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Heteroscedastic Tobit Models: The Household Demand for Fresh 

Potatoes Revisited 

The use of limited dependent variable models to estimate food demand 

and/or Engel functions using cross-sectional data has become standard 

practice in the agricultural economics literature (e.g., Lane; Thraen , 

Hammond , and Buxton; Huang, et al . (1981); Cox, Ziemer, and Chavas (CZC); 

Senauer and Young; Cox and Wohlgenant; McCracken and Brandt; Haines, Guilkey , 

and Popkin). As is well known, limited dependent variable models such as 

tobit correct for the censoring (or truncation) of cross-sectional food 

consumption data due to non-consumption during the survey's observation 

period. Most applications, however, assume a homoscedastic variance 

specification despite the fact that cross-sectional data are frequently 

heteroscedastic (Prais and Houthakker; Fomby, Hill, and Johnson). 

Heteroscedastic tobit specifications in the agricultural economics literature 

include Huang, Raunikar, and Tynan (HRT) and Lee. 

In contrast to the general linear model where heteroscedasticity results 

in a loss of efficiency but does not bias the parameter estimates, non

homoscedastic variances in the tobit model are much more problematical. The 

maximum likelihood (ML) tobit estimator has been shown to be inconsistent and 

biased in the context of truncated samples (i.e., only the non-limit 

observations are available) by Hurd, and in censored samples by Arabmazar and 

Schmidt , and Maddala and Nelson. While the direction of bias resulting from 

this type of mis-specification is not clear analytically (Maddala and Nelson; 

Maddala), there is some empirical evidence that" ... estimated parameters, 

marginal effects, and elasticity measures are underestimated when 

homoscedasticity is assumed" (HRT, p. 203) . Given that cross-sectional 
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demand models are often heteroscedastic, applied economists are interested in 

the magnitudes and significance of the differences in these response measures 

estimated under alternative variance specifications . While HRT found that 

total elasticities are similar under both specifications (i . e . , homoscedastic 

versus heteroscedastic), the component (conditional and market entry) 

elasticities vary much more between the alternative specifications . However, 

HRT provide no measures of the statistical significance of these differenc es. 

The purpose of this paper is to provide further insight into the impacts 

of alternative heteroscedastic variance specifications in the tobit model. 

We generalize the previous work of HRT in three directions : (1) we allow for 

three common heteroscedasticity specifications following Fomby, Hill, and 

Johnson; (2) , we compute approximate, asymptotic standard errors on the 

total, conditional and market entry elasticities following CZC ; and (3), we 

statistically test for the significance of the differences in these 

elasticity estimates from alternative variance specifications . These 

specifications and their associated tobit likelihood functions are presented 

first , followed by an extension of the McDonald and Moffitt tobit 

decomposit~ons to the general heteroscedastic context. These results show 

that heteroscedastic tobit specifications are straightforward gene ralizations 

of the homoscedastic case. Next, the impacts of alternative tobit variance 

specifications are examined using the fresh potato model and da t a of CZC. 

Estimation results are then compared in the following order: . parameter 

estimates, marginal effects (elasticities), and tests of the significance of 

the differences in elasticities for the alternative specifications . 

Conclusions and summary are then provided. 
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Alternative Variance Specifications of the Tobit Model 

A general tobit model allowing for either heteroscedastic or 

homoscedastic variances can be specified as 

if XitJ+ci > 0 
(1) Yi -

0 

where £i _ IN(O,at) . Xi is a lxK vector of regressors, and Pis a Kxl vector 

of parameters to be estimated . Letting ai - ai(S) denote the dependence of 

each variance specification on the parameter vector S, the sample likelihood 

function associated with (1) is 

(2) L(tJ,S) - Il(l-~(tJ,ai))Il(2~at)·l/2 exp( (-1/2) ((Yi-XitJ) / ai) 2 ) 
0 1 

where ~(tJ,ai) • ~i(XitJ/ai) • ~i is the standard normal cumulative 

distribution function (with the associated density function ~(tJ,ai) • ~i • 

(2~)·l/2 exp((-1/ 2) (XitJ/ ai)2)) and 0 - {Yi: Yi - 0}, 1 - {Yi: Yi> 0}. The 

associated log likelihood function is 

(3) 

We refer to the variance af under four specifications: homoscedastic, 

and following Fomby, Hill and Johnson ( pp . 177-187) , three heteroscedastic 

cases : 

(4a) VARO : a2 
1. - a2 - So (Homoscedastic) 

(4b) VARl : a2 
1. ZiS (Linear Variance) 

(4c ) VAR2 : at - (ZiS)2 (Linear Standard Deviation or Squared Variance ) 

(4d) VAR3: at - exp(ZiS ) (Multiplicativ e or Exponential Variance) 
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where, in each case other than (4a), Zi is a lxK1 vector of some subset of 

the regressors Xi (including an intercept term corresponding to 50 ), 5 is a 

K1xl vector of parameters to be estimated, and 5o is a scalar variance 

parameter in (4a) . Note that (4b)-(4d) nest the homoscedastic case (4a) when 

Sj - 0 for all j > 0 (i.e., 50 - (o2 , 2 
0 ' o, logo} for VARO-VAR3) . 

Following Maddala and HRT, likelihood ratio tests are appropriate for testing 

the null hypothesis of homoscedasticity (5j - 0 for all j > 0) against each 

alternative variance specification. 

The first partial derivatives of the log likelihood with respect to p 

(regardless of the variance specification) are 

(5) 
8logL 

ap 

The general form of the first partial derivatives of the log likelihood with 

respect to 5, via the chain rule, are 

(6) 

where 

(7) 

alogL 

a5 

alogL ---
aof 

alogL aof 
aof as 

and the alternative variance specifications (4a)-(4d) imply 

(Sa) aof - 1 (VARO) 
as 

(Sb) (VARl) 

(Sc) (VAR2) 

(Sd) (VAR3) . 
a5 



.• 

l 

5 

Note that (6), (7), and (Sc) correspond to the heteroscedasticity formulation 

found in Maddala (p . lSO) and HRT . Similarly , (6), (7) and (Sa) correspond to 

the traditional homoscedastic tobit results . Thus , analytical expressions 

for these first derivatives with respect to 6 are straight forward 

generalizations of the homoscedastic results .11 

Given the ease of implementation and accuracy of numerically 

approximating the matrix of second partial derivatives with software such as 

GAUSS, the analytical expressions for the second derivatives of the 

alternative log likelihood functions are perhaps of less interest . In the 

present context , however, again note that the chain rule yields the following 

result similar to (6) above: 

(9) 
a2logL a2logL ao! ao! + alogL a2ot 
asas· ao!ao! as ao' aot asao' 

a2logL a2logL aot 
a pas· apaot ao' 

(10) 

where aof/ao is defined in (Sa)-(Sd), a2of/ aoa6' - (0 , 0, 2Z~Zi, o1z~Zi} for 

VAR0-VAR3, respectively, and where a2logL/ 8ot8ot and a2logL/apaof are the 

second derivatives of the homoscedastic tobit likelihood function as found in 

Amemiya (pp . 1000-1) or Maddala (pp. 154-155).21 The second derivatives with 

respect to fJ are identical to the homoscedastic results regardless of the 

variance specification (see Amemiya ; Maddala) . Hence, analytical second 

derivatives for these alternative variance specifications are also straight 

forward extensions of the homoscedastic results .11 
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Alternative Expectations, Marginal Effects and Elasticities 

McDonald and Moffitt's decomposition for the homoscedastic Tobit model 

can also be generalized to include heteroscedastic formulations . These 

results are simplified considerably through use of the chain rule similar to 

(6) , (9), and (10) above. Following McDonald and Moffitt , the Tobit 

conditional (EY*) and unconditional (EY) expectations generalize under 

heteroscedasticity as 

(11) EY~ - E(YilYi > 0) 

- XiP + ui~(zi)/~(zi) 

(12a) 

(12b) 

where Zi - XiP/ ui and (11), (12a) and (12b) correspond to (3 ), (2), and (4) 

of McDonald and Moffitt (p. 318), respectively . 

From (12b) , the marginal effects of the regressors of EY yield the 

identity 

(13) 

* Hence , analytical expressions for 8EYi/ axk and a~(zi) /8xk under the 

alternative variance specifications are required to compute this total effect 

decomposition . The marginal effect of the regressors on the probability of 

being above the limit ( i . e ., Y > 0) is 
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a~i azi 
(14) -- - ~i 

axk axk 

a~i a~i aa2 
i - -- + 

axk a2 aa2 axk 
i i 

respectively, and ~-XiOk - ~ifikfai corresponds to VARO , the homoscedastic 

case in McDonald and Moffitt ((6) , p.319) .~ Also, aai/ axk - 0 for all Xk I 

Z, i . e. any regressor not part of the variance specification . Hence , the 

change in the probability of being above the limit has two components under 

VAR1-VAR3 : a direct effect similar to the homoscedastic response (i . e., 

~-XiOk) and an indirect effect via the heteroscedastic variance. The 

direction of the bias introduced by omi tting this indirect e f f ect i s unc l ear 

as the signs of Zi and 5k are unknown a priori . 

