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A Non-Parametric Analysis of Productivity:

The Case of U.S. Agriculture

Introduction:

Empirical analysis of productivity and technical change has
generally proceeded in two directions. On the one hand "accounting
data" analysis has been used to create input and output quantity indices
which, in turn, define total factor productivity (TFP) measures. On the
other hand, direct specification and estimation of production technology
via production, cost, or profit function approaches have been used to
obtain parametric measures of total factor productivity and technical
change. .Both of these procedures are known to impose implicit structure
on aggregate production technology (Capalbo and Vo).

Diewert (1976) has argued in favor of superlative indices, defined
to be exact and derived from a "flexible" second order approximation to
the underlying aggregator function. For example, Diewert has shown that
the discrete Divisia TFP proposed by Christensen and Jorgenson can be
interpreted as a superlative quantity index derived from an homogenous
translog transformation function that is separable in outputs and
inputs, and exhibits Hicks neutral technical change. Caves, Christensen
and Diewert have argued that separability and Hicks neutrality are not
required to justify the Christensen and Jorgenson TPP index. However,
this commonly used TFP index still requires that technology can be
appropriately represented by a homogeneous translog transformation

function.
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Parametric measures of TFP imply similar a priori structure for
aggregate production technology. Translog or Generalized Leontief
specifications of production, cost or profit functions have been
commonly estimated in the investigation of technical change (e.g.
Binswanger; Berndt and Christensen; Stevenson; Lopez; Antle; Norsworthy
and Malmquist). Again, the implication for the analysis of productivity
is that results are conditional on the parametric functional form
chosen. In this context, it appears desirable to develop TFP measures
from a methodology that does not depend, as much as it is possible, on
the parametric specification of the underlying technology.

This paper proposes an alternative measure of TFP based on
extensions of the non-parametric work of Hanoch and Rothschild, Diewert
and Parkan, and Varian. In particular, we use a "generalized
augmentation" hypothesis to extend non-parametric production analysis so
that it incorporates both Hicks neutral and biased technical change.
These results are stated (and proved) as a proposition concerning the
implications of profit maximization under technical change without
making a priori assumption about the parametric form of the underlying
technology. For the empirical application to aggregate U.S.
agricultural data, we focus on input and/or output translating (additive
augmentation) as an empirically convenient specification of the
"generalized augmentation" hypothesis.

Non-parametric analysis of productivity and technical change under
profit maximization and additive augmentation hypotheses yields a set of
implied linear inequalities that must be met if the data are consistent

with the specification of technology. These linear inequalities are
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easy to evaluate using standard linear programming solutions. If an
optimal solution is found, these procedures yield non-parametric
estimates of the (additive) augmentations to inputs and/or outputs for
each time period (e.g., year) of the data. These non-parametric
estimates can be interpreted in terms of rates of technical change (for
each input and/or output, for each year) which are consistent with the
data. In particular, these non-parametric estimates can generate TFP
measures which are derived under considerably less restrictive
assumptions than extant TFP measures. .

Section II presents the extensions to the Hanoch and Rothschild,
and Varian non-parametric results to incorporate technical change under
the generalized augmentation hypothesis. Section III discusses the
empirical implementation and interpretation of the non-parametric
results using linear programming techniques. Section IV discusses the
data used for the empirical analysis of U.S. agricultural productivity

and the results. Conclusions are presented in Section V.

Non-Parametric Production Analysis under Technical Change:

Consider a competitive firm producing an output y sold at a market
price p, and using a set of n inputs x = (X1,...,X,)’ with corresponding
prices r = (ry,...,ry)’. The firm faces a production technology

represented by the production frontier

Y = g(X) (1)
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where Y = Y(y,A) denotes "effective output", X = X(x,B) = (Xj(xi,B3),
i=1,...,n}, Xj denoting the iﬂ1 "effective input", and A and B =
(B1,...,Bn) are technology indices. We assume that Y is a strictly
increasing function of y and that Xj is a strictly increasing function
of x5, i=1,...,n. This formulation of technology corresponds to the
augmentation hypothesis where technical change (as reflected by changes
in A and B) influences the transformation of actual inputs (or output)
into effective inputs (or output). In this context, technical progress
can be characterized by increasing the effectiveness of inputs in the
production of output.

Note that the representation (1) is fairly general. Although it
implies that the marginal rate of substitution between any xj and Bj is
independent of the wvalues of all (Xj, Bj), j#i, it imposes no a priori
restriction on the functional form g(X). Also, changing A while holding
B constant corresponds to the hypothesis of Hicks neutral technical
change where the marginal rate of substitution between any two inputs is
independent of the technology index A. Alternatively, changing values
of B imply a bias in technical change as the marginal rate of
substitution between inputs is affected by the technology indices B.

Consider that the firm maximizes profit

V(p,r,A,B) = Max (py - r'x : Y(y,A) =< g(X(x,B)), y =0, x = 0) (2)

x5
where x*(p,r,A,B) and y*(p,r,A,B) are the profit maximizing input demand
and output supply functions and V(p,r,A,B) = py* - r'x™ is the indirect

profit function.
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Let y(Y,A) and xj(¥Xj,Bj) be the inverse functions of ¥Y(y,A) and
X;(xy,Bj), i=1,...,n. Then, expression (2) can be alternatively written
as
V(p,r,A,B) = Max (py(Y,A) - r'x(X,B) : Y < g(X),
X,Y

y(Y,A) = 0, x(X,B) = 0) (3)

Assume that the firm is observed choosing (x,y) T times, each
observation (xt,yt) being associated with a situation t characterized by
input prices ry, output price pt and technology (A¢,B¢), t=1,...,T. It
is of interest here to investigate under what conditions the decision
set 0 = (X1,y¥1:...; XT,¥T) is consistent with profit maximization as
stated in (2) or (3). Under the profit maximization hypothesis,
checking the consistency of actual decision; 2 with (2) or (3) can be
done in the context of non-parametric tests as proposed by Hanoch and
Rotschild or Varian.

A basis for a non-parametric test is presented in the following

proposition (see the proof in the Appendix).

Proposition 1: Given a set of decisions Q = (x¢,yg; t=1,...,T) each

(Xt,Y¢t) corresponding to a situation {pg,re,Ar,Be), t=1,...,T, then:

a/ if (%¢,ye) solves max (pgy - réx: Y(y,A¢) = g(X(x,Bt)); x =0, y = 0},
then

Pely(Ye,Ar) - y(¥g,Ap)] - re[x(Xe,Be) - x(Xg,Be)] = 0 (4)
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b/ if (4) is satisfied for a particular production data set, then
there exists a function G(X) that rationalizes the data in the
sense that (X¢,yt) solves

max (pty - réx: Y(y,Ae) = G(X(x,By)), x =0, y = 0].

Equation (4) gives a set of necessary and sufficient conditions for
the decisions Q@ = (x71,y]1;...; XT,yT) to be consistent with profit
maximization as defined in (2) or (3) for some production technology.
Testing for consistency then involves checking whether the inequalities
in (4) are satisfied. Expression (4) provides a non-parametric test of
production decisions in the sense that a priori specification of the
functional form g(X) in the characterization of production technology is
not required. Although this non-parametric test is not a statistical
test (with associated probability statements), it can provide useful
information on technology. In particular, by allowing for technical
change, the above results extend the non-parametric analysis of
production decisions proposed by Hanoch and Rothschild or Varian (see
below).

Checking whether the inequalities in (4) are satisfied requires
prior information on the functions ¥Y(y,A) and Xj(xi,Bj), i=l,...,n. 1In
this paper, we focus on the translating hypothesis where Y(.) and Xi(.)
are specified in linear form: Y =y - A and X; = %y <k By, d=1.08: 0.

This implies that expression (4) takes the form

Pelye - Ar - ¥s + Ag] - re[xe + Be - Xg - Bg] 2 0. (5)
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Under the translating hypothesis, expression (5) is linear in A and B,
which greatly facilitates its empirical application.l/

In the absence of technical change, i.e., where Ag = Ag, Bg = Bg,
¥s#t, expression (5) reduces to the axiom of profit maximization
proposed by Hanoch and Rothschild and Varian. 1In other words, for a
given production data set, if the inequalities in (5) are satisfied with
Ag = Ar, Bg = By, ¥s#t, then proposition 1 implies the existence of a
stable production function that would rationalize the data according to
(2) in the absence of technical change. Alternatively, violations of
the inequalities in (5) in the absence of technical change, would imply
that there does not exist a stable production function that rationalizes
the data. Assuming profit maximization and additive augumentations as
maintained hypotheses, this non-parametric test would then provide
evidence that the production function is not stable, i.e. that technical
change has taken place.

