence of a unique solution of the PMP problem when
both observed output quantities and limiting input prices are taken as calibrating
benchmarks. This version of PMP avoids the use of a user-determined small positive
number € originally introduced for guaranteeing that the dual (shadow) price of binding
input constraints be positive. Furthermore, the paper shows how to obtain endogenous
output supply and input demand elasticities that match available information about them
in the form of previously estimated parameters for an entire region or sector. The
framework is applied to a sample of farms also for the case that admits no production for
some of the crop activities. The calibrating solution is very close to the observed values
of output quantities and input prices. The calibrating model does not use the matrix of
fixed technical coefficient and reproduces identical calibrating solutions.
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PMP and Uniqueness of the Calibrating Solution - Revision

1. Introduction
This paper proposes an approach to Positive Mathematical Programming (PMP) that
guarantees the uniqueness of the calibrating solution. This result relies upon the use of all
the available information, including prices of limiting. To exemplify, a large list of PMP
empirical studies has been restricted to one limiting constraint, namely land. Yet, the
available price of land (at either a regional or local level) has not been part of a
calibrating relation. This is the starting point of the paper. Toward the goal of dealing
also with calibrating input prices we discuss first the PMP approach as understood to date.
The original formulation of the PMP methodology (Howitt, 1995a, 1995b) was
based upon the estimation of the marginal cost associated with the observed production
plan (or the difference between known per-output unit accounting cost and effective
economic marginal cost). Phase I of this model took the following specification (Howitt,

1995a, p. 151):

Primal maxTNR = p’x—¢'x (1)
subject to Ax<b structural constraints 2)
X<X+€& calibration constraints 3)

and x>0, where A is a matrix of technical coefficients of dimensions (m X n,m < n)
and all the other vectors are conformable to it. In particular, X >0 is a vector of realized
and observed levels of outputs whose utilization qualifies the positive feature of the PMP
model. Vector b refers to limited input supplies. In the case of input land, the technical

coefficients of the A matrix are computed by dividing the number of acres allocated to a



crop by the realized and observed crop production, that is, acres; /)_cij = Al.j . Then,

J . . .
b = Zj:l acres;; . Vectors p and ¢ represent market output prices and unit accounting

costs, respectively. The parameter vector € is composed of small, positive (user-
determined) numbers whose role is to guarantee that the dual variables of the binding
structural constraints achieve a positive value. In Howitt’s words (1995a, p. 151): “The €
perturbation on the calibration constraints decouples the true resource constraints from
the calibration constraints and ensures that the dual values on the allocable resources
represent the marginal values of the resource constraints.” With these stipulations, the
dual of model (1)-(3) is stated as

Dual min7C =b’y+ A [X+ €] 4

subject to Ay+A+ec2p (5)

with y >0,A >0, where yrepresents the (m x1) vector of shadow prices of the structural
constraints and the (nx1) vector A represents the shadow prices of the calibration

constraints. In the dual constraints (5) there are n constraints and (m + n) variables (at the

optimal primal solution X", relation (5) is satisfied with the equality sign given that
x =X+¢&>0 and complementary slackness conditions). Hence, in this specification, the
PMP model is underdetermined (ill posed) because it admits an infinite number of (y,A)

solutions. This is the reason why the parameter € is introduced in model (1)-(3) in order

to elicit a dual solution with positive values of the shadow price y of the binding

structural constraints. This means that at least m components of the vector A assume a

zero value.



Another criticism of the original PMP approach regards the specification of the
calibration constraints. Why is the solution vector x of model (1)-(3) stated as less-than-
or-equal to the observed vector of output levels (X + €) in the calibration constraints (3)?
The answer was (is): to guarantee a nonnegative dual vector of shadow prices A .
Admittedly, this is an unsatisfactory answer. Given that vector X represents observed (by
the econometrician) output levels that are realized by the producer in a previous
economic cycle, the measured X may contain some measurement error that either
overstates or understates the level of the production plan consistent with the technical and
economic information of a given producer. A more plausible specification of the
calibration constraints, therefore, may be x=X+h, where h is a conformable vector of
unrestricted deviations from X.

Furthermore, a measure of the limiting input price vector y may be available at

either a regional or more local level. For example, the price of agricultural land is surely
available, either by region or by area. The estimate may not be fitting every single
individual farm but it can be assumed that it will fall within a reasonable range of the
actual optimal land value of this farm as obtained by solving model (1)-(3). If the
information on land price and other important limiting inputs is available, it should be
used in a PMP approach in order to avoid violating the principal tenet of the
methodology: all the available information should be used. Also in this case, therefore, it

seems plausible to state a calibration constraint for the dual variable vector as y=y+u,
where u is a conformable vector of unrestricted deviations from y .

