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Non-Parametric Demand Analysis:

A Duality Approach

I - Introduction:

Non-parametric analysis of consumer behavior allows the
investigation of a finite number éf data points with no ad hoc
specification of functional forms for utility or demand functions
(Afriat; Diewert, 1973; Varian, 1982, 1983; Diewert and Parkan). An
interesting result from the literature is that a finite number of
observations allows consumers choices to be rationalized on the basis of
a concave utility function. This is somewhat surprising given that
consumer theory is often presented assuming a quasi-concave utility
function (e.g. Lau; Diewert, 1974, 1982) and that all quasi-concave
functions cannot be transformed into a concave function by a monotonic
increasing transformation (e.g. see Arrow and Enthoven, p. 781). While
this result has been used to justify the use of concave utility
functions in demand analysis (e.g., Varian, 1982, 1983; Diewert and

Parkan), it suggests the existence of a gap between the theory of

consumer choice and the development of testable hypotheses based on a
finite number of demand observations: in this case, it is not possible
to distinguish empirically between a concave and a quasi-concave utility
function.

The objective of this paper is to further explore the testable
hypotheses of consumer theory in the context of a non-parametric

approach. In particular, the implications of duality theory (as

developed by Samuelson; Lau; Diewert, 1974, 1982) for non-parametric
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demand analysis are investigated. We show that, when duality

relationships hold, the non-parametric implications of the primal
problem (the maximization of a direct utili%y function subject to a

budget constraint) differ from those of the dual problem (minimization

of an indirect utility function subject to a budget constraint). 'In
other words, even when the two problems are theoretically equivalent,
they can be empirically different based on a finite number of

observations. For example, it is possible for consumption data to be

consistent with the primal problem while being inconsistent with the
dual problem. This suggests some important limitations of duality
theory for empirical demand analysis. Furthermore, it is shown that
imposing the implications of duality in the non-parametric approach
implies aéditional restrictions that can be used in testing consumer
behavior. The results further illustrate the existence of a gap between
consumer theory and the empirical analysis of consumption based on a

finite number of observations.

Utility Theory and Duality:

In this section, we briefly review consumer theory and set up the
notation for the paper. Consider the consumer problem: maximize the
utility function U(x) with respect to the n-dimensional consumption
vector x subject to the budget constraint p’x < I, where p is a
n-vector of commodity prices and I > 0 is consumer income. Defining

normalized prices as v =p/I, this can be written as the primal probleml/

g(v) = Sup (U(x): v'x =1, x ¢ R;} (1)
X
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where g(v) denotes the indirect utility function. If U(x) is a
continuous function for x ¢ R;, then it achieves a maximum over the
feasible set and g(v) in (1) is a continuous, non-increasing,gf quasi-

convexg/ function for v e R$+ (Diewert, 1974).

Now, consider the corresponding dual problem:
U(x) = Inf (g(v):v'x =1, v e R}). (2)
v

If g(v) is continuous for v ¢ R;, then it achieves a minimum over the
feasible set and ﬁ(x) in (3) is a continuous, non-decreasing,&/ quasi-
concave2/ function for x e R;+.

The conditions under which ﬁ(x) in (2) is equal to U(x) establish
the existence of duality between the direct (U(x)) and indirect (g(v))
utility functions. Variations in the statement of these conditions can
be found in the literature. Following Diewert (1974, 1982), the

following condition will be assumed:

Condition A: U(x) is a continuous, non-decreasing and quasi-concave

function for x ¢ Rﬁ.é/

Under condition A, g(v) is continuous, non-increasing and quasi-
convex for v ¢ R$+. In order for g(v) to be continuous as well for v ¢
R;, the function {g(v):v ¢ R;+} can be extended to the non-negative
orthant (v ¢ R;) by continuity from below.l/ After extending g(v) to
the non-negative orthant, then under condition A, problem (2) generates

ﬁ(x) such that ﬁ(x) = U(x) for x ¢ R$+. Moreover, given ﬁ(x) = U(x) for
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X R;+, then their extension (by continuity from above) to the non-
negative orthant (x e R;) would also coincide (see biewert, 1974) .

In such a case, the indirect utility fénction g(v) completely
characterizes the direct utility function (and vice-versa). Such
duality relationships have been investigated in details in the
literature (e.g. Houthakker; Samueison; Lau; Diewert, 1974, 1982;
Blackorby et al.). By suggesting alternative formulations of consumer
theory, duality relationships have stimulated much research on the
characterization of consumer behavior (e.g. Christensen et al.;
Anderson; Lau, 1977; Christensen and Manser; Weymark).

For our purpose, it ;ill be useful to discuss the implications of
duality in the context of saddle point criteria. First, consider the

saddle point problem:

P * + * +
Find x" ¢ Ry, and AP £ R" such that

L(x,05,v) = Lex*,235,v), % Li=",A,,v) for all x e B, X, ¢ B* . (3)

where L(x,)tp,v) = U(x) + '\P[l'V'X].

It is well known that if a saddle point exists, then x* in E3) iw.a

(not necessarily unique) solution to problem (1), i.e. x* = argmax

U(x); vl =1, x & R;}. However, for the converse to be true, we need

the following condition:

Condition B:
- there exists an x such that v'x < 1 (Slater's condition).
- the set K = {(25,21): 2o 2 - U(x), 27 < 1-v'x, for some x ¢ R;}

is convex.
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If condition B is satisfied, then x* being a solution to problem (1)
implies that (x*, A;) is a saddle point solution to problem (3) (see
Karlin; Sposito). Thus, under condition B,r¢the saddle point criterion
(3) is both necessary and sufficient for x* to be a solution of the
maximimization problem (1). Note that condition B is satisfied if the
utility function U(x) is quasi-conﬁavegf and prices are finite.2/ .In
such a situation, finding a saddle-point solution to (3) is therefore
equivalent to finding a solution to problem (1).

Similarly, on the dual side, consider the saddle point problem:

Find v* ¢ Rﬁ and Ag e R such that
| * * %k * + +
‘ V(v,23,%x) = V(v7,Agq,x), = V(v',Agq,x) for all v ¢ R, Ag ¢ R (4)

where V(v,A,x) = g(v) + A[v'x-1]

Using the same arguments as in the primal case, if the indirect
utility function g(v) is quasi-convex and quantities are finite, then
the saddle point criterion (4) is both necessary and sufficient for v
to be a (not necessarily unique) solution of the minimization problem
(2), i.e. W - argmin {g(v): v'x =<1, v ¢ Rﬁ). Under such conditions,
finding a saddle point solution to (4) is therefore equivalent to

finding a solution to problem (2). These formulations are now used in

the context of a non-parametric analysis of consumer demand.

B III - The Non-Parametric Approach

The non-parametric approach to demand analysis consists in

analyzing a finite body of data with no ad hoc specification of
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functional forms for demand equations (see Afriat; Diewert, 1973;
Varian, 1982, 1983). We assume that we have T observations on
(normalized) prices and quantities consumed! (vi, X¢), t=1,...,T. Ve
also assume that these prices and quantities are positive and finite.
The non-parametric approach investigates the implications of utility
theory for these observations. . |

First, consider the primal problem (1) where the utility function
U(x) is continuous. If U(x) does not satisfy the monotonicity and
curvature properties stated in condition A, then it is well known that
it will never be possible to observe choices from the decreasing regions
of the utility functions nor will it ever be possible to observe the
non-convex regions of the indifference curves (e.g. Weymark). Thus,
consumer data could not distinguish between a continuous utility
function and some appropriate utility function satisfying condition A
(i.e. non-decreasing and quasi-concave). In this sense, condition A
implies no loss of generality as far as empirical implications of the
theory are concerned. For this reason, we will treat condition A as a
maintained hypothesis and assume that it is satisfied in the discussion
presented below.

Considering the primal problem (1), then the following results are

obtained (see the proof in the Appendix).