As noted above, technical change can take place in several ways.
For example, finding Ag # At for some s#t but Bg = B, ¥s#t, such that
expression (5) is satisfied for some production data would imply the
existence of a production function exhibiting Hicks neutral technical
change that rationalizes the data. Alternatively, if such a set of A's
does not exist, this would imply that a production function y = A + g(x)
which rationalizes the data does not exist. Assuming profit maximizing
behavior and the translating hypothesis as given, this non-parametric
test would then provide evidence that technical change is not Hicks
neutral, i.e. that technical change is biased as the marginal rate of

substitution between any two inputs is affected by the change.
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Finally, assume that some A's and B’'s are found which satisfy
expression (5) given a particular data set. What interpretation can be
given to these values? Since y =Y + A, it is clear that higher values
of A are associated with higher productivity. More specifically, if Bg =

Ag-Ag

By, ¥s#t, then ( ) can be interpreted as the rate of change in

output between situation s and situation t due to technical change alone.

More generally, given y(A,X) = A + g(X) = A + Y, note that (AS’AC) =
: b -

Ag + g(X¢) y(Ag,X¢) y(Ag,X¢e) Ag-Ag
—_— = e« ], Tt follows that - + 1.

Yt y(Ae, Xp) y(Ag,Xe) Yt

As'At
+ 1) can be

Thus, given the effective inputs X, the expression (
Yt

interpreted as a productivity index for situation s measuring the impact
of technical change on production, using t as a base (reference)
situation. An empirical evaluation of this productivity index will be
presented in section III.

Similarly, since Xj = xj + Bj, it follows that an increase in Bj
increases the effectiveness of the actual input xj in the production
process. Thus, given a higher B;j, the firm could produce the same
output ceteris paribus by reducing the actual input xj. In this sense,
increasing By can be interpreted as a bias in technical change that is
"factor saving" for the iLh input. Alternatively, a decreasing value of
Bj would imply that, ceteris paribus, the firm would have to increase
the actual use of xj in order to produce the same output. Thus, a
decrease in Bj can be interpreted as a bias in technical change that is

"factor-using" for the iEh input. Thus the sign and magnitude of the
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changes in B allow investigation of the nature of the bias in technical
change.
These examples illustrate the potential usefulness of the non-
parametric tests just discussed in the analysis of productivity and
technical change. An empirical implementation of these tests is

presented next.

Empirical Implementation:

From proposition 1, the inequalities in (4) (or (5) under the
translating hypothesis) are necessary and sufficient for the existence
of a production function that would rationalize a particular set of
production data under technical change. Non-parametric testing thus
involves checking the existence of a solution to these inequalities.

In the absence of technical change where Ag = Ay, Bg = B, ¥s#t,
the empirical implementation of (4) or (5) is straightforward as the
inequalities in (4) or (5) involve only observable variables p,r,x,y.

In this case, it is a simple matter to check whether the inequalities in
(4) or (5) are satisfied for all observations.

However, in the presence of technical change where at least some of
the A's and B's change across observations, the A’'s and B's are
typically not directly observable. In this case, the non-parametric
test consists in finding whether there exists a set of values for the
A’'s and B's which would satisfy the inequalities in (4). Note that,
under the translating hypothesis, (4) becomes expression (5) which is
linear in the unobserved variables (i.e. the A's and B’s). This

linearity is particularly convenient and is the main reason for focusing
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our paper on the translating hypothesis (see footnote 1). Given the
linearity in (5), checking the existence of a solution to the
inequalities (5) for the A's and B's can be conveniently formulated as a
linear programming problem.

Let q = (A1,...,AT; B{,...,B$; Bi;...,B§) be the vector of
unobserved variables in (5) where B = B - B~, Y = 0, B~ = 0. Allowing
for positive or negative B can support factor-saving as well as factor-
using bias in technical change. Expression (5) can be written as D'q =

c, given appropriate definitions of the matrix D and the vector c.

Then, consider the linear programming problem

Min (b'q : D'q = ¢, q = 0} (6)
q

where b > 0, such that problem (6) is necessarily bounded. It follows
that either problem (6) has a solution, or if it does not, it must be
infeasible. 1In other words, the inequalities D'q > ¢ have a solution
for q if and only if problem (6) has a feasible solution. In this
context, checking the existence of a solution to the non-parametric
inequalities is performed by evaluating the existence of a feasible
solution to the linear programming problem (6) (e.g. using the simplex
method). Choosing appropriate values for the b’s (the coefficients of
the objective function in (6)), can yield useful information concerning
the nature and magnitude of technical change (see below).

Note that, even for a moderate number of observations T, the number

of constraints in the linear programming (6) will typically exceed the
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number of activities. In this case, it will be computational convenient

to consider the linear programming problem dual to (6)

Max [c’a - Da = b, E = 0} (7)
q

It is well known that (7) has an optimal solution if and only if (6) has
an optimal solution (e.g. Luenberger; Sposito). Alternatively, if
problem (6) is infeasible, then (7) is either unbounded or infeasible.
Here, we propose to solve the dual problem (7) by the simplex
method. If (7) has an optimal solution for a production data set, then
the data are consistent with the existence of a production function
exhibiting a particular type of technical change depending on the
solution values for the A's and B's. The usefulness of this approach in
the analysis of productivity and technical change is illustrated next in

the context of U.S. agriculture.

Application to U.S. Agricultural Data:

Aggregate time series data for the U.S. agricultural sector for the
years 1950-1983 are taken from Capalbo and Vo. The data analyzed
include quantity indices (1977=1.00) and associated implicit price
indices for U.S. agricultural output and 9 inputs: family labor, hired
labor, land, structures, other capital, materials, energy, fertilizers,
pesticides, and miscellaneous (see Capalbo and Vo for a description of
the data).

First, the full 1950-83 period is analyzed with each non-parametric

hypothesis. If these data are not consistent with a particular
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hypothesis, then sub-periods of the data are evaluated. In particular,
the 1950-71 and 1960-83 sub-periods are analyzed first, and then the
1950-59, 1960-71, and 1972-83 sub-periods are evaluated in order to
isolate the energy price shocks, high inflation, and surging export
demand of the 1970’'s from the considerably more stable earlier time
periods. Note that data consistency over a set of years implies that
all component sets of years are also consistent with the non-parametric
hypothesis.

The analysis begins with Varian’s axiom of profit maximization
which implies the existence of a stable production function in the
absence of technical change. The non-parametric form of this hypothesis
implies that Ag = At and Bg = By, ¥ s#t in (5). As indicated in table
1, these data are found to be inconsistent for all time periods
analyzed. Thus, assuming profit maximizing behavior as a maintained
hypothesis, this non-parametric result provides strong support for the
existence of technical change in U.S. agriculture.

Next, we evaluate the existence of Hicks neutral technical change
using the additive output augmentation hypothesis, where the A's are
unrestricted but Bg = By, ¥ s#t in (5). As indicated in table 1, these
data are not found to be consistent with this specification of Hicks
neutrality for any time period analyzed. Thus, given profit
maximization and additive output augmentation as maintained hypotheses,
these non-parametric results indicate that U.S. agriculture was not
characterized by Hicks neutral technical change over the time periods

analyzed. We interpret this as evidence of biased technical change in

U.S. agriculture during the 1950-1983 period.
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Given that these data are inconsistent with Hicks neutrality
specified as additive output augmentation, we next evaluate the
existence of a production function exhibiting additive augmentations in
both outputs and inputs under the assumption of profit maximization.
This yields the general specification of equation (5) where the A’s and
B's are unrestricted. We also allow the additive input augmentations to
reflect both factor saving (positive Bi’s) or factor using (negative
Bt's) biased technical change. As indicated in table 1, the data are
found to be consistent with this specification over the full 1950-83
time period. We interpret this result as non-parametric evidence that
U.S5. agricultural technology over the 1950-83 period can be
characterized by biased technical change of a translating nature.

Annual estimates of input and output augmentations that are
consistent with these data can be generated by the solution to the
linear programming problems (6) or (7). This is done here by choosing
the elements of the vector b in (6) to be equal to k if they are
coefficients of A, and equal to k2 if they are coefficients of B, where
k is a large positive scalar.2/ 1In this context, the linear programming
solutions for the B's can be interpreted as the "smallest bias" in
technical change that is consistent with the data, while the solutions
for the A’s can be interpreted as the "smallest output augmentations"
(given the B’s) that rationalize the data. These estimates of the A’'s
and B's are the primal activity levels in problem (6), or equivalently,
the "shadow prices" on the constraints in the dual formulation (7).
Table 2 summarizes these estimates, the associated total factor

productivity (TFP) index proposed in Section II and computated as
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Rg-Baoyy
(———— + 1), the discrete Divisia TFP created by Capalbo and Vo using |

Y1977
these same data, and the TFP index reported by USDA (USDA, ERS p.75).

Three inputs -- family labor, land and other capital -- are found
to exhibit biased technical change with the proposed non-parametric
procedures (see table 2). Note the flexibility of the approach:
contrary to most parametric analysis, the non-parametric procedure
yields a different estimate of factor bias in technical change for each
input and each year.

The estimated biases in family labor and other capital cease by the
early 1960's. Other capital is estimated to be generally of an input
using nature (i.e., negative augmentations) while family labor exhibits
input saving (i.e., positive augmentations) technical change in 1956 and
1960. The estimated biases in land inputs are found to be negative
(input using) over the 1974-82 period. These estimates increase
considerably (in absolute value) between 1977-78 (second oil price
shock) and start declining in 1982 before turning positive in 1983.
Thus, these non-parametric estimates of the factor bias in land
utilization suggest that the export driven agriculture of the mid to
late 1970's was characterized by land using technical change.

The estimated non-parametric additive output augmentations are
conveniently summarized in table 2 using the non-parametric TFP index
proposed in Section 11.3/ Figures 1 and 2 compare this non-parametric
TFP estimate with other commonly used TFP measures. In Figure 1, the
non-parametric TFP index is contrasted to the USDA TFP index. Note that
the USDA index indicates relatively more variation in productivity

change for most of the period analyzed, in particular from 1957 through
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1975. Also note that the USDA TFP index lies above the non-parametric
index for most of the same period (except for 1974). The difference
between these two TFP measures may reflect different quality adjustments
in the measurement of several inputs in the Capalbo and Vo data compared
to the USDA data. For example, the USDA index of labor input does not
reflect quality changes while the Capalbo and Vo does (see Capalbo and
Vo). Besides these data differences, the fixed weight Laspeyres index
used by USDA is also a likely source of the observed differences. Ball
and others have argued the Laspeyres index may not be appropriate
because of the a priori restrictions it imposes on the structure of
production.

Figure 2, in contrast, compares the non-parametric TFP measure to
the Christensen and Jorgenson discrete Divisia TFP index generated by
the same (Capalbo and Vo) data. In this case, the Christensen and
Jorgenson TFP index tends to increase more slowly than our non-
parametric TFP. Part of the differences between the non-parametric and
Christensen and Jorgenson TFP indexes in Figure 2 may reflect the input
biases indicated in table 2: allowing for the bias in technical change
may affect the measurement of productivity growth.&/ Alternatively, the
difference between the two measures presented in figure 2 could reflect
the fact that a translog specification does not provide an appropriate
global representation of agricultural technology during the period
considered. By not requiring a priori specification of the production
technology, the proposed non-parametric approach thus appears to provide

a useful and flexible tool for the analysis of productivity.
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V. Summary and Conclusions:

This paper proposes a non-parametric procedure for calculating
total factor productivity (TFP) measures and investigating technical
change. Commonly used TFP measures such as the discrete Divisia TFP
(Christensen and Jorgenson), although superlative, still require
possibly stringent assumptions on the form of the underlying technology.
In contrast, the proposed non-parametric procedure only assumes profit
maximizing behavior and very general hypotheses concerning the nature of
technical change.

The proposed procedures extend the non-parametric results of Hanoch
and Rothschild, Diewert and Parkan, and Varian to include explicit
hypotheses about the nature of technical change in production through a
generalized augmentation hypothesis. We explore an empirically
convenient form of this augmentation hypothesis that generates non-
parametric tests of technical change as a system of linear inequality
constraints amenable to solution using standard linear programming
techniques.

Application of the proposed methodology to aggregate U.S.
agricultural data for 1950-83 indicates that the hypotheses of the
absence of technical change or Hicks neutral technical change are not
consistent with these data. Hence, these non-parametric results
indicate that U.S. agriculture was characterized with biased technical
change over the periods analyzed. The non-parametric test of this
hypothesis under additive input and output augmentation is consistent

with the data over the full 1950-83 time period analyzed.
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The proposed methodology can yield non-parametric estimates of
annual rates of technical change in outputs and/or inputs that are
consistent with the data. Annual factor saving and factor using bias in
technical change are identified for family labor, land and miscellaneous
capital inputs. The magnitudes of the estimated factor using biases for
land in the middle 1970's to the early 1980's appear quite reasonable
given the export driven agriculture of that period.

Non-parametric estimates of rates of additive output augmentation
yield TFP measures that imply considerably less restrictive assumptions
than commonly used measures. In particular, the non-parametric TFP
index explicitly allows for biased technical change without a priori
specification of the underlying technology. Comparison of this non-
parametric TFP measure for aggregate U.S. agricultural data (1950-83)
with USDA TFP and the discrete-Divisia TFP of Capalbo and Vo indicates
that the alternative indexes are not identical. While the proposed non-
parametric procedures do not yield statistical hypotheses tests in the
- usual sense, similar criticisms hold for traditional TFP measures such
as the discrete Divisia. Given the reasonableness of the results
compared to the alternative TFP indexes considered, the less restrictive
"non-parametric" nature of the approach, and the potential to identify
rates of input and output augmentations that are data consistent, the
proposed non-parameteric methodology appears worthy of consideration in

the analysis of productivity and technical change.



Proof of Proposition 1:

Note that expression (4) is simply stating that, given input and
output prices in situation t, profit is at least as high choosing

(X¢,yt) compared to any other choice (xg4,yg). This proves a/.

Define
re
t Pt

Treating G(X) as a production frontier where Y < G(X), it follows that

. e '
pty(Y'At) - rtx(X,Bt) =< pty(Y(yt + —[X(X.,Bt) = Xt] § At) 5 At) - rtx(X,Bt) s
Pt

But y(Y,.) and Y(y,.) are inverse functions, implying that

PeyY(Y,Ar) - rex(X,Be) < peye - r'tXt,

which proves b/.
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Table 1: Results of Non-Parametric Tests for Data Consistency With Several

Specifications of Profit Maximization Under Additive Augmentation
(Technical Change) Hypotheses: Aggregate U.S. Agriculture 1950-83.

TECHNICAL CHANGE HYPOTHESES: TIME PERIOD: RESULT!

No Technical Change 1950-83: Reject
1950-71: Reject

-- Ag = A¢, Bg = By, ¥ s#t 1960-83: Reject

1950-59: Reject
1960-71: Reject
1972-83: Reject

Hicks Neutral Technical Change (Output 1950-83: Reject
Translating): 1950-71: Reject
-- Bg = Bg, ¥ s¥ét 1960-83: Reject
-- the A’'s are unrestricted 1950-59: Reject

1960-71: Reject
1971-83: Reject

Biased Technical Change (Output and 1950-83: Accept
Input Translating):
-- the A’s and the B’'s are unrestricted.

1) Reject (accept) implies unbounded (optimal) solution to the dual linear
programming formulation of equation (5) via problem (7). Thus, the data
are found to be inconsistent (consistent) with the non-parametric test
of the technical change hypothesis given profit maximization and additive
augmentations as maintained hypotheses.

Source: Computations by the authors using data from Capalbo and Vo.
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Table 2: Non-Parametric Estimates of Rates of Technical Change in U.S. Agriculture
1950-83, Assuming Profit Maximization and Additive Input and Output

Augmentation.
By: BIASED A+ :ADDITIVE OUTPUT
INPUT AUGMENTATIONSZ: AUGMENTATION CAPALBO
-------------------------------------------- AND VO  USDA ERS
FAMILY OTHER OUTPUT CHG IN  NON-PARM (DIVISIA) (FIXED WT)
YEAR  LABOR LAND CAPITAL AUGMENTS AUGMENTS TFP INDEX> TFP INDEX“* TFP INDEX?
1950 0 0 0.030 0.000 0 0.564 0.670 0.580
1951, 0 0 0 0.032 0.032 0.596 0.689 0.600
1952 0 0 -0.024 0.066 05033 0.630 0.719 0.620
1953 -0.069 0.023 0 0.090 0.024 0.654 0.743 0.640
1954 -0.125 0 0 0.090 0.001 0.655 0.742 0.650
1955 0 0 0 0.086 -0.004 0.650 0.735 0.660
1956 0.035 0.044 0 0.138 0.052 0.703 0.791 0.670
1957 0 0 0.055 0.112 -0.026 0.676 0,772 0.680
1958 0 0.014 0 0.153 0.041 0.717 0.786 0.740
1959 0 0 -0.042 0.141 -0.012 0.705 0.758 0.730
1960 0.062 -0.014 -0.046 0.162 0.021 0.727 0.780 0.760
1961 0 -0.015 -0.014 0.174 0.012 0.738 0.786 0.780
1962 0 0 0 0.182 0.008 0.746 0.802 0.780
1963 0 0 0 0.197 0.016 0.761 0.815 0.820
1964 0 0.005 0 0.214 0.017 0.778 0.834 0.810
1965 0 0.003 0 0.220 0.006 0.784 0.826 0.840
1966 0 0.002 0 0.232 0.012 0.796 0.835 0.830
1967 0 0 0 0.254 0.022 0.818 0.854 0.850
1968 0 0 0 0.264 0.010 0.828 0.856 0.870
1969 0 0 0 0.283 0.019 0.847 0.866 0.880
1970 0 -0.001 0 0.257 -0.026 0.821 0.844 0.870
1971 0 0 0 0.316 0.059 0.880 0.887 0.950
1972 0 0 0 0.330 0.014 0.894 0.897 0.940
1973 0 0.003 0 0.350 0.021 0.915 Q.912 0.950
1974 0 -0.017 0 0.353 0.003 0. 917 0.944 0.900
1975 0 -0.010 0 0.391 0.038 0.955 0.963 0.990
1976 0 -0.018 0 0.388 -0.003 0.953 0.963 0.980
1977 0 -0.010 0 0.436 0.047 1.000 1.000 1.000
1978 0 -0./031 0 0.433 -0.002 0.998 0973 1.010
1979 0 -0.038 0 0.507 0.074 1.071 1.025 1.050
1980 0 -0.041 0 0.495 -0.012 1.060 1.023 1.010
1981 0 -0.041 0 0.590 0.094 1.154 1.096 1.160
1982 0 -0.027 0 0.606 0.017 1, TFE 1.307 1.160
1983 0 0.008 0 0.452 -0.154 1.017 1.001 0.980

1) These estimates of the B's and A's are the dual "shadow prices"of problem (7).

2) These estimates reflect either factor using (B-) or factor saving (B+) biases
in technical change.
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Table 2 (Continued):

3) This non-parametric TFP index computed (1 + (Ag - A 9 )y ) reflects the base
1977=1.00. AT TR

4) Source: Capalbo and Vo, p. 3-37.

5) Source: U.S.D.A. ERS. Economic Indicators of the Farm Sector. (ECIFS 5-5) APRIL,
1987, p. 75.

Source: Computations by the authors using SAS Proc LP and data from Capalbo and Vo.




Figure 1: Comparison of Alternative Total Factor Productivity Indexes

(TFP) For Aggregate U.S. Agriculture, 1950-83.

$ B e - . - el S e e M e I —

1
!

i

1.1 “; \
\

0.9 ~

TFP INDEXES (1977-1.00)

|
|
!
|
|
H
i
|

50 94 58 62 66 70 74 78 82

YEAR
+ Non—Parametric TFP A& USDA, ERS Fixed Weight TFP




Figure 2: Comparison of Alternative Total Factor Productivity Indexes

(TFP) For Aggregate U.S. Agriculture, 1950-83.

1.2 ———

TFP INDEXES (1977-1.00)

4 Non—-Parametric TFP o Christensen & Jorgenson TFP




26
Footnotes
An alternative hypothesis to the specification of Y(y,A) and Xj(x4y,Bj)

is the scaling hypothesis where Y = y/A and X; = Bj.xj, i=1,...,n.
Under this specification, expression (4) becomes

At i Bis
Pelye - —.¥s] - 2 rielxie - — Xjgl 2 0
AS i=] Bit

Compared to (5), this expression is non-linear in A and B and is
therefore considerably more complex to use empirically.

The results presented below correspond to k = 1000. Choosing larger
values of k did not affect the results.

We should also note that very similar Ay results (and associated TFP
indexes) were generated when allowing only input using or only input
saving technical change. This indicates that the Ay estimates are
fairly robust to the By specifications evaluated.

Caves et al. have shown that the Christensen and Jorgenson TFP index can
be derived from a translog transformation function allowing for bias in
technical change through the influence of technology on the first order
translog parameters. However, if the bias in technological change
affects also the second order translog parameters, then the Christensen
and Jorgenson index is no longer an exact TFP index associated with a
translog transformation function (see Caves et al., p. 77, footnote 2).