Within this novel PMP framework, the notion of a calibrating solution assumes a

different structure from the original formulation of model (1)-(3). In that model, a



calibrating solution achieves the obvious values as X = X+ €& . Many critics of PMP have
objected that this equation represents a tautology. In fact, the equality between the

optimal solution of model (1)-(3) and the vector of observed output levels is achieved
because the — presumably — available information on the limiting input-price side is
ignored. With the more general specification of the calibration constraints in the form of
x=X+h andy =y +u, a calibrating solution (x',y’) will not, in general, be
tautologically equal to(X,¥) . But it can be arranged to make the solution (x’,y") as close
as possible to the observed quantities and prices, given the structure of the problem. This
approach resembles an econometric estimation where the goal is to minimize the

residuals of a system of regressions. An objective of this novel phase I PMP methodology,

therefore, is to make deviations (h,u) as small as possible.

2. The Use of X and y in PMP
To justify the structure of the novel phase I PMP model we begin with two preliminary
analyses. First, suppose that a preliminary phase I of the PMP methodology is concerned

with solving the following problem

maxTNR = p’x—¢'x (6)
subject to AX<b dual variables y (7)
x=X+h dual variables A (8)

with x>0 and h free. Furthermore, we wish to minimize the sum of squared deviations,
h’'Wh /2 , as in a weighted least-squares approach. The W matrix is diagonal with

elements p;> 0 on the main diagonal, j=1,...,n. The effective objective function,

therefore, will be expressed as an auxiliary function such as



max AUX = p’x—c¢’x—h’Wh/2. The purpose of the weight matrix W is to measure each

component of the auxiliary objective function in dollars. Forming the Lagrange function

and assembling the corresponding first-order-necessary conditions (FONC) will give

L=p’x—c¢x—h'Wh/2+y’[b- Ax]+ A [X+h—x] )
a—L:p—A’y—k—cSO (10)
ox
oL
—=-Wh+A=0. 11
oh " (1)

From relation (11), A = Wh and, thus, relation (10) can be reformulated as

Ay+Wh>p-c. (12)
Relation (11) represents a case of self duality, where a dual variable is equal (up to a
scalar) to a primal variable.

Analogously, let us consider the following problem

min7C = b’y (13)
subject to Ay>2p-c dual variables x (14)
y=y+u dual variables (15)

with y 20 and u free. Again, we wish to minimize the sum of squared deviations,

u'Vu /2, as in a weighted least-squares approach. The matrix V is diagonal with

elements b, /y, >0 on the main diagonal, i =1,...,m . The effective objective function,
then, will be expressed as an auxiliary function such as minAUX2 =b’y+u’Vu’/2 . The

purpose of the V' matrix is to render homogeneous the units of measurement of all the

terms in the objective function and to scale the deviations u according to the size of the



input constraints. Forming the Lagrange function and assembling the corresponding

FONC:s give
L' =by+uVu/2+x[Ay+c—pl+y[y-y—u] (16)
a—L:b—Ax+\|!20 (17)
dy
a—L:Vu—\|.f:0. (18)
Ju

From the self-dual relation (18), W = Vu and, thus, relation (17) can be reformulated as
Ax<b+Vu. (19)
This discussion leads to a specification of a phase I PMP model that combines the
duality relations of a LP problem together with the least-squares necessary conditions
involving deviations h and u. Combining constraints (12) and (19) with the calibration
relations (8) and (15), we can write the relevant phase I PMP model as the problem of

finding nonnegative vectors X 20,y 20 and unrestricted vectors h and u such that

Ax<b+Vu dual variables y (20)
A'y+Wh+c>p dual variables x (21)
x=X+h dual variables Wh (22)
y=y+u dual variables Vu (23)

together with the associated complementary slackness conditions. This PMP approach
avoids using the user-determined parameter € .

3. Solution Uniqueness of the phase I PMP model

A least-squares (LS) solution is unique if and only if the matrix of “explanatory”

variables has full rank. To verify this crucial condition in relation to model (20)-(23) we



assume that vectors X and y have all positive components and that, largely for this
reason, X >0 and y >0 (this assumption will be relaxed in section 8). This implies — via
complementary slackness conditions associated to relations (20)-(23) — that
Ax=b+Vu (24)
Ay+Wh=p-c. (25)
Substituting constraints (22) and (23) into (24) and (25), and rearranging terms, we obtain
—Vu+Ah=b- AX (26)
Au+Wh=p-Ay-c (27)

and in matrix notation
-V A u _ b — AX
A W || h p-Ay-c (28)

The matrix M is of full rank because the nonsingular weight matrices V and W are on

the main diagonal. Hence, the least-squares solution @ and h is unique. It follows that

the solution X and y of model (20)-(23) is also unique. Given the structure of the M

matrix, an inverse of M exists even if the A matrix is not of full rank.

The explicit, least-squares solution of (28) is

(29)

1
= =

~ ~(V+AW'AY" VAUAV'A+W)! b — AX
WA (V+AWTAY (AVTA+W) p-Ay-c |

The optimal and calibrating LS levels of the primal and dual variables x and y, then, are
obtained as a simple addition according to the specification given in constraints (22) and

(23) with x=X+h and §=y+1.



4. Phase II: Specification of a General Cost Function

Phase II of a PMP approach deals with the estimation of marginal cost and input demand
functions to be used in a calibrating model for the analysis of various policy scenarios.
Following economic theory, we postulate that the total cost function of interest takes on

the following symmetric and extended Leontief specification:

C(x,y) = (gY)E%) +(€y)X'0x/2+(EX)(y" Y Gy’] (30)
where the (n X n)matrix Q is symmetric and positive definite, the (m X m) matrix G is
symmetric and negative semidefinite (a cost function is concave in input prices), the
components of vector f and vector g are free to take on any value. We require that
fx>0 and g’y >0 . From theory, a cost function is homogeneous of degree one in input

prices. This requirement drives to a large extent the specification of the symmetric cost

function presented in relation (30). The vector of output marginal costs is stated as

X

aoC , , , ,
MC, = = EVf +(@EY)0Ox+f[(y"”)YGy”1=Ay+Wh+c €29
while, by Shephard lemma, the vector of demand functions for inputs is stated as

g—i = (fx)g+g(xX'0x)/2+(FX)A(y *) Gy = Ax (32)

2

where the matrix A(y™"*) is diagonal with terms y;"* on the main diagonal.

The vector of output supply functions comes from relation (31) by equating it to

the vector of market output prices, p , and inverting the marginal cost function to obtain

x=-0 f-Q f[(y"*YGy"1/(gy)+[1/(gy)I0'p (33)
that leads to the supply elasticity matrix

a 1 -1 -1 ’
== A(p)[ﬁ}A(X )=A(P)QAXT)/(gy) (34)



where matrices A(p) and A(x™') are diagonal with elements p ; and x]’.1 , respectively, on

the main diagonals. Relation (34) includes all the own- and cross-price elasticities for all
the output commodities admitted in the model.

The demand elasticities of limiting inputs can be easily measured from the input
demand functions of relation (32). Suppose two limiting inputs form the structural
constraints of the model. Then, the portion of the demand function that involves input

prices can be stated as

b, +u, =K, +(fx)[G,, +y, "Gy}’ ]

172 172 (35)
by +u, =K, +(f%)[Gy + 3Gy, ]
where K, and K, do not involve input prices. The (2 X 2) matrix of derivatives of the

demand functions results in

b +u) b, +u) |
T . —lyf G,y lyf "Gy,

Y, ¥, | 2 2 % G6)
Ab, +u,) b, +u,)

1 _ _ 1 _
dy, . Eyl 1/2G12y21/2 _EylmGlz)’zm

This means that with only one limiting input, its demand elasticity will be equal to zero

(as in a Leontief fixed coefficient specification) since the term G,, drops out of the

derivative in (36). In a Leontief cost function, inputs are substitutes.

5. Exogenous and Disaggregated Output Supply Elasticities

PMP has been applied frequently to analyze farmers’ behavior to changes in agricultural
policies. A typical empirical setting is to map out several areas, say T areas, in a region
(or state) and to assemble a representative farm model for each area (or to treat each area

as a large farm).

10



When supply elasticities are exogenously available (say the own-price elasticities
of crops) at the regional (or state) level (via econometric estimation or other means), a
connection of all area models with these exogenous elasticities can be specified by
establishing a weighted sum of all the areas endogenous own-price elasticities and the
given regional elasticities. The weights are the share of each area’s revenue over the total
revenue of the region.

Let us suppose that exogenous own-price elasticities of supply are available at the

regional level for all the J crops, say 1;,j=1,...,J . Then, the relation among these

exogenous own-price elasticities and the corresponding areas’ elasticities can be

established as a weighted sum such as
T
m,= 2w, (37
t=1

where the weights are the areas’ revenue shares in the region (state)

w‘=ﬂ (38)

1 T
2 DXy
s=1

and n,=p,0'x" 1(gly,) (39)

where Q7 is the jth element on the main diagonal in the inverse of the Q, matrix.