Lemma 1: The following statements are equivalent
a) X¢ = argmax (U(x): vé X1 2@ R;} for a set of normalized

prices {v¢, t = 1,...,T}, where U(x) satisfies condition A.
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b) there exist V¢, A, t=1,...,T, such that
Ag 2 0 (5a)
Vg < Ve + Ap [xg ve-1]. (5b)

c) there exists a concave function f(x) that rationalizes the
data in the sense that

Xt = argmax [f(x):vé x<1, x¢ R}

Theorem 1 is an extension of the non-parametric results obtained by
Afriat, Diewert (1973) and Varian (1982, 1983). For example, the
necessary and sufficient conditions for the data (x{,vy) to be
consistent with utility maximization are given in equations (5). Note
that these conditions differ from the ones presented by Varian (1982,
1983).19/ The reason is that we did not impose non-satiation on the
utility function U(x). Without non-satiation, it is possible that the
budget constraint will not be binding. From the complementary slackness
condition, this implies that the ﬁultiplier A¢ can be zero. Thus, while
previous results have been restricted to the case where A > 0 (see
Afriat; Diewert, 1973; Varian, 1982, 1983), we consider the more general
case where Ay > 0.11/

Under non-satiation, note that (5) becomes Ay > 0, and X4 xé [vi-
vg] = Vg-Ve = A x; [ve-vg], as the marginal utility of (normalized)
income Ay is positive and the budget constraint is binding, i.e. v; Xg =
1. Then, under differentiability, this implies the well known Roy's

identity dg(v)/dv = 2* ¥ (see Anderson and Takayama, p. 506).

Now, consider the dual problem (2). The following result holds:12/
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Lemma 2: The following statements are equivalent:
a) vy = argmin {(g(v): v'xg =1, ve Rﬁ} for a set of quantities
(x¢, t=1,...,T), where g(v) is a continuous, non-increasing

and quasi-convex function.

b) there exist Vt- it, t=l,...,T, such that
A= 0 (6a)
Ve < Vg + ¢ [vg X¢-1]. (6b)

c) there exists a convex function h(v) that rationalizes the data
in the sense that

ve = argmin {(h(v):v'x =1, v ¢ Rﬁ}.

Equations (6) present necessary and sufficient conditions for the
data (X{,v¢) to be consistent with the dual (indirect) utility
minimization problem (2). Note that, under non-satiation of U(x), (6)
becomes Xt > 0, Xs vé [%e-%g) = Vt - Gs < It v; [x¢-%g], as the marginal
utility of (normalized) income Xt is positive and the budget constraint
is binding, i.e. v; Xg = 1. Then, under differentiability, this implies

the well known Wold'’s identity, 4U(x)/dx = AFvE,

Comparing (5) with (6), note that the inequalities (6b) differ from
those obtained in the context of the primal problem (5b). This suggests
that, given a finite number of observations, the dual approach to
utility theory has in general different implications for consumer
behavior compared to the primal approach. For example, consider the
case where condition A is satisfied and duality between the primal

problem (1) and the dual problem (2) holds. Then, the two problems give

theoretically equivalent representations of consumer preferences. They
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can also provide equivalent representations of consumer behavior (see
Samuelson; Lau; Weymark). However, from (5) and (6), the two problems
can be empirically different in the context of a finite number of
observations. 1In particular, it is possible for consumption data to be
consistent with the primal problem (1) whiie being inconsistent with the
dual problem (2) (or vice-versa). This indicates an important
limitation of duality theory in empirical demand analysis: by exploring
oﬁly selected points of the consumption set, the primal problem applied
to a set of consumer data is not empirically equivalent to the dual
problem. In other words, there is a gap between consumer theory
(assumed to hold at all points) and the empirical analysis of consumer
behavior based on a finite number of observations.

In this context, should some of the duality restrictions be imposed
in non-parametric demand analysis? We have argued above that, given the
continuity of preferences, condition A implies no loss of generality in
empirical consumption analysis. 1In this case, duality relationships
between U(x) and g(v) would be expected to hold for x; and v in the
positive orthant (and by extension to the non-negative orthant),
implying that U(xy) = g(ve) (see Diewert, 1974, 1982). This implies
that Ve = Gt in Lemma 1 and Lemma 2. Furthermore, consider the case
where the funcfion U(x) is continuous, increasing and quasi-concave for
X € R;,lﬁ/ and define the closed convex set M(U) = {(v: g(v) = U, v ¢ Rﬁ}
where U = g(v*), v¥ e R§+ being a boundary point of M(U). Then, the set
of normalized supporting hyperplanes to M(U) through the point v¥
constitutes the solution set to the primal problem (1) (see Diewert,

1974). 1In this case, the primal and dual problems provide equivalent

Frovpeeny
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representations of consumer behavior.(e.g. Weymark). From Lemma 1 and

Lemma 2, the following result is obtained:

Proposition 1: The following statements are equivalent:
a) X¢ = argmax {U(x): v; * 20, X # R;} where U(x) is a continuous,
increasing and quasi-concave function,
Ve = argmin {(g(v): v' X =1, v e R;} where g(v) is a continuous,

decreasing and quasi-convex function,

and U(x¢) = g(ve), t=1,...,T.
b) there exist Vi, Ag, Xt’ t=1,...,T, such that
Ae >0, Xg >0 (7a)
Vg < Vi + Ap [%g Ve-1] (7o)
Ve < Vg + Ag [vg Xe-1]. (7¢)

Equations (7) provide directly testable conditions that the data must
satisfy if it is to be consistent with the dual formulation of consumer
theory as stated above. Testing these conditions consists in checking
whether there exist solutions to a set of linear inequalities. The
existence of such solutions can be checked easily by solving a linear
programming problem (see Diewert, 1973).

Note that equations (7) are more restrictive than equations (5) in
the primal problem or equations (6) in the dual problem. For example,
while the existence of a solution to (7) implies the existence of a
solution to (5) and (65, the converse does not necessarily hold. To the
extent that it is reasonable to assume convexity of preferences and non-

satiation of U(x) as a maintained hypothesis, this suggests that the
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empirical testing of consumer behavior should be done using (7) rather
than (5) or (6). Previous non-parametric demand analysis (which is
based on (5); see Diewert, 1973; Varian, 1982, 1983) explores only the
implications of the primal problem (1). In contrast, equations (7)
reflects the empirical implications of both (1), the primal problem, and
(2), the dual problem. Since the non-parametric implications of the two
problems are not equivalent, more precise results would be obtained
using Proposition 1 (instead of Lemma 1 or Lemma 2) in the non-
parametric analysis of consumer behavior.

Finally, note that the multipliers A, and Xt are allowed to be
different in Proposition 1. More restrictive assumptions on the mnature
of the objective function in (1) or (2) can imply that the primal and
dual multipliers are the same. This is the case when U(x) and g(v) are
connected by Legendre transformation, where the utility function U(x) is
differentiable, strictly increasing and strictly quasi-concave,l&/ and

*H

: . BU(x)_ s ag(v)

at equilibrium A Ad
ax av

. Vv (see Samuelson; Lau).

Under such conditions, the optimal solutions to problems (1) and (2) are
unique and Ay = Xt in (7). The following result is then a special case

of Proposition 1.

Corollary 1: The following statements are equivalent
a) Xt = argmax {(U(x): vé X = l; ® & Rg} where U(x) is a
differentiable, strictly increasing and strictly quasi-concave

function,
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vy = argmin {g(v): v'x¢ < 1, v € R}) where g(v) is a

differentiable, strictly decreasing and strictly quasi-convex

function,
U(xy) = g(ve) and AX 2E t=1 T
- gE(Vg) an P (vt) il | (xt) ) =Lyl
b) there exist Vi, A, t=1,...,T, such that
Ve = Vg + )¢ [v; Xe-1]. (8c)

Agéin, equations (8), which are more restrictive than (7), could be
used in the empirical investigation of consumer behavior. To the extent
that the duality representations considered in Proposition 1 and
Corollary 1 are commonly assumed as maintained hypotheses in demand
analysis, then equations (7) or (8) should provide a useful basis for a

non-parametric analysis of consumption data.

Conclusion

While duality theory suggests that, under some regularity
conditions, the primal and dual approach to consumer behavior are
equivalent, a non-parametric demand analysis based on a finite number of
observations indicates that the primal and dual problems are in general
not empirically equivalent. This presents additional evidence of the
existence of a gap between consumer theory and the analysis of a finite
number of observations on consumption.

By exploiting duality relationships between the primal and the dual

problems, we derived a series of non-parametric tests of consumer
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behavior. Such tests should be useful to evaluate the consistency of a
finite number of consumption data with wvarious hypotheses. For example,
equations (8) in Corollary 1 could be used to test whether consumption
behavior can be equivalently modeled from some parametrically specