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Abstract 
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number ε  originally introduced for guaranteeing that the dual (shadow) price of binding 
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in the form of previously estimated parameters for an entire region or sector. The 
framework is applied to a sample of farms also for the case that admits no production for 
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PMP and Uniqueness of the Calibrating Solution - Revision 
 
 
 

1. Introduction 
 
This paper proposes an approach to Positive Mathematical Programming (PMP) that 

guarantees the uniqueness of the calibrating solution. This result relies upon the use of all 

the available information, including prices of limiting. To exemplify, a large list of PMP 

empirical studies has been restricted to one limiting constraint, namely land. Yet, the 

available price of land (at either a regional or local level) has not been part of a 

calibrating relation. This is the starting point of the paper. Toward the goal of dealing 

also with calibrating input prices we discuss first the PMP approach as understood to date. 

The original formulation of the PMP methodology (Howitt, 1995a, 1995b) was 

based upon the estimation of the marginal cost associated with the observed production 

plan (or the difference between known per-output unit accounting cost and effective 

economic marginal cost). Phase I of this model took the following specification (Howitt, 

1995a, p. 151): 

Primal    maxTNR = ′p x − ′c x        (1) 

  subject to        Ax ≤ b             structural constraints    (2) 

            x ≤ x + ε        calibration constraints          (3) 

and x ≥ 0 , where A  is a matrix of technical coefficients of dimensions (m × n,m < n)  

and all the other vectors are conformable to it. In particular, x > 0  is a vector of realized 

and observed levels of outputs whose utilization qualifies the positive feature of the PMP 

model. Vector b  refers to limited input supplies. In the case of input land, the technical 

coefficients of the A  matrix are computed by dividing the number of acres allocated to a 
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crop by the realized and observed crop production, that is, acresij / xij = Aij . Then, 

bi = acresijj=1

J∑ . Vectors p  and c  represent market output prices and unit accounting 

costs, respectively. The parameter vector ε  is composed of small, positive (user-

determined) numbers whose role is to guarantee that the dual variables of the binding 

structural constraints achieve a positive value. In Howitt’s words (1995a, p. 151): “The ε  

perturbation on the calibration constraints decouples the true resource constraints from 

the calibration constraints and ensures that the dual values on the allocable resources 

represent the marginal values of the resource constraints.” With these stipulations, the 

dual of model (1)-(3) is stated as 

 Dual   minTC = ′b y + ′λ [x + ε]          (4) 

   subject to ′A y + λ + c ≥ p          (5) 

with y ≥ 0,λ ≥ 0 , where y represents the (m ×1)  vector of shadow prices of the structural 

constraints and the (n ×1)  vector λ  represents the shadow prices of the calibration 

constraints. In the dual constraints (5) there are n constraints and (m + n) variables (at the 

optimal primal solution x* , relation (5) is satisfied with the equality sign given that 

x* = x + ε > 0  and complementary slackness conditions). Hence, in this specification, the 

PMP model is underdetermined (ill posed) because it admits an infinite number of (y,λ)  

solutions.  This is the reason why the parameter ε is introduced in model (1)-(3) in order 

to elicit a dual solution with positive values of the shadow price y  of the binding 

structural constraints.  This means that at least m  components of the vector λ  assume a 

zero value.  
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 Another criticism of the original PMP approach regards the specification of the 

calibration constraints. Why is the solution vector x  of model (1)-(3) stated as less-than-

or-equal to the observed vector of output levels ( x + ε ) in the calibration constraints (3)? 

The answer was (is): to guarantee a nonnegative dual vector of shadow prices λ . 

Admittedly, this is an unsatisfactory answer. Given that vector x  represents observed (by 

the econometrician) output levels that are realized by the producer in a previous 

economic cycle, the measured x  may contain some measurement error that either 

overstates or understates the level of the production plan consistent with the technical and 

economic information of a given producer.  A more plausible specification of the 

calibration constraints, therefore, may be x = x + h , where h  is a conformable vector of 

unrestricted deviations from x . 

 Furthermore, a measure of the limiting input price vector y  may be available at 

either a regional or more local level. For example, the price of agricultural land is surely 

available, either by region or by area. The estimate may not be fitting every single 

individual farm but it can be assumed that it will fall within a reasonable range of the 

actual optimal land value of this farm as obtained by solving model (1)-(3).  If the 

information on land price and other important limiting inputs is available, it should be 

used in a PMP approach in order to avoid violating the principal tenet of the 

methodology: all the available information should be used.  Also in this case, therefore, it 

seems plausible to state a calibration constraint for the dual variable vector as y = y + u , 

where u  is a conformable vector of unrestricted deviations from y .  

Within this novel PMP framework, the notion of a calibrating solution assumes a 

different structure from the original formulation of model (1)-(3). In that model, a 
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calibrating solution achieves the obvious values as x* = x + ε . Many critics of PMP have 

objected that this equation represents a tautology. In fact, the equality between the 

optimal solution of model (1)-(3) and the vector of observed output levels is achieved 

because the – presumably – available information on the limiting input-price side is 

ignored. With the more general specification of the calibration constraints in the form of 

x = x + h  and y = y + u , a calibrating solution (x*,y*)  will not, in general, be 

tautologically equal to (x,y) . But it can be arranged to make the solution  as close 

as possible to the observed quantities and prices, given the structure of the problem. This 

approach resembles an econometric estimation where the goal is to minimize the 

residuals of a system of regressions. An objective of this novel phase I PMP methodology, 

therefore, is to make deviations (h,u) as small as possible.  