6. Estimation of the Cost Function Parameters

Using the optimal LS solutions of x,y,h and u for each of the T areas, X,,y,,h, and @, ,

obtained from solving phase I model (20)-(23), it is possible to proceed to the estimation

of parameters Q,G,f and g of the cost function (30). The programming model that

executes the estimation of the marginal cost (31) and input demand (32) functions in the

11



presence of exogenous supply elasticities for a region (state) that is divided into 7 areas

takes on the following specification:

T
minLS =Y (d/d, +1,r,)/2 (40)
t=1
subject to
@y )f +(@90X, +E[(§,YGy,1+d, =A§, +Wh, +c, marginal cost function
(£'%)g, +8,(X0X,)/2+(EX)AF, " YG 3 4 r = AX, input demand function
O, =LD,L/ positive semidefinitenes of Q,
00"'=1 definiteness of Q,
N, =Ap, O AR (gly,) endogenous own- and cross-supply elasticities
X
w, = fuiuA revenue shares
ZFI DXy
n,;= pert-”)Act;l /(gy,) endogenous own supply elasticities
T
n= ZWtjn,j disaggregation of exogenous elasticities
t=1

with D, >0, g,, and f, free; £X, >0 and gy, 20, d, 20.,r, >0 . Vector variables
d, 20,r, >0 perform the role of auxiliary slack variables that will equal to zero
identically when minimized by the GAMS solver (the GAMS solver requires an explicit
objective function). In this way, the system of relations involving the specification of
marginal cost and demand functions for inputs will be estimated as they appear in
equations (31) and (32).

Model (40) is highly nonlinear in the constraints and a successful solution of it

depends crucially on the choice of an initial point that falls in the neighborhood of the

12



equilibrium solution. This specification was applied to three different samples of 7= 14
farms (areas) each producing four crops (sugar beet, soft wheat, corn and barley) using
only land as a limiting input. Using the GAMS software program, an equilibrium solution
was achieved in all the three cases. GAMS includes the solver BARON (Branch And
Reduce Optimization Navigator) for the global solution of nonlinear problems. The user
manual states (2015): “... BARON implements deterministic and global optimization
algorithms of the branch-and-bound type that are guaranteed to provide global optima
under fairly general assumptions. These assumptions include the existence of finite
lower and upper bounds on nonlinear expressions to be solved.”

Table 1 presents the observed output levels and the percent deviation obtained
from solving model (20)-(23) (alternatively solving model (28)). The primal solution X is
almost equal to the observed output levels X for every farm.

The same event characterizes the dual solution. Table 2 presents the deviations
from the observed land input prices and the percent deviation of the optimal dual solution,

y . Also in this case, the percent deviation is minimal in every farm.

Table 1. Observed Output Levels, X, and Percent Deviation (dev) of the LS Calibrated
Solution, X

Soft Sugar Soft

Sugar Beet | Wheat Corn Barley Beet Wheat Corn Barley
Farm X X X X % dev % dev % dev % dev
1 1133.4240 305.4032 | 341.3693 | 18.2398 | 0.026 0.060 0.157 1341
2 3103.7830 861.7445 | 478.4465 | 59.8025 | 0016 0.042 0.052 0.637
3 1547.9780 450.7937 | 881.9748 | 7.6887 | 0.010 -0.003 0011 0.164
4 3488.3540 821.3934 | 1493.332 | 51.1247 | 0.002 0.019 0.023 0.526
5 959.1102 468.2848 | 478.9261 | 28.2406 | 0.032 0.001 0.091 1.136
6 942.2039 801.1288 | 1283.591 | 152.581 | 0.049 0.059 0.046 0.384
7 1600.7310 695.8293 | 899.4739 | 66.9718 | 0.023 0.068 0.061 0.683
8 3507.5490 | 1212.8550 | 1237.584 | 98.0497 | 0.006 0.047 0.048 0.388
9 1050.5370 3323773 | 498.0150 | 63.6696 | 0.043 0.188 0.120 0.846
10 3473.6780 952.5199 | 774.7402 | 84.0070 | 0.010 0.039 0.062 0.444
11 1245.7220 765.1689 | 501.9673 | 59.5366 | 0.030 0.047 0.101 0.718

13



12 3276.1450 | 1100.1680 | 742.9419 | 177.974 | 0014 0.031 0.074 0.326
13 877.0970 380.9171 | 564.6091 | 76.2122 | 0.048 0.055 0.105 0.683
14 1430.9460 768.6901 | 1309.392 | 67.7906 | 0.026 0.038 0.035 0.604

Table 2. Deviations of y from y: vector &

Observed

Absolute Land Percent

Deviation | Prices Deviation
Farm u y %
1 0.0053817 442 0.122
2 0.0026860 4.38 0.061
3 0.0004449 6.98 0.006
4 0.0018006 5.73 0.031
5 0.0031117 4.40 0.071
6 0.0014600 1.86 0.078
7 0.0032416 3.65 0.089
8 0.0018922 3.36 0.056
9 0.0052767 2.75 0.192
10 0.0027213 4.28 0.064
11 0.0029836 328 0.091
12 0.0011904 1.93 0.062
13 0.0028811 2.32 0.124
14 0.0022795 4.03 0.057

The weighted LS minimization of the primal and dual deviations (h,u) has
produced a largely satisfactory result in this sample. This goal is accomplished mainly
by virtue of the disparate definitions of the diagonal weight matrices W and V . In
matrix W, the diagonal terms are defined as output prices, that is p,, where p; is the
price of the j-th output. In matrix V', the diagonal terms are defined as (quantity divided
by price), thatis b, /Yy, , where b, and y, are the quantity and the observed price of the i -
th limiting input. The purpose of the different treatment of the available information on
the output and input sides is to guarantee that the components of model (20)-(23) be
defined by coherent units of measurement, that is, dollars.

The estimated parameters of the cost function are reported in Tables 3 and 4. For

reasons of space, only three Q matrices are reported.

14



Table 3. Intercepts f, g and G Matrix of the Marginal Cost and Input demand
Functions

f
Farm | Sugar Soft

~ ~ N A

Beet Wheat | Corn Barley g G f ,& g’y
1] 0.1110 | 0.0912 | -0.0727 | 0.6183 0.00191 -1.2669 140.294 0.00847
2 | -00112 | 0.6636 | -0.0784 | 0.7116 0.00110 -0.9190 542.721 0.00484
3] 0.5937 | 0.6745 | 04603 | 1.0948 0.00222 -0.0313 1637.550 0.01550
4 | -0.0549 | 0.2153 | 0.2302 | 1.0018 0.00061 -1.0016 380.591 0.00350
5| 0.0174 | 0.5424 | -0.0297 | 0.6213 0.00361 -0.5182 274.242 0.01589
6 | -0.7008 | 1.6163 | 6.0416 | 1.0965 0.01073 -0.2639 8561.452 0.01998
7 ] 02155 | 0.2852 | 0.2414 | 0.9854 0.00328 -0.7473 827.362 0.01198
8 | -0.0769 | 0.7406 | 04971 | 0.9387 0.00791 -0.9633 1336.688 0.02660
9 | -0.0559 | 0.7323 | 0.3863 | 0.8988 0.00941 -1.2263 435.449 0.02592
10 | 0.0300 | 0.8861 | -0.2342 | 0.9465 0.00055 -0.6090 846.879 0.00234
11 | 0.2427 | 04817 | -0.0555 | 0.9430 0.00638 -0.7449 699.825 0.02095
12 | 0.0796 | 0.8584 | 04385 | 1.0428 0.00650 -1.4001 1717.901 0.01255
13 | 0.7831 | 0.3158 | -0.3314 | 0.8222 0.00711 -0.9164 683.351 0.01651
14 | 0.1802 | 0.6635 | 0.1982 | 0.9977 0.00925 -1.2669 1095.888 0.03732

Table 4. Matrices Q and D for Three Farms

Matrix Q Matrix D
Farm 1 Sugar Soft Corn Barley Sugar Soft Corn Barley
Beet Wheat Beet Wheat
S. Beet 0.90363 -1.97461 | -0.88227 0.06447 0.90363
S.Wheat | -1.97461 5.83223 | 2.23097 0.35591 1.51732
Corn -0.88227 2.23097 1.49261 0.17779 0.57068
Barley 0.06447 0.35591 0.17779 21.75286 21.55051
Farm 2
S. Beet 0.71517 -2.04607 | -0.76495 -0.00159 0.71517
S.Wheat | -2.04607 7.25493 | 241519 -0.05663 140123
Corn -0.76495 241519 1.53268 -0.03759 0.67780
Barley -0.00159 -0.05663 | -0.03759 18.98344 18.97949
Farm 3
S. Beet 1.24597 0.24597 | -2.27223 -0.42147 1.24597
S.Wheat 0.24597 1.95471 | -1.25809 -0.02225 1.90615
Corn -2.27223 -1.25809 | 4.76858 0.85444 0.28099
Barley -0.42147 -0.02225 | 0.85444 6.78018 6.59126

All 14 farms achieved a nonsingular Q matrix. This feature is instrumental in

defining the matrix of endogenous supply elasticities. Table 5 presents the endogenous

own- and cross-price supply elasticities for three farms.