Similarly, note that heteroscedastic variances imply direct and indirect 

marginal effects on the conditional expectation EY* where the indirect 

effects originate in the ai~i/~i component of (11). To see this , note that 

(15) 
8EY* 

i + 
* 2 8EYi 8ai 

----
aa? axk 

l. 

- EY~XiOk + ( l/2ai )(~1/~1 )[ l + z i + Zi~i/~i l 
axk 
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where EY~XiOk - Pk[l - Zi~i/~i - (~i/~i) 2 J corresponds to the homoscedastic 

(constant variance) marginal response of EY* to the regressor Xk as in 

McDonald and Moffitt ((7), p.319), and a(a?)/axk - 0 for all Xk I z.~ 
]. 

Last, substitution of (14) and (15) into (13) yields the so called total 

effect (actually, the marginal response of unconditional expectation) due to 

the ~ regressor as 

(16) + 

where EY_XiOk - Pk~i is the constant variance total response (McDonald and 

Moffitt, p.319) . .21 Elasticity conversion of the marginal effects (13)-(16) 

is straightforward (HRT, p.202, footnote 3). As noted by HRT in an 

elasticity context (p.202, footnote 3), any two estimates from (14), (15), 

and (16) will yield the third given the decomposition in (13). Hence, it may 

be convenient to compute (15) from (13), (14), and (16) as do HRT. 

The preceeding discussion demonstrates that heteroscedastic variances 

are straightforward chain rule extensions of the homoscedastic Tobit model. 

Given the potential bias in estimating marginal responses suggested by ( 14), 

(15), and (16) (i.e. through the heteroscedastic variance induced components 

which augment the constant variance effects), applied researchers may wish to 

evaluate the magnitude and significance of the differences in marginal 

responses computed from heteroscedastic versus homoscedastic specifications. 
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While HRT provide some insight concerning magnitude differences, statistical 

tests for significant differences are not provided. 

The Data and Empirical Model 

Since our intent is to implement and show the impact alternative 

variance specifications on homoscedastic Tobit models commonly estimated in 

the literature, we analyze the fresh potato model and data used in CZC. We 

utilize data from the USDA 1977-78 Nationwide Food Consumption Survey (NFCS) 

to estimate the demand for at home fresh potato consumption in the Western 

region as a function of prices (fresh potatoes (PFRESH); frozen potatoes 

(PFROZEN); and dehydrated potatoes (PDEHYDRA)), family size (family size 

squared (FSIZE2)); 21 meal size (21MEALSIZE); and age/sex categories (number 

of household members: children less than 5 years old (KIDS<S); children age 

6-15 (KIDS>S); adult females (FADULT); and adult males (MADULT)), the 

logarithm of income (LOGINCOME), and dummy variables for sex of meal planner 

MALEPLAN (male - 1), education of meal planner (ELEMED, elementary school -

l; COLLED, college education - 1), urbanization (SUBURB, suburban - l; 

NMETRO, non-metro - 1), and geographic subregion (PACIFIC, pacific - 1). The 

omitted dummy variable categories are: female meal planner with high school 

education, metro, and mountain region. See CZC for more details concerning 

these data and the demand specification. 

We follow CZC in computing asymptotic standard errors for elasticities 

associated with the total, conditional and market entry components of (13) .ll 

Similarly, we follow CZC and use these standard errors to compute asymptotic 

"t-tests" of the significance of the differences between elasticity estimates 
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generated under alternative variance assumptions . .§.! The results are prov ided 

in Table 2 . 

Results 

The four alternative variance specifications of the tobit model are 

estimated by maximum likelihood (ML) techniques .21 The resultant parameter 

estimates and model summary statistics are compared in Table 1. As the 

parameters of Table 1 reflect the marginal effects of the regressors on the 

unobserved, latent variable (Maddala), it is frequently more insightful to 

contrast the marginal effects (13) . Table 2 summarizes these contrasts in 

elasticity format as the decomposition of the tobit elasticities associated 

with the parameter estimates of Table 1 . Table 3 then compares the magnitude 

and significance of the differences between these alternative elasticity 

estimates . 

We evaluated several heteroscedastic variance specifications as subsets 

of CZC's original model . While economic theory does not provide much 

guidance concerning specification of the Z matrix in (4b ) - (4d), we found 

little evidence nor justification for including prices; hence our variance 

specifications are restricted to household characteristics (income, family 

size and composition) . While other potential sources of heteroscedasticity 

could be explored more fully , the model results we present performed qui t e 

well across all heteroscedastic specifications . lQ/ Hence , we hold this Z 

specification constant across the heteroscedastic models for comparison 

purposes . 

Similar to the findings of HRT (p . 200 and their Table 2) , we find that 

the relative standard errors of all heteroscedastic specifications in Table 1 
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are generally smaller than the comparable homoscedastic results. Hence, the 

significance levels of the heteroscedastic parameter estimates are generally 

higher than the homoscedastic results. Exceptions include the parameters for 

income (LOGINCOME), male meal planners (MALEPLAN), non-metro areas (NMETRO), 

and pacific subregion (PACIFIC). Note, however, that income is also a highly 

significant parameter in all heteroscedastic specifications (DLOGINCOME) . 

All parameters of the heteroscedastic specifications are significant at 

standard a levels (with the exception of 21-meal-size (21MEALSIZE)) and 

negative (with the exceptions of DINTERCEPT (as expected), family size 

squared (FSIZE2) and 21-meal-size (21MEAL)). The absolute value of the 

parameter estimates is smaller under all heteroscedastic specifications with 

the exceptions of price of frozen potatoes (PFROZEN), family size squared 

(FSIZE2), older children (KIDS>S), adult males (MADULT) and adult females 

(FADULT). However, as FMSIZE2, KIDS>S, MADULT, and FADULT all have large and 

highly significant 6 estimates, the total impact of these regressors cannot 

be assessed from the parameter estimates in Table 1. 

Comparison of the regression summary statistics from Table 1 indicates 

that all heteroscedastic specifications have greater log likelihood function 

values than does the homoscedastic specification. As the heteroscedastic 

specifications also have more parameters, this result is not unexpected. The 

magnitude ranking of the log likelihood function values, (VARl , VAR2, VAR3, 

VARO), while not a statistical test, indicates that VARl and VAR2 outperform 

VARO, as does VAR3 to a lesser extent. Of the three heteroscedastic 

specifications, VAR3 appears to offer the smallest marginal improvement over 

VARO using this informal criterion . 
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Following Maddala (p. 180) and HRT, the heteroscedastic .specifications 

nest the homoscedastic case (VARO) when 5i - 0 for all i other than the 

intercept, 5o . The likelihood ratio tests of the null hypothesis of 

homoscedastic variances versus the alternative heteroscedastic specifications 

are 248.12, 282 . 34 and 266 . 38 for VAR1-VAR3, respectively. These tests are 

asymptotically distributed as chi-square with 7 degrees of freedom (i.e., the 

difference in the number of parameters for VAR1-VAR3 versus VARO). Given the 

corresponding critical Chi-Square value (18 . S at the 0.01 percent level) , it 

follows that the null hypotheses of homoscedastic variance are soundly 

rejected in favor of heteroscedastic specifications . Similar results were 

found by HRT with respect to VAR2 in the context of broiler expenditures. 

The four remaining performance measures of Table 1 are prediction 

criteria summarized across the sample used for estimation. CORR(Y,EY) and 

RMSE(EY) are the correlation of the observed dependent variable with the 

unconditional expectation from (12a) and the associated root mean square 

error computed over the full sample . CORR(Yl , EY*) and RMSE(EY*) are 

similarly defined for the conditional expectation from (11) computed over the 

conditional or non-limit sample (i . e., Y > 0) . The magnitude ranking of the 

unconditional prediction based summary measures is {VARO, VARl, VAR2, and 

VAR3}. VARl and VAR2 are quite similar with VAR3 marginally worse in 

predictive power in these data. The magnitude ranking of the conditional 

sample relative predictive power is (VAR1/VAR2, VARO, VAR3} for the 

CORR(Yl,EY*) measure and (VARl, VAR2, VAR3, VARO} for the RMSE(EY*) measure. 

Based on these predictive criteria , it follows that the homoscedastic model 

predicts better over the full sample while VARl and VAR2 predict better over 
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the conditional sample; hence no clear preference among these estimators 

emerges based on these prediction criteria.111 

As indicated in the discussion of (13)-(16) above, the regressors 

contained in Z have both direct (i.e., via the P's) and indirect (i.e., via 

the S's in the variance specification) impacts. Hence, it is more meaningful 

to compare the estimated "total" (i.e., direct and indirect) marginal effects 

across models rather than the estimated parameters from Table 1 . We 

summarize these effects as elasticities. In order to demonstrate impacts of 

the a lternative variance specifications and to facilitate comparison with CZC 

results, we limit our discussion to the elasticities presented by CZC, that 

is, t h e elasticity effects of PFRESH, PFROZEN, PDEHYDRA, LOGINCOME, and 

21MEALSIZE . These elasticities and their associated significance levels are 

summarized in Table 2 . l.2./ 

The price elasticities of Table 2 summarize direct effects (since these 

variables are not used in the variance specification) and demonstrate the 

impacts of alternative variance specifications on factors not inducing 

heteroscedasticity. The PFRESH elasticities are smaller (in absolute value) 

and of equal statistical significance under VAR1-VAR3 relative to VARO for 

all elasticities (i.e., total, market entry, and conditional). In contrast, 

the PFROZEN elasticities are larger and statistically significant at higher 

alpha levels under all heteroscedastic specifications relative to the 

homoscedastic. The PDEHYDRA elasticities are not statistically significant 

for any elasticity measure nor specification. 