 

2. The Use of x  and y  in PMP 

To justify the structure of the novel phase I PMP model we begin with two preliminary 

analyses. First, suppose that a preliminary phase I of the PMP methodology is concerned 

with solving the following problem 

   maxTNR = ′p x − ′c x          (6) 

 subject to        Ax ≤ b              dual variables y        (7) 

           x = x + h      dual variables λ                       (8) 

with x ≥ 0  and h  free. Furthermore, we wish to minimize the sum of squared deviations, 

′h Wh / 2 , as in a weighted least-squares approach. The W  matrix is diagonal with 

elements pj > 0  on the main diagonal, j = 1,...,n . The effective objective function, 

therefore, will be expressed as an auxiliary function such as

(x*,y*)
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maxAUX = ′p x − ′c x − ′h Wh / 2 .  The purpose of the weight matrix W is to measure each 

component of the auxiliary objective function in dollars. Forming the Lagrange function 

and assembling the corresponding first-order-necessary conditions (FONC) will give 

  L = ′p x − ′c x − ′h Wh / 2 + ′y [b − Ax]+ ′λ [x + h− x]      (9) 

  ∂L
∂x

= p − ′A y − λ − c ≤ 0         (10) 

  ∂L
∂h

= −Wh+ λ = 0.          (11) 

From relation (11), λ =Wh  and, thus, relation (10) can be reformulated as 

    ′A y +Wh ≥ p − c .       (12) 

Relation (11) represents a case of self duality, where a dual variable is equal (up to a 

scalar) to a primal variable.  

Analogously, let us consider the following problem 

    minTC = ′b y          (13) 

  subject to         ′A y ≥ p − c         dual variables x      (14) 

     y = y + u  dual variables ψ      (15) 

with y ≥ 0  and u  free. Again, we wish to minimize the sum of squared deviations, 

′u Vu / 2 , as in a weighted least-squares approach. The matrix V is diagonal with 

elements bi / yi > 0  on the main diagonal, i = 1,...,m . The effective objective function,  

then, will be expressed as an auxiliary function such as minAUX2 = ′b y + ′u V ′u / 2 .  The   

purpose of the V  matrix is to render homogeneous the units of measurement of all the 

terms in the objective function and to scale the deviations u  according to the size of the 
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input constraints.   Forming the Lagrange function and assembling the corresponding 

FONCs give    

  L* = ′b y + ′u Vu / 2 + ′x [ ′A y + c − p]+ ′ψ [y − y − u]

  

(16) 

  ∂L*

∂y
= b − Ax + ψ ≥ 0       (17) 

  ∂L*

∂u
=Vu− ψ = 0 .      (18) 

From the self-dual relation (18), ψ =Vu  and, thus, relation (17) can be reformulated as 

    Ax ≤ b +Vu .       (19) 

This discussion leads to a specification of a phase I PMP model that combines the 

duality relations of a LP problem together with the least-squares necessary conditions 

involving deviations h  and u . Combining constraints (12) and (19) with the calibration 

relations (8) and (15), we can write the relevant phase I PMP model as the problem of 

finding nonnegative vectors  and unrestricted vectors  and  such that 

    Ax ≤ b +Vu   dual variables  y   (20) 

       ′A y +Wh+ c ≥ p   dual variables x   (21) 

    x = x + h   dual variables  Wh   (22) 

    y = y + u   dual variables  Vu   (23) 

together with the associated complementary slackness conditions.  This PMP approach 

avoids using the user-determined parameter ε .   

3. Solution Uniqueness of the phase I PMP model 

A least-squares (LS) solution is unique if and only if the matrix of “explanatory” 

variables has full rank.  To verify this crucial condition in relation to model (20)-(23) we 

x ≥ 0,y ≥ 0 h u
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assume that vectors x  and y  have all positive components and that, largely for this 

reason, x > 0  and y > 0  (this assumption will be relaxed in section 8).  This implies – via 

complementary slackness conditions associated to relations (20)-(23) – that 

             Ax = b +Vu       (24) 

   ′A y +Wh = p − c .      (25) 

Substituting constraints (22) and (23) into (24) and (25), and rearranging terms, we obtain 

   −Vu+ Ah = b − Ax       (26) 

    ′A u+Wh = p − ′A y − c      (27) 

and in matrix notation        

   
−V A
′A W

⎡

⎣
⎢

⎤

⎦
⎥
u
h

⎡

⎣
⎢

⎤

⎦
⎥ =

b − Ax
p − ′A y − c

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

          M            z    =        q.

    (28) 

The matrix M is of full rank because the nonsingular weight matrices V  and W  are on 

the main diagonal. Hence, the least-squares solution û  and ĥ  is unique.  It follows that 

the solution x̂  and ŷ  of model (20)-(23) is also unique.  Given the structure of the M 

matrix, an inverse of M exists even if the A matrix is not of full rank. 

The explicit, least-squares solution of (28) is   

û
ĥ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

−(V + AW −1 ′A )−1 V −1A( ′A V −1A +W )−1

W −1 ′A (V + AW −1 ′A )−1 ( ′A V −1A +W )−1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

b − Ax
p − ′A y − c

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.    (29) 

The optimal and calibrating LS levels of the primal and dual variables x  and y , then, are 

obtained as a simple addition according to the specification given in constraints (22) and 

(23) with x̂ = x + ĥ  and ŷ = y + û .   
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4. Phase II: Specification of a General Cost Function 

Phase II of a PMP approach deals with the estimation of marginal cost and input demand 

functions to be used in a calibrating model for the analysis of various policy scenarios.  

Following economic theory, we postulate that the total cost function of interest takes on 

the following symmetric and extended Leontief specification: 

  C(x,y) = ( ′g y)( ′f x)+ ( ′g y) ′x Qx / 2 + ( ′f x)[(y1/2 ′) Gy1/2 ]   (30) 

where the (n × n)matrix Q  is symmetric and positive definite, the (m ×m)  matrix G  is 

symmetric and negative semidefinite (a cost function is concave in input prices), the 

components of vector f  and vector g  are free to take on any value. We require that 

′f x > 0  and ′g y > 0 .  From theory, a cost function is homogeneous of degree one in input 

prices. This requirement drives to a large extent the specification of the symmetric cost 

function presented in relation (30).  The vector of output marginal costs is stated as  

          MCx =
∂C
∂x

= ( ′g y)f + ( ′g y)Qx + f[(y1/2 ′) Gy1/2 ]= ′A y +Wh+ c   (31) 

while, by Shephard lemma, the vector of demand functions for inputs is stated as 

  ∂C
∂y

= ( ′f x)g + g( ′x Qx) / 2 + ( ′f x)Δ(y−1/2 ′) Gy1/2 = Ax    (32) 

where the matrix Δ(y−1/2 )  is diagonal with terms yi
−1/2  on the main diagonal. 

 The vector of output supply functions comes from relation (31) by equating it to 

the vector of market output prices, p , and inverting the marginal cost function to obtain 

x = −Q−1f −Q−1f[(y1/2 ′) Gy1/2 ] / ( ′g y)+ [1 / ( ′g y)]Q−1p     (33) 

that leads to the supply elasticity matrix 

Ξ ≡ Δ(p) ∂x
∂p

⎡
⎣⎢

⎤
⎦⎥
Δ(x−1) = Δ(p)Q−1Δ(x−1) / ( ′g y)     (34)  
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where matrices Δ(p)  and Δ(x−1)  are diagonal with elements pj  and x j
−1 , respectively, on 

the main diagonals. Relation (34) includes all the own- and cross-price elasticities for all 

the output commodities admitted in the model.  

 The demand elasticities of limiting inputs can be easily measured from the input 

demand functions of relation (32). Suppose two limiting inputs form the structural 

constraints of the model. Then, the portion of the demand function that involves input 

prices can be stated as 

  
b1 + u1 = K1 + ( ′f x)[G11 + y1

−1/2G12y2
1/2 ]

b2 + u2 = K2 + ( ′f x)[G22 + y1
1/2G12y2

−1/2 ]
    (35) 

where K1  and K2  do not involve input prices. The (2 × 2)  matrix of derivatives of the 

demand functions results in   

∂(b1 + u1)
∂y1

∂(b1 + u1)
∂y2

∂(b2 + u2 )
∂y1

∂(b2 + u2 )
∂y2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
− 1
2
y1
−3/2G12y2

1/2 1
2
y1
−1/2G12y2

−1/2

1
2
y1
−1/2G12y2

−1/2 − 1
2
y1
1/2G12y2

−3/2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( ′f x)      (36) 

  
This means that with only one limiting input, its demand elasticity will be equal to zero 

(as in a Leontief fixed coefficient specification) since the term G11  drops out of the 

derivative in (36). In a Leontief cost function, inputs are substitutes.  

  

5. Exogenous and Disaggregated Output Supply Elasticities 

PMP has been applied frequently to analyze farmers’ behavior to changes in agricultural 

policies. A typical empirical setting is to map out several areas, say T areas, in a region 

(or state) and to assemble a representative farm model for each area (or to treat each area 

as a large farm).  
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 When supply elasticities are exogenously available (say the own-price elasticities 

of crops) at the regional (or state) level (via econometric estimation or other means), a 

connection of all area models with these exogenous elasticities can be specified by 

establishing a weighted sum of all the areas endogenous own-price elasticities and the 

given regional elasticities.  The weights are the share of each area’s revenue over the total 

revenue of the region.  

Let us suppose that exogenous own-price elasticities of supply are available at the 

regional level for all the J crops, say η j , j = 1,..., J . Then, the relation among these 

exogenous own-price elasticities and the corresponding areas’ elasticities can be 

established as a weighted sum such as  

 η j = wtj
t=1

T

∑ ηtj         (37) 

where the weights are the areas’ revenue shares in the region (state) 

  wtj =
ptj xtj

psj xsj
s=1

T

∑
        (38) 

and   ηtj = ptjQt
jj xt

−1 / ( ′gtyt )                           (39) 

where  Qt
jj  is the jth element on the main diagonal in the inverse of the Qt  matrix. 

 

6. Estimation of the Cost Function Parameters  

Using the optimal LS solutions of x,y,h and u  for each of the T areas, x̂t , ŷt , ĥt  and ût , 

obtained from solving phase I model (20)-(23), it is possible to proceed to the estimation 

of parameters Q,G, f  and g  of the cost function (30). The programming model that 

executes the estimation of the marginal cost (31) and input demand (32) functions in the 
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presence of exogenous supply elasticities for a region (state) that is divided into T areas 

takes on the following specification: 

   minLS = ( ′dtdt
t=1

T

∑ + rt′rt ) / 2      (40) 

subject to 

( ′gt ŷt )ft + ( ′gt ŷ)Qt x̂t + ft[(ŷt
1/2 ′) Gt ŷt ]+ dt = At ŷt +Wtĥt + ct   marginal cost function 

(ft′x̂t )gt + gt ( ˆ ′xtQt x̂t ) / 2 + ( ′ft x̂t )Δ(ŷt
−1/2 ′) Gt ŷ

1/2
t + rt = At x̂t             input demand function 

   Qt = LtDt ′Lt             positive semidefinitenes of Qt  

   QtQt
−1 = It           definiteness of Qt  

ηt , j ,k = Δ(ptj )Qt
jkΔ(x̂tk

−1) / ( ′gt ŷt )           endogenous own- and cross-supply elasticities 

wtj =
ptj x̂tj
psj x̂sjs=1

T∑
        revenue shares 

ηtj = ptjQt
jj x̂tj

−1 / ( ′gt ŷt )                    endogenous own supply elasticities 

η j = wtj
t=1

T

∑ ηtj              disaggregation of exogenous elasticities 

with  Dt > 0,  gt ,  and ft  free; ′ftxt ≥ 0  and ′gtyt ≥ 0 , dt ≥ 0,rt ≥ 0 . Vector variables 

dt ≥ 0,rt ≥ 0  perform the role of auxiliary slack variables that will equal to zero 

identically when minimized by the GAMS solver (the GAMS solver requires an explicit 

objective function).  In this way, the system of relations involving the specification of 

marginal cost and demand functions for inputs will be estimated as they appear in 

equations (31) and (32). 

 Model (40) is highly nonlinear in the constraints and a successful solution of it 

depends crucially on the choice of an initial point that falls in the neighborhood of the 
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equilibrium solution. This specification was applied to three different samples of T = 14 

farms (areas) each producing four crops (sugar beet, soft wheat, corn and barley) using 

only land as a limiting input. Using the GAMS software program, an equilibrium solution 

was achieved in all the three cases.  GAMS includes the solver BARON (Branch And 

Reduce Optimization Navigator) for the global solution of nonlinear problems. The user 

manual states (2015): “…  BARON implements deterministic and global optimization 

algorithms of the branch-and-bound type that are guaranteed to provide global optima 

under fairly general assumptions.  These assumptions include the existence of finite 

lower and upper bounds on nonlinear expressions to be solved.” 

 Table 1 presents the observed output levels and the percent deviation obtained 

from solving model (20)-(23) (alternatively solving model (28)). The primal solution x̂  is 

almost equal to the observed output levels x  for every farm. 

 The same event characterizes the dual solution. Table 2 presents the deviations 

from the observed land input prices and the percent deviation of the optimal dual solution, 

ŷ . Also in this case, the percent deviation is minimal in every farm.  

 

Table 1. Observed Output Levels, x , and Percent Deviation (dev) of the LS Calibrated 
Solution, x̂  
  

Sugar Beet 
Soft 
Wheat 

 
Corn 

 
Barley 

Sugar 
Beet 

Soft 
Wheat 

 
Corn 

 
Barley 

Farm     x      x      x      x  % dev % dev % dev % dev 
1 1133.4240   305.4032 341.3693 18.2398 0.026 0.060 0.157 1.341 
2 3103.7830   861.7445 478.4465 59.8025 0.016 0.042 0.052 0.637 
3 1547.9780   450.7937 881.9748   7.6887 0.010 -0.003 0.011 0.164 
4 3488.3540   821.3934 1493.332 51.1247 0.002 0.019 0.023 0.526 
5   959.1102   468.2848 478.9261 28.2406 0.032 0.001 0.091 1.136 
6   942.2039   801.1288 1283.591 152.581 0.049 0.059 0.046 0.384 
7 1600.7310   695.8293 899.4739 66.9718 0.023 0.068 0.061 0.683 
8 3507.5490 1212.8550 1237.584 98.0497 0.006 0.047 0.048 0.388 
9 1050.5370   332.3773 498.0150 63.6696 0.043 0.188 0.120 0.846 
10 3473.6780   952.5199 774.7402 84.0070 0.010 0.039 0.062 0.444 
11 1245.7220   765.1689 501.9673 59.5366 0.030 0.047 0.101 0.718 
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12 3276.1450 1100.1680 742.9419 177.974 0.014 0.031 0.074 0.326 
13   877.0970   380.9171 564.6091 76.2122 0.048 0.055 0.105 0.683 
14 1430.9460   768.6901 1309.392 67.7906 0.026 0.038 0.035 0.604 

 
 