15



Table 5. Endogenous Own- and Cross-Supply Elasticities for Three Farms

Sugar Soft
Farm 1 Beet Wheat | Corn Barley

S. Beet 0.2001 | 0.1952 | 0.1321 | -0.1091

S.Wheat | 0.2815 | 0.6056 | -0.2563 | -0.1763

Corn 0.2052 | -0.2760 | 1.2485 | -0.1514

Barley -0.0089 | -0.0100 | -0.0079 | 0.5927

Farm 2

S. Beet 0.2487 | 0.2182 | 0.1855 | 0.0133

S.Wheat | 0.3081 | 0.4399 | -0.2513 | 0.0162

Corn 0.1454 | -0.1395 | 1.5539 | 0.0191

Barley 0.0012 | 0.0011 | 0.0023 | 04196

Farm 3

S. Beet 0.1839 | 0.1379 | 0.1727 | -0.1676

S.Wheat | 0.2347 | 03725 | 0.2474 | -0.5665

Corn 0.4893 | 04121 | 04952 | -0.9548

Barley -0.0044 | -0.0087 | -0.0088 | 2.5417

We stipulated that regional, exogenous own-price supply elasticities were
available in the magnitude of 0.5 for sugar beet, 0.4 for soft wheat, 0.6 for corn and 0.3
for barley. The endogenous own-price elasticities of all farms were aggregated to be
consistent with the regional exogenous elasticities according to relation (37). Table 6
presents the farms’ own-price supply elasticities and the revenue weights used in the

aggregation relation.

Table 6. Disaggregation/Aggregation of the Regional, Exogenous Supply Elasticities.

Exogenous Own-Supply Elasticities Revenue Weights
Sugar Soft Sugar | Soft

Farms | Beet:0.5 Wheat:0.4 Corn: 0.6 | Barley: 0.3 Beet Wheat | Corn | Barley
1 0.2001 0.6056 1.2485 0.5927 0.0406 | 0.0291 | 0.0295 | 0.0165
2 0.2487 0.4399 1.5539 0.4196 0.1334 | 0.0937 | 0.0489 | 0.0628
3 0.1839 0.3725 0.4952 2.5417 0.0527 | 0.0446 | 0.0699 | 0.0070
4 0.2225 04774 0.5665 0.9868 0.1000 | 0.0893 | 0.1383 | 0.0536
5 0.1599 04512 0.8430 0.5691 0.0326 | 0.0413 | 0.0385 | 0.0256
6 8.6932 0.9332 0.5011 0.1080 0.0371 | 0.0828 | 0.1151 | 0.1601
7 0.0990 0.2906 0.3522 0.1918 0.0502 | 0.0688 | 0.0769 | 0.0606
8 0.1347 0.2714 0.2307 0.0823 0.1288 | 0.1292 | 0.1022 | 0.0931
9 0.1303 0.2670 0.3384 0.1544 0.0376 | 0.0335 | 0.0426 | 0.0576
10 0.2954 0.3940 1.9745 0.9603 0.1027 | 0.0930 | 0.0649 | 0.0825
11 0.1085 0.3682 0.2755 0.2195 0.0424 | 0.0737 | 0.0417 | 0.0539
12 0.1843 0.2692 0.2407 0.1197 0.1555 | 0.1079 | 0.0685 | 0.1868
13 0.0947 0.2861 0.4050 0.1486 0.0299 | 0.0336 | 0.0454 | 0.0689
14 0.0883 0.2455 0.3772 0.1349 0.0564 | 0.0795 | 0.1175 | 0.0711
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7. Calibrating Equilibrium Model
With the estimates of the cost function parameters f, §,Q,é it is possible to formulate a

calibrating equilibrium model for each farm (sector, area) of the following structure
minCSC = zpt’y, + Zdt,Xl =0 (41)
subject to

(£x)8, +8,x0x,)/2+{Ex)AY,>YGy* +z,,=b, + Vi,

@&y f +@y)0x, +E((y*YGy 1=p, +z,

with x, 20,y, 20,2z, 20,2z, >0 . The variables z , and z, are slack-surplus variables

pt
of the primal and dual constraints, respectively. The solution of the equilibrium model

(41) produces optimal values of the primal and dual variables, x, and y, that are identical

to the solution values of model (20)-(23). Notice that the matrix of constant technical
coefficients, A, , no longer appears in the calibrating equilibrium model (41). This
elimination removes the last vestige of a linear structure that has been considered too
rigid for representing the choices of a producer. The objective function (CSC) of model
(41) combines all the complementary slackness conditions of the farm (region, area)
sample. Hence, its optimal value must be equal to zero. Model (41) can be used to
perform response analysis to variations in prices, subsidies, quotas, input quantities, and

other parameters for a variety of policy scenarios.
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8. PMP Uniqueness With Missing Observations
Empirical reality compels a further consideration of the above methodology in order to
deal with farm samples where not all farms produce all commodities. It turns out that
very little must be changed for obtaining a unique and calibrating solution in the presence
of missing commodities, their prices and the corresponding technical coefficients.

To exemplify, suppose that the farm sample displays the following Table 7 of

observed crop levels.

Table 7. Observed Output Levels, X, with non produced commodities

Soft
Sugar Beet | Wheat Corn Barley

Farm X X X X

1 1133.4240 00 341.3693 | 18.2398
2 3103.7830 861.7445 0.0 59.8025
3 00 450.7937 | 881.9748 0.0

4 3488.3540 821.3934 | 1493.332 | 51.1247
5 959.1102 468.2848 0.0 28.2406
6 942.2039 801.1288 | 1283.591 | 152.581
7 1600.7310 00 899.4739 | 669718
8 0.0 1212.8550 | 1237.584 | 98.0497
9 1050.5370 332.3773 00 63.6696
10 3473.6780 952.5199 | 774.7402 0.0

11 0.0 765.1689 | 501.9673 | 59.5366
12 3276.1450 1100.1680 0.0 177.974
13 877.0970 380.9171 | 564.6091 | 76.2122
14 1430.9460 00 1309.392 0.0

Other missing information deals with prices and unit accounting costs associated
with the zero-levels of crops. Furthermore, the technical coefficients of the farms not

producing the observed crops also equal to zero. Hence, we can state that, for 7 =1,...,T,

the number of farms, and j=1,...,J , the number of crops, if X, =0,also p,=0, ¢, =0
and A, =0. Furthermore, suppose that only one input, land, is involved in this farm

sample. Then, the land price is observed for all farms.
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As to the solution of the Phase I PMP specification, we expect that x, =X, +h,
for X, >0 ,and h,=x,=0 for x, =0. It turns out that the least-squares computation of
the deviations u, and h, expressed by equation (29) produces the desired estimates of
the deviations &, and crop levels x, when the observed level of those crops equals zero,

X, =0. This is so because the first term on the RHS of (29) is equal to zero by

construction, b, — ZJ AX =b — 21:1 (acres; 1 x;)x, =0 . The second term on the RHS

Jj=1 gy
of (29) reduces to zero because of the zero information about non-produced crops,
P~ z;lAij)_)i —¢;=0-0y,-0=0. Therefore, lAl,j =X, =0 for X, =0 and the least-

squares PMP solution is unique also in this more elaborate case.
The estimation of the cost function carries through as in section 6 without

modification. Also the Phase III calibrating model expressed in (41) needs no adjustment.

9. Results for a farm sample with missing production of some crops
The observed crop production of a 14-farm sample is given in Table 7. Also the

corresponding output prices, p,; =0, and accounting costs, ¢, =0, are part of the data
sample for the no-production levels x,, =0, as reported in Table 7. Furthermore, A, =0

for the same activities of no-production.
Table 8 presents the unique least-squares estimates of the crop levels and the

corresponding percentage deviation from the observed sample data.
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Table 8. Estimated Output Levels, X , and Percent Deviation (dev) for the sample with
missing crop production (compare with Table 7)

Soft Sugar Soft

Sugar Beet | Wheat Corn Barley Beet Wheat Corn Barley
Farm X X X X % dev % dev % dev % dev
1 1133.7140 0 3419053 | 18.4843 | 0.0256 0 0.1570 1.3400
2 3104.2820 862.1098 0.0000 60.1834 | 0.0161 0.0424 0 0.6369
3 0 450.7820 882.0680 0 0 00026 | 0.0106 0
4 3488 4150 821.5529 | 1493.6830 | 51.3938 | 0.0017 0.0194 0.0235 0.5264
5 959.4208 468.2891 0 | 285614 | 00324 0.0009 0 1.1360
6 942.6667 801.6001 | 1284.1790 | 153.1671 | 0.0491 0.0588 0.0458 0.3840
7 1601.1000 0 900.0223 | 67.4290 | 0.0231 0 0.0610 0.6825
8 0 | 12134210 | 1238.1750 | 98.4298 0 0.0466 0.0478 0.3876
9 1050.9910 333.0022 0 64.2084 | 0.0433 0.1880 0 0.8463
10 3474.0410 952.8955 775.2208 0 | 0.0105 0.0394 0.0620 0
11 0 765.5305 502.4727 59.9640 0 0.0473 0.1007 0.7179
12 3276.6110 1100.5140 0 | 178.5547 | 0.0142 0.0314 0 0.3260
13 877.5201 381.1268 565.2019 76.7330 | 0.0482 0.0550 0.1050 0.6833
14 1431.3200 0 1309.8500 0 | 0.0261 0 0.0350 0

Except for two cells, the percent deviations of the estimated crop levels from the
observed production quantities are below 1 percent. The cells with a zero estimated
quantity level correspond to the cells with observed zero level of production, as in Table
7. Table 9 presents the estimated land price and the percent deviation from the observed
input price.

Table 9. Deviations of y from ¥

Estimated | Observed

Land Land Percent

Prices Prices Deviation
Farm 37 y %
1 4.428035 442 0.1818
2 4.382827 4.38 0.0645
3 6.980315 6.98 0.0045
4 5.731801 5.73 0.0314
5 4.402587 4.40 0.0588
6 1.861460 1.86 0.0785
7 3.653809 3.65 0.1044
8 3.362198 3.36 0.0654
9 2.756308 2.75 0.2294
10 4281756 4.28 0.0410
11 3.283229 328 0.0984
12 1931129 1.93 0.0585
13 2.322881 232 0.1242
14 4.031362 4.03 0.0338
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The deviations of the estimated land prices from the observed prices are all below
one percent. Table 10 presents the estimates of the parameters of the cost function under

the condition of zero production for some crops in various farms.

Table 10. Intercepts f, g and G Matrix of the Marginal Cost and Input Demand
Functions for the case of zero production of some crop in various farms

f
Farm | Sugar Soft

~ ~ N A

Beet Wheat Corn Barley g G f ,& g’y
1 ] -0.15426 | 0.00274 | 0.73961 | -0.11144 0.00686 -1.9508 75.930 0.03038
2 | 007435 | -0.14574 | 0.03714 | 0.32875 0.00495 -3.1350 124.945 0.02171
3 | 0.03532 | 0.27086 | -0.11507 | 0.03964 0.00052 -1.0871 20.595 0.00363
4] -0.02920 | 0.07372 | 0.10372 | 0.85513 0.00441 -24222 157.570 0.02530
5| 0.02132 | 0.01858 | 0.11481 | 0.06645 0.00754 -2.3602 31.051 0.03318
6 | 022974 | 0.22787 | -0.02587 | 0.26590 0.01186 -5.3411 406.732 0.02208
7 | 0.13824 | -0.00074 | -0.14506 | 0.29086 0.00273 -3.6725 110.382 0.00997
8 | 001525 | 040319 | -0.12078 | -0.17109 0.01373 -3.0222 322.849 0.04616
9 | 0.11620 | -0.08339 | 0.00722 | -0.03553 0.00499 -2.9037 92.071 0.01375
10 | -0.00636 | 0.36252 | -0.14708 | 0.00406 0.00076 -2.4324 209.320 0.00325
11 | 0.00236 | 0.30162 | -0.12984 | -0.24600 0.00764 -2.8158 150.906 0.02507
12 | 0.10700 | 0.16788 | 0.00002 | 0.57873 0.00004 -2.6811 638.676 0.00001
13 | 0.24139 | 042193 | -0.25400 | -0.19708 0.01046 -2.9149 213.946 0.02431
14 | 0.05358 | 0.06649 | 0.07745 | 0.01622 0.00686 -2.6086 178.140 0.03038

Table 11 presents the own price elasticities of the 14 farms that correspond to the

observed and exogenous price elasticities of the four crops.

Table 11. Disaggregation/Aggregation of the Regional, Exogenous Supply Elasticities
when some crops are not produced in various farms

Exogenous Own-Supply Elasticities Revenue Weights
Sugar Soft Sugar | Soft

Farms | Beet:0.5 Wheat:0.4 Corn: 0.6 | Barley: 0.3 Beet Wheat | Corn | Barley
1 0.257 0 0.385 0.722 0.0523 0 | 00368 | 0.0198
2 0.289 0.409 0 0.251 0.1719 | 0.1139 0 | 0.0748
3 0 0.515 1.740 0.000 0 | 00542 | 0.0871 0
4 1.873 0.262 0.428 0.333 0.1288 | 0.1086 | 0.1726 | 0.0639
5 0.381 0.577 0 0.445 0.0421 | 0.0502 0 | 0.0306
6 0.052 0.221 0.322 0.120 0.0479 | 0.1007 | 0.1437 | 0.1904
7 0.149 0 0.656 0.225 0.0647 0 | 00960 | 0.0723
8 0 0.329 0.294 0.122 0 | 0.1571 | 0.1275 | 0.1108
9 0.212 0.407 0 0.335 0.0485 | 0.0408 0 | 0.0688
10 0.241 0.309 0.794 0 0.1323 | 0.1130 | 0.0810 0
11 0 0.399 0.313 0.268 0 | 0.0896 | 0.0520 | 0.0643
12 0.487 0.714 0 0.531 0.2004 | 0.1311 0 | 0.2220
13 0.142 0.325 0.837 0.259 0.0385 | 0.0409 | 0.0567 | 0.0822
14 0.305 0 0.583 0 0.0727 0 | 0.1465 0
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The calibrating model (41) applies also to this data sample without any modification.

10. Conclusion

We have achieved the objective of using all the available information about output
quantities and input prices, and the formulation of a calibrating PMP model that is free of
the rigidities of a linear programming structure. In the process, we dispense with the
necessity of dealing with the user-determined vector of small and arbitrary positive
numbers € which is required by the traditional PMP methodology. We also demonstrated
the uniqueness of the calibrating solution. Two empirical examples were presented. In
the first sample of 14 farms and 4 crops, all farms produce every commodity. In the
second sample, some of the farms do not produce all the commodities. This is the typical
case. It is shown that the uniqueness of the calibrating solution is maintained also in this

more elaborate case.
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