Table 3 indicates, however, that none of these differences among the 

alternative price elasticity estimates are statistically significant. Hence, 

the decomposition of total price effects into market entry and conditional 
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components also do not differ significantly by variance specification. These 

results suggests that, for the model and data estimated , the variance 

specification does not have statistically significant impacts on response 

measures for variables that are not part of the variance specification. 

Similar to the HRT results, however, variables with indirect effects can 

generate statistically significant differences in response measures . The 

total elasticities for both LOGINCOME and 21MEALSIZE are smaller in magnitude 

(absolute value for LOGINCOME) under VARO than VAR1-VAR3 a result similar to 

HRT (p . 202) . Despite the facts of modest improvement in parameter 

significance under VAR1-VAR3, total elasticities which are statistically 

significant at the 5 percent level or better, and some relatively large 

magnitude differences (e.g., LOGINCOME for VARO versus VAR3), Table 3 

indicates that none of these differences in total elasticities are 

statistically significant . 

Similar to HRT, and in contrast to the price elasticities and total 

elasticities for LOGINCOME and 2IMEALSIZE discussed above, the variations in 

the component elasticities can be quite different . For example, while there 

are no significant differences among any of the market entry or conditional 

elasticities for 21MEALSIZE (Table 3), all of the heteroscedastic models 

indicate small and statistically insignificant market entry elasticities but 

sizable and statistically significant conditional elasticities associated 

with LOGINCOME (Table 2) . As indicated in Table 3 , the heteroscedastic 

estimates of market entry and conditional LOGINCOME elasticities are 

statistically different from the homoscedastic estimates. Given that the 

heteroscedastic LOGINCOME conditional elasticities are 2-5 times as large as 

the homoscedastic estimate, the alternative variance specifications can have 
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further demonstrated in Table 3 where the VARl conditional elasticity 

estimates for LOGINCOME are statistically different from both the VAR2 and 

VAR3 results . Given the likelihood ratio tests of the homoscedastic versus 

the alternative variance specification above, these results suggest that some 

of the elasticity estimates in CZC are quite questionable and that more 

attention to the variance specifications in tobit models is warranted. 

Summary and Conclusions 

The objectives of this article were to generalize the work of HRT in 

analyzing the impacts of alternative variance specifications for the commonly 

estimated homoscedastic tobit model . The results show three heteroscedastic 

specifications that are chain-rule extensions of the homoscedastic case when 

the sources of heteroscedasticity are a subset of the original independent 

variables . These generalizations are computationally easy to implement using 

ML procedures (such as found in GAUSS or TSP) and are amenable to testing 

heteroscedastic versus homoscedastic null hypotheses using likelihood ratio 

tests. Tobit elasticity decomposition procedures (following McDonald and 

Moffitt) also generalize in an intuitive manner using a chain-rule approach. 

Analytical expressions for these decompositions are provided in the hope that 

applied economists will use them to approximate asymptotic standard errors 

for the point elasticity estimates that usually are presented (alone ) in the 

agricultural economics literature (9ee CZC). 

The empirical application to the model and data used by CZC demonstrates 

the variety of impacts alternative variance specifications have on tobit 

models commonly found in the literature. In contrast to the HRT results , the 

computation of standard errors for the tobit elasticities allows comparison 
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of the statistical significance of the differences in alternative elasticity 

estimates . Thus, while magnitude results for total elasticities similar to 

HRT were found (i . e ., generally smaller under homoscedasticity for variables 

that are part of the heteroscedastic specification), none of the differences 

were statistically significant . Similar to the HRT results, significantly 

different market entry and conditional elasticity estimates for income were 

found under heteroscedasticity, while no significant differences were found 

for 21-meal-size. Both of these variables were used in the heteroscedastic 

specification. Last, the alternative variance specifications were found to 

have no significant impacts on the elasticity effects of regressors which 

were not part of the variance specification . 

Since most cross-sectional food consumption data can be expected to 

manifest heteroscedastic variances, appropriate research procedures should be 

to test for its presence and perform corrections where necessary. In 

contrast to the general linear model, the costs of failure to do so in a 

limited dependent variable context are loss of parameter unbiasedness and 

consistency. In the context of the tobit models discussed, alternative 

heteroscedastic specifications are straight forward generalizations of 

extant, ML homoscedastic estimation routines. Hopefully this paper will make 

these procedures easier to implement and more widely used . 
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ENDNOTES 

Note that (7) is scalar at each observation; hence, evaluating this 
scalar and the associated (8a)-(8d) via (6) yields the derivatives of 
interest . 

21 Notational correspondence between these cites and that used in this 
paper follows by noting that oifi - ¢i, Fi - ~i· 

ll These analytical expressions are not presented here to conserve space, 
but are available from the authors on request. 

!±/ Note that for VAR2, (14) yields (¢i/oi)[Pk-Zi6k] as found in HRT (eq 
(7), footnote 2, p. 200) . 

21 Again note that for VAR2 (i.e., 8of/8xk - aoiok), (15) yields (6) of HRT 
(p.200, footnote 2). 

9.1 For VAR2, (16) yields (8) of HRT (p. 200, footnote 2) . Note the typo 
where their 6jF(Z) in (8) should be 6jf(Z) using F(Z) - ~i and f(Z) - ¢i 
to convert the HRT notation to that used here. 

ll We wish to thank Tom Cox for supplying his SAS PROC IML code (as well as 
the data used) for computation of these standard errors using analytical 
expressions for the homoskedastic case. We compared these results with 
those using numerical derivatives and found virtually identical results. 
As the analytical expressions required for the heteroscedastic 
specifications are extremely tedious, this comparison suggests that it 
is quite reasonable to use numerical derivatives for this purpose. 
Given the relative ease of using these numerical procedures with 
software such as GAUSS or SAS PROC IML, it follows that statistical 
bounds on these point estimates are relatively easy to obtain . 

~ In contrast to CZC, however, note that the parameter estimates (p,6) 
(and hence, the associated elasticity response measures) from the 
alternative variance spec ifications are independent. Thus, the variance 
of the difference between two elasticities from alternative 
specifications has no covariance term (see CZC, p.50, footnote 12). 
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21 All ML results are computed using analytical derivatives and the method 
of Newton (Fomby, Hill and Johnson, pp.610-611) with a log likelihood 
convergence criterion of 0 . 001 . All specifications were verified using 
numerical derivatives, as well. As expected, the use of analytical 
derivatives converged more quickly (but took longer for each 
iteration) , compared to the use of numerical derivatives. The estimated 
parameter variance-covariance matrices reported here, however, are 
computed from the analytical hessians of the alternative likelihood 
functions via (6) , (7), (8a)-(8d), (9), and (10) following Amemiya and 
Maddala. 

lQ/ Note that nested hypotheses concerning the specification of Z are easily 
generated . More exhaustive analyses of the variance specifications 
could thus use likelihood ratio tests to guide and motivate the final 
specification. However, this would entail additional computation 
expense. Moreover, possible pre -test bias remains a concern. Finally, 
these issues, while potentially interesting, are not the focus of this 
paper . 

11/ It should be noted that if relative prediction accuracy is the research 
objective, then all of these Tobit models are likely to be found 
inferior to censored (full sample) or truncated (conditional sample ) 
ordinary least squares (OLS) . See Cox and Ziemer for discussion of this 
issue in the context of the homoskedastic Tobit model. In contrast, 
research interest in unbiased estimates of the marginal impacts of 
regressors in the context of limited dependent variables generally 
motivates the use of tobit-type models. 

12./ The approximate , asymptotic standard errors for these measures as well 
as the continuous regressors not discussed by CZC ( and not presented 
here), are available upon request. 
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Table 1. Comparison of Maximum Likelihood Tobit Parameter Estimates for 
Alternative Variance Specifications. 

REGRESSORS VARO VARl VAR2 VAR3 

----------- --------- - BETA'S -------------------------
INTERCPT -0 . 408 -2.305* -2.127* -1.675 

(1. 350) (1.271) (1.262) (1. 269) 

FRESH -4 . 927*** -3.244*** -3 . 130*** -3.289*** 
(1.159) (0.957) (0.973) (0.995) 

FROZEN 1. 828* 2 . 208*** 2 . 135*** 1 . 938** 
(0 . 996) (0.818) (0 . 819) (0.835) 

DEHYDRA 0.768 0 . 571 0.570 0.521 
(0 . 496) (0.403) (0.408) (0.418) 

PSIZE2 -0 . 077*** -0 . 151*** -0.157*** -0.145*** 
(0.028) (0.046) (0.049) (0.050) 

21MEALSIZE 0.015*** 0.015*** 0.015*** 0.015*** 
(0 . 002) (0.001) (0 . 001) (0.001) 

LOG INCOME -0 . 255** -0.097 -0.124 -0.160 
(0 .129) (0.127) (0.121) (0.122) 

MALE PLAN -1.188*** -0.812** -0.773** -0. 772** 
(0.418) (0.353) (0.351) (0.357) 

ELEM ED 1 .136*** 0.959*** 0. 927*** 0.916*** 
(0.346) (0.321) (0.325) (0 . 327) 

COLLED -0 . 966*** -0 . 859*** -0 . 859*** -0 . 852*** 
(0.214) (0.178) (0 .177 ) (0.181) 

SUBURB 0.059 -0.042 -0.008 0.031 
(0 . 229) (0 .188 ) (0.188) (0.193) 

NMETRO 0.917*** 0.543** 0.578** 0.639*** 
(0 . 273) (0.233) (0.234) (0.237) 

PACIFIC -0 . 580** -0.329 -0.376* -0.406* 
(0 . 271) (0.228) (0.228) (0.233) 

KIDS<5 -0.429 -0.021 0 . 036 0 . 029 
(0.299) (0.353) (0.365) (0 .367) 

KIDS>5 0.497* 0.849** 0.858** 0.757** 
(0.288) (0 .358) (0. 376 ) (0.380) 
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Table 1. Continued. 

REGRESSORS VARO VARl VAR2 VAR3 

MADULTS 1. 010*** 1 . 294*** 1.323*** 1.274*** 
(0.284) (0.327) (0.334) (0.337) 

FADULTS 0.053 0 . 636 0.700* 0.696* 
(0.332) (0 . 394) (0. 395) (0.391) 

------------ DELTA'S (VARIANCE ELEMENTS) -------------

DINTERCEPT 18.736*** 49.298*** 9.350*** 5.364*** 
(0.700) (3.625) (0.890) (0. 460 ) 

DLOGINCOME -3.190*** -0.574*** -0.296*** 
(0.365) (0 .112) (0.057 ) 

DFSIZE2 2.833*** 0.244*** 0.068*** 
(0.477) (0.043) (0.014) 

D21MEALSIZE 0 . 009 0.002* 0.001 
(0.006) (0 . 001) (0.001) 

DKIDS<S -15.006*** -1.409*** -0.467*** 
(2.709) (0.294) (0. 121) 

DKIDS>5 -14.472*** -1.131*** -0.223* 
(3 . 245) (0.324) (0.128) 

DMADULTS -12.892*** -1. 216*** -0.367*** 
(2.42 3) (0.283) (0. 123) 

DFADULTS -9.030*** -0. 734** -0.184 
(2.922) (0 . 314) (0. 133) 

PREDICTED VARIANCE 18 .74 17 .99 16 . 22 14.95 

REGRESSION SUMMARY STATISTICS: 

LOGL -4980 . 870 -4838.810 -4839.700 -4847.680 
CORR(Y,EY) 0 . 497 0.483 0.482 0.421 
RMSE(EY) 3.393 3.416 3 .418 3. 571 
CORR(Yl,EY*) 0.236 0.317 0.317 0.247 
RMSE(EY*) 3 . 722 3.679 3.700 4.357 

NOTE: Standard errors are in parentheses. Significance levels for alpha 
0.10, 0.05, and 0 . 01 are indicated by*, **, and***, respectively. 
The variance specifications are denoted as: VARO - Homoskedastic 
Variance; VARl - Linear Variance; VAR2 - Linear Standard Deviation; • 
and, VAR3 - Multiplicative Variance. 

SOURCE: Computations by the authors. 
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Table 2. Comparison of McDonald and Moffitt Tobit Decompositions for the 
Alternative Variance Specifications : Selected Regressors as Elasticities . 

~: 

SOURCE : 

REGRESSOR VARO VARl VAR2 VAR3 

Total Effect Elasticities 

PFRESH -.170*** - . 112*** - . 113*** -.122*** 

PFROZEN . 210* . 253*** . 255*** .239** 

PDEHYDRA . 183 .135 . 141 .133 

LNINCOME - . 567** - . 657** - . 981*** -1. 085*** 

21MEALSIZE .929*** .918*** .982*** 1.009*** 

Market Entry Elasticities 

PFRESH -.091*** -.059*** -.059*** -.063*** 

PFROZEN . 113* .132*** .133*** .123** 

PDEHYDRA . 098 . 071 .073 .069 

LNINCOME - . 305** . 088 .181 .152 

21MEALSIZE . 499*** . 450*** .461*** .473*** 

Conditional Elasticities 

PFRESH -.079*** -.053*** -.054*** -. 059*** 

PFROZEN .097* .120*** . 122*** .116** 

PDEHYDRA . 085 .064 . 068 .065 

LNINCOME -.262** - . 746*** -1 .162*** -1. 558*** 

21MEALSIZE .430*** .468*** . 521*** .557*** 

These elasticities are evaluated at the sample means. Significance 
levels are indicated by*** , ** , and* f or a - 0.01 , 0.05, and 
0.10, respectively. Associated approximate, asymptotic standard 
errors and omitted continuous variable elasticities are available 
upon request . 

Computations by the authors . 



Table 3 .. ' Com~9ri~on of Magnitude and Significance of Differences in Tobit Elas ticitie~• for -~elected 
Cont i nuous Regressors . • • . . 

REGRESS OR 

PFRESH 

PFROZEN 

PDEHYDRA 

LNINCOME 

21MEALSIZE 

PFRESH 

PFROZEN 

PDEHYDRA 

LNINCOME 

21MEALSI ZE 

VARO WITH VARl 

TOTAL MKT ENTRY COND'L 

. 059 
( . 052) 

.043 
( . 148) 

- .047 
(.152) 

- . 091 
( . 388 ) 

- .Oll 
( . 133) 

. 033 
( . 028) 

. 020 
( . 079) 

- . 027 
(. 081) 

.393* 
( . 223) 

- .049 
( .071) 

. 026 
( . 024) 

. 023 
( . 069) 

- . 020 
( .071) 

-. 484*** 
(.179) 

. 039 
( . 070) 

VARl WITH VAR2 

-. 001 
. 048 

.003 
( . 136) 

.006 
(.139) 

-. 324 
( . 371) 

. 064 
( . 130) 

0.000 
. 025 

. 000 
(. 071) 

. 002 
( . 073) 

.092 
( . 240) 

. Oll 
(. 068 ) 

- .001 
. 023 

.002 
( . 065) 

.003 
( . 067) 

- . 416* 
(.230) 

.053 
(. 080) 

VARO WITH VAR2 

TOTAL MKT ENTRY COND'L 

. 058 
( . 053) 

. 045 
( . 150) 

- . 042 
( .155) 

- .414 
( . 390) 

. 053 
(.135) 

. 033 
(.028) 

. 020 
( . 080) 

- . 025 
( . 082) 

.485** 
( . 236) 

- . 038 
(.073) 

. 025 
( . 025) 

.025 
( . 071) 

- . 017 
( . 073) 

- . 899*** 
( . 237) 

. 092 
( . 074) 

VARl WITH VAR3 

- . Oll 
. 050 

- . 013 
( . 139) 

-.002 
(.144) 

- . 428 
( . 393) 

.091 
( . 132) 

- . 004 
.026 

- . 009 
( . 072) 

- . 002 
( . 075) 

. 064 
(.237) 

. 023 
( . 070) 

-. 006 
. 024 

- . 004 
(.067) 

. 000 
( . 069) 

-. 812*** 
( . 297) 

. 089 
(.089) 

VARO WITH VAR3 

TOTAL MKT ENTRY COND'L 

. 048 
(. 055) 

.029 
( . 154) 

- . 049 
( . 159) 

- .518 
(. 4ll) 

.080 
( . 137) 

. 029 
( . 029) 

. Oll 
(.081) 

- . 029 
( . 084) 

.019 
( . 026) 

. 019 
( . 073) 

- . 020 
(.075) 

. 457** -1. 296*** 
( . 234 ) ( . 302) 

- . 026 
( . 075) 

. 128 
( . 085) 

VAR2 WITH VAR3 

-.010 
.051 

-. 016 
( . 142) 

- . 008 
( . 147) 

- .104 
( . 395) 

. 027 
( .134) 

- . 005 
.026 

- .009 
( .074) 

- . 005 
( . 076) 

- . 028 
( . 250) 

. 012 
( . 072) 

- . 005 
. 025 

-. 007 
(.069) 

- . 003 
(. 071) 

-.396 
( . 335) 

. 036 
( .093) 

NOTE: These differences are computed from the elasticity estimates in Table 2 . Approximate asymptotic 
standard errors are in parentheses. Significance levels for the null hypotheses that the 
differences are not statistically different than zero are indicated by***, **, and* for the alpha 
- 0.01, 0 . 05 and 0.10 levels, res pectively . Similar results for the omitted cont inuous regressors 
a r e available upon r equest . 

SOURCE: Computations by the au t ho r s . 
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