 
Table 2.  Deviations of ŷ  from y : vector û  
   

Absolute 
Deviation 

Observed 
Land 
Prices    

 
Percent 
Deviation 

Farm    û     y     % 
1 0.0053817 4.42 0.122 
2 0.0026860 4.38 0.061 
3 0.0004449 6.98 0.006 
4 0.0018006 5.73 0.031 
5 0.0031117 4.40 0.071 
6 0.0014600 1.86 0.078 
7 0.0032416 3.65 0.089 
8 0.0018922 3.36 0.056 
9 0.0052767 2.75 0.192 
10 0.0027213 4.28 0.064 
11 0.0029836 3.28 0.091 
12 0.0011904 1.93 0.062 
13 0.0028811 2.32 0.124 
14 0.0022795 4.03 0.057 

 

The weighted LS minimization of the primal and dual deviations (h,u)  has 

produced a largely satisfactory result in this sample.  This goal is accomplished mainly 

by virtue of the disparate definitions of the diagonal weight matrices W  and V . In 

matrix W , the diagonal terms are defined as output prices, that is pj , where pj  is the 

price of the j -th output. In matrix V , the diagonal terms are defined as (quantity divided 

by price), that is bi / yi , where bi  and yi  are the quantity and the observed price of the i -

th limiting input.  The purpose of the different treatment of the available information on 

the output and input sides is to guarantee that the components of model (20)-(23) be 

defined by coherent units of measurement, that is, dollars. 

The estimated parameters of the cost function are reported in Tables 3 and 4. For 

reasons of space, only three Q  matrices are reported. 
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Table 3.  Intercepts f̂ , ĝ  and Ĝ  Matrix of the Marginal Cost and Input demand 
Functions 
 
 
Farm 

                              f̂  
     

Sugar 
Beet 

Soft 
Wheat 

 
Corn 

 
Barley 

  
     ĝ  

 

    Ĝ  

 

 ˆ′f x̂  

 
 ˆ ′g ŷ  

1 0.1110 0.0912 -0.0727 0.6183  0.00191 -1.2669 140.294 0.00847 
2 -0.0112 0.6636 -0.0784 0.7116  0.00110 -0.9190 542.721 0.00484 
3 0.5937 0.6745 0.4603 1.0948  0.00222 -0.0313 1637.550 0.01550 
4 -0.0549 0.2153 0.2302 1.0018  0.00061 -1.0016 380.591 0.00350 
5 0.0174 0.5424 -0.0297 0.6213  0.00361 -0.5182 274.242 0.01589 
6 -0.7008 1.6163 6.0416 1.0965  0.01073 -0.2639 8561.452 0.01998 
7 0.2155 0.2852 0.2414 0.9854  0.00328 -0.7473 827.362 0.01198 
8 -0.0769 0.7406 0.4971 0.9387  0.00791 -0.9633 1336.688 0.02660 
9 -0.0559 0.7323 0.3863 0.8988  0.00941 -1.2263 435.449 0.02592 

10 0.0300 0.8861 -0.2342 0.9465  0.00055 -0.6090 846.879 0.00234 
11 0.2427 0.4817 -0.0555 0.9430  0.00638 -0.7449 699.825 0.02095 
12 0.0796 0.8584 0.4385 1.0428  0.00650 -1.4001 1717.901 0.01255 
13 0.7831 0.3158 -0.3314 0.8222  0.00711 -0.9164 683.351 0.01651 
14 0.1802 0.6635 0.1982 0.9977  0.00925 -1.2669 1095.888 0.03732 

 
 
Table 4. Matrices Q̂   and D̂  for Three Farms 
 

                    Matrix  Q̂                           Matrix  D̂  
Farm 1 Sugar 

Beet 
Soft 
Wheat 

Corn Barley  Sugar 
Beet 

Soft 
Wheat 

Corn Barley 

S. Beet 0.90363 -1.97461 -0.88227 0.06447    0.90363    
S.Wheat -1.97461 5.83223 2.23097 0.35591   1.51732   
Corn -0.88227 2.23097 1.49261 0.17779    0.57068  
Barley 0.06447 0.35591 0.17779 21.75286     21.55051 
          
Farm 2          
S. Beet 0.71517 -2.04607 -0.76495 -0.00159  0.71517    
S.Wheat -2.04607 7.25493 2.41519 -0.05663   1.40123   
Corn -0.76495 2.41519 1.53268 -0.03759    0.67780  
Barley -0.00159 -0.05663 -0.03759 18.98344     18.97949 
          
Farm 3          
S. Beet 1.24597 0.24597 -2.27223 -0.42147  1.24597    
S.Wheat 0.24597 1.95471 -1.25809 -0.02225   1.90615   
Corn -2.27223 -1.25809 4.76858 0.85444    0.28099  
Barley -0.42147 -0.02225 0.85444 6.78018     6.59126 
  

All 14 farms achieved a nonsingular Q̂  matrix. This feature is instrumental in 

defining the matrix of endogenous supply elasticities.  Table 5 presents the endogenous 

own- and cross-price supply elasticities for three farms. 
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Table 5. Endogenous Own- and Cross-Supply Elasticities for Three Farms 
 
Farm 1 

Sugar 
Beet 

Soft  
Wheat 

 
Corn 

 
Barley 

S. Beet 0.2001 0.1952 0.1321 -0.1091 
S. Wheat 0.2815 0.6056 -0.2563 -0.1763 
Corn 0.2052 -0.2760 1.2485 -0.1514 
Barley -0.0089 -0.0100 -0.0079 0.5927 
     
Farm 2     
S. Beet 0.2487 0.2182 0.1855 0.0133 
S. Wheat 0.3081 0.4399 -0.2513 0.0162 
Corn 0.1454 -0.1395 1.5539 0.0191 
Barley 0.0012 0.0011 0.0023 0.4196 
     
Farm 3     
S. Beet 0.1839 0.1379 0.1727 -0.1676 
S. Wheat 0.2347 0.3725 0.2474 -0.5665 
Corn 0.4893 0.4121 0.4952 -0.9548 
Barley -0.0044 -0.0087 -0.0088 2.5417 
  

We stipulated that regional, exogenous own-price supply elasticities were 

available in the magnitude of 0.5 for sugar beet, 0.4 for soft wheat, 0.6 for corn and 0.3 

for barley.  The endogenous own-price elasticities of all farms were aggregated to be 

consistent with the regional exogenous elasticities according to relation (37).  Table 6 

presents the farms’ own-price supply elasticities and the revenue weights used in the 

aggregation relation. 

 

Table 6. Disaggregation/Aggregation of the Regional, Exogenous Supply Elasticities. 
                  Exogenous Own-Supply Elasticities             Revenue Weights 
 
Farms 

Sugar  
Beet:0.5 

Soft  
Wheat:0.4 

 
Corn: 0.6 

 
Barley: 0.3 

 Sugar  
Beet 

Soft  
Wheat 

 
Corn 

 
Barley 

1 0.2001 0.6056 1.2485 0.5927  0.0406 0.0291 0.0295 0.0165 
2 0.2487 0.4399 1.5539 0.4196  0.1334 0.0937 0.0489 0.0628 
3 0.1839 0.3725 0.4952 2.5417  0.0527 0.0446 0.0699 0.0070 
4 0.2225 0.4774 0.5665 0.9868  0.1000 0.0893 0.1383 0.0536 
5 0.1599 0.4512 0.8430 0.5691  0.0326 0.0413 0.0385 0.0256 
6 8.6932 0.9332 0.5011 0.1080  0.0371 0.0828 0.1151 0.1601 
7 0.0990 0.2906 0.3522 0.1918  0.0502 0.0688 0.0769 0.0606 
8 0.1347 0.2714 0.2307 0.0823  0.1288 0.1292 0.1022 0.0931 
9 0.1303 0.2670 0.3384 0.1544  0.0376 0.0335 0.0426 0.0576 

10 0.2954 0.3940 1.9745 0.9603  0.1027 0.0930 0.0649 0.0825 
11 0.1085 0.3682 0.2755 0.2195  0.0424 0.0737 0.0417 0.0539 
12 0.1843 0.2692 0.2407 0.1197  0.1555 0.1079 0.0685 0.1868 
13 0.0947 0.2861 0.4050 0.1486  0.0299 0.0336 0.0454 0.0689 
14 0.0883 0.2455 0.3772 0.1349  0.0564 0.0795 0.1175 0.0711 
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7. Calibrating Equilibrium Model  

With the estimates of the cost function parameters f̂ , ĝ,Q̂,Ĝ  it is possible to formulate a 

calibrating equilibrium model for each farm (sector, area) of the following structure 

   minCSC = z pt′yt + zdt′xt = 0          (41) 

subject to  

  ( ′f̂txt )ĝt + ĝt ( ′xtQ̂txt ) / 2 + ( ′f̂txt )Δ(yt
−1/2 ′) Ĝtyt

1/2 + z pt = bt +Vût  

   ( ′ĝtyt )f̂t + ( ′ĝtyt )Q̂txt + f̂t[(yt
1/2 ′) Ĝtyt

1/2 ]= pt + zdt  

with  xt ≥ 0,yt ≥ 0,z pt ≥ 0,zdt ≥ 0 . The variables z pt  and zdt  are slack-surplus variables 

of the primal and dual constraints, respectively. The solution of the equilibrium model 

(41) produces optimal values of the primal and dual variables, xt and yt  that are identical 

to the solution values of model (20)-(23).  Notice that the matrix of constant technical 

coefficients, At , no longer appears in the calibrating equilibrium model (41). This 

elimination removes the last vestige of a linear structure that has been considered too 

rigid for representing the choices of a producer. The objective function (CSC) of model 

(41) combines all the complementary slackness conditions of the farm (region, area) 

sample.  Hence, its optimal value must be equal to zero.  Model (41) can be used to 

perform response analysis to variations in prices, subsidies, quotas, input quantities, and 

other parameters for a variety of policy scenarios. 
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8. PMP Uniqueness With Missing Observations 

Empirical reality compels a further consideration of the above methodology in order to 

deal with farm samples where not all farms produce all commodities. It turns out that 

very little must be changed for obtaining a unique and calibrating solution in the presence 

of missing commodities, their prices and the corresponding technical coefficients.  

 To exemplify, suppose that the farm sample displays the following Table 7 of 

observed crop levels. 

 

Table 7. Observed Output Levels, , with non produced commodities 
  

Sugar Beet 
Soft 
Wheat 

 
Corn 

 
Barley 

Farm                     
1 1133.4240       0.0 341.3693 18.2398 
2 3103.7830   861.7445     0.0 59.8025 
3       0.0   450.7937 881.9748   0.0 
4 3488.3540   821.3934 1493.332 51.1247 
5   959.1102   468.2848       0.0 28.2406 
6   942.2039   801.1288 1283.591 152.581 
7 1600.7310       0.0 899.4739 66.9718 
8       0.0 1212.8550 1237.584 98.0497 
9 1050.5370   332.3773       0.0 63.6696 
10 3473.6780   952.5199 774.7402   0.0 
11       0.0   765.1689 501.9673 59.5366 
12 3276.1450 1100.1680     0.0 177.974 
13   877.0970   380.9171 564.6091 76.2122 
14 1430.9460       0.0 1309.392   0.0 
 

Other missing information deals with prices and unit accounting costs associated 

with the zero-levels of crops.  Furthermore, the technical coefficients of the farms not 

producing the observed crops also equal to zero. Hence, we can state that, for t = 1,...,T , 

the number of farms, and j = 1,..., J , the number of crops, if xtj = 0 , also ptj = 0,  ctj = 0  

and Atij = 0 .  Furthermore, suppose that only one input, land, is involved in this farm 

sample. Then, the land price is observed for all farms.  

x

x x x x
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As to the solution of the Phase I PMP specification, we expect that xtj = xtj + htj  

for xtj > 0 , and htj = xtj = 0  for xtj = 0 .  It turns out that the least-squares computation of 

the deviations uti  and htj  expressed by equation (29) produces the desired estimates of 

the deviations htj  and crop levels xtj  when the observed level of those crops equals zero, 

xtj = 0 .   This is so because the first term on the RHS of (29) is equal to zero by 

construction, bi − Aijj=1

J∑ x j = bi − (acresijj=1

J∑ / x j )x j = 0 .  The second term on the RHS 

of (29) reduces to zero because of the zero information about non-produced crops, 

pj − Aiji=1

I∑ yi − cj = 0 − 0yi − 0 = 0 . Therefore, ĥtj = x̂tj = 0  for xtj = 0  and the least-

squares PMP solution is unique also in this more elaborate case.  

The estimation of the cost function carries through as in section 6 without 

modification.  Also the Phase III calibrating model expressed in (41) needs no adjustment.   

 

9. Results for a farm sample with missing production of some crops 

The observed crop production of a 14-farm sample is given in Table 7. Also the 

corresponding output prices, ptj = 0 , and accounting costs, ctj = 0 , are part of the data 

sample for the no-production levels xtj = 0 , as reported in Table 7. Furthermore, Atij = 0  

for the same activities of no-production. 

Table 8 presents the unique least-squares estimates of the crop levels and the 

corresponding percentage deviation from the observed sample data. 

 

 

 



 20 

Table 8. Estimated Output Levels, x̂ , and Percent Deviation (dev) for the sample with 
missing crop production (compare with Table 7) 

  
Sugar Beet 

Soft 
Wheat 

 
Corn 

 
Barley 

Sugar 
Beet 

Soft 
Wheat 

 
Corn 

 
Barley 

Farm     x̂      x̂      x̂      x̂  % dev % dev % dev % dev 
1   1133.7140               0   341.9053   18.4843 0.0256          0 0.1570 1.3400 
2   3104.2820   862.1098       0.0000   60.1834 0.0161 0.0424          0 0.6369 
3                 0   450.7820   882.0680             0          0 -0.0026 0.0106          0 
4   3488.4150   821.5529 1493.6830   51.3938 0.0017 0.0194 0.0235 0.5264 
5     959.4208   468.2891               0   28.5614 0.0324 0.0009          0 1.1360 
6     942.6667   801.6001 1284.1790 153.1671 0.0491 0.0588 0.0458 0.3840 
7   1601.1000               0   900.0223   67.4290 0.0231          0 0.0610 0.6825 
8                  0 1213.4210 1238.1750   98.4298         0 0.0466 0.0478 0.3876 
9   1050.9910   333.0022                0   64.2084 0.0433 0.1880          0 0.8463 
10   3474.0410   952.8955  775.2208              0 0.0105 0.0394 0.0620         0 
11                  0   765.5305  502.4727   59.9640          0 0.0473 0.1007 0.7179 
12   3276.6110 1100.5140               0 178.5547 0.0142 0.0314         0 0.3260 
13      877.5201   381.1268  565.2019   76.7330 0.0482 0.0550 0.1050 0.6833 
14   1431.3200                0 1309.8500              0 0.0261          0 0.0350         0 

 

 Except for two cells, the percent deviations of the estimated crop levels from the 

observed production quantities are below 1 percent. The cells with a zero estimated 

quantity level correspond to the cells with observed zero level of production, as in Table 

7.  Table 9 presents the estimated land price and the percent deviation from the observed 

input price. 

Table 9.  Deviations of  from  
 Estimated 

Land 
Prices    

Observed 
Land 
Prices    

 
Percent 
Deviation 

Farm       ŷ         % 
1 4.428035 4.42 0.1818 
2 4.382827 4.38 0.0645 
3 6.980315 6.98 0.0045 
4 5.731801 5.73 0.0314 
5 4.402587 4.40 0.0588 
6 1.861460 1.86 0.0785 
7 3.653809 3.65 0.1044 
8 3.362198 3.36 0.0654 
9 2.756308 2.75 0.2294 
10 4.281756 4.28 0.0410 
11 3.283229 3.28 0.0984 
12 1.931129 1.93 0.0585 
13 2.322881 2.32 0.1242 
14 4.031362 4.03 0.0338 

ŷ y

y
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The deviations of the estimated land prices from the observed prices are all below 

one percent. Table 10 presents the estimates of the parameters of the cost function under 

the condition of zero production for some crops in various farms. 

 

Table 10.  Intercepts ,  and  Matrix of the Marginal Cost and Input Demand 
Functions for the case of zero production of some crop in various farms 
 
 
Farm 

                                    
     

Sugar 
Beet 

Soft 
Wheat 

 
Corn 

 
Barley 

  
      

 

     

 

  

 
  

1 -0.15426 0.00274 0.73961 -0.11144  0.00686 -1.9508 75.930 0.03038 
2 0.07435 -0.14574 0.03714 0.32875  0.00495 -3.1350 124.945 0.02171 
3 0.03532 0.27086 -0.11507 0.03964  0.00052 -1.0871 20.595 0.00363 
4 -0.02920 0.07372 0.10372 0.85513  0.00441 -2.4222 157.570 0.02530 
5 0.02132 0.01858 0.11481 0.06645  0.00754 -2.3602 31.051 0.03318 
6 0.22974 0.22787 -0.02587 0.26590  0.01186 -5.3411 406.732 0.02208 
7 0.13824 -0.00074 -0.14506 0.29086  0.00273 -3.6725 110.382 0.00997 
8 0.01525 0.40319 -0.12078 -0.17109  0.01373 -3.0222 322.849 0.04616 
9 0.11620 -0.08339 0.00722 -0.03553  0.00499 -2.9037 92.071 0.01375 

10 -0.00636 0.36252 -0.14708 0.00406  0.00076 -2.4324 209.320 0.00325 
11 0.00236 0.30162 -0.12984 -0.24600  0.00764 -2.8158 150.906 0.02507 
12 0.10700 0.16788 0.00002 0.57873  0.00004 -2.6811 638.676 0.00001 
13 0.24139 0.42193 -0.25400 -0.19708  0.01046 -2.9149 213.946 0.02431 
14 0.05358 0.06649 0.07745 0.01622  0.00686 -2.6086 178.140 0.03038 

 

Table 11 presents the own price elasticities of the 14 farms that correspond to the 

observed and exogenous price elasticities of the four crops. 

 
Table 11. Disaggregation/Aggregation of the Regional, Exogenous Supply Elasticities 
when some crops are not produced in various farms 
                  Exogenous Own-Supply Elasticities             Revenue Weights 
 
Farms 

Sugar  
Beet:0.5 

Soft  
Wheat:0.4 

 
Corn: 0.6 

 
Barley: 0.3 

 Sugar  
Beet 

Soft  
Wheat 

 
Corn 

 
Barley 

1 0.257 0 0.385 0.722  0.0523 0 0.0368 0.0198 
2 0.289 0.409 0 0.251  0.1719 0.1139 0 0.0748 
3 0 0.515 1.740 0.000  0 0.0542 0.0871 0 
4 1.873 0.262 0.428 0.333  0.1288 0.1086 0.1726 0.0639 
5 0.381 0.577 0 0.445  0.0421 0.0502 0 0.0306 
6 0.052 0.221 0.322 0.120  0.0479 0.1007 0.1437 0.1904 
7 0.149 0 0.656 0.225  0.0647 0 0.0960 0.0723 
8 0 0.329 0.294 0.122  0 0.1571 0.1275 0.1108 
9 0.212 0.407 0 0.335  0.0485 0.0408 0 0.0688 

10 0.241 0.309 0.794 0  0.1323 0.1130 0.0810 0 
11 0 0.399 0.313 0.268  0 0.0896 0.0520 0.0643 
12 0.487 0.714 0 0.531  0.2004 0.1311 0 0.2220 
13 0.142 0.325 0.837 0.259  0.0385 0.0409 0.0567 0.0822 
14 0.305 0 0.583 0  0.0727 0 0.1465 0 

f̂ ĝ Ĝ

f̂

ĝ Ĝ ˆ′f x̂ ˆ ′g ŷ
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The calibrating model (41) applies also to this data sample without any modification. 

 

10. Conclusion 

We have achieved the objective of using all the available information about output 

quantities and input prices, and the formulation of a calibrating PMP model that is free of 

the rigidities of a linear programming structure. In the process, we dispense with the 

necessity of dealing with the user-determined vector of small and arbitrary positive 

numbers ε  which is required by the traditional PMP methodology. We also demonstrated 

the uniqueness of the calibrating solution. Two empirical examples were presented.  In 

the first sample of 14 farms and 4 crops, all farms produce every commodity. In the 

second sample, some of the farms do not produce all the commodities.  This is the typical 

case. It is shown that the uniqueness of the calibrating solution is maintained also in this 

more elaborate case.   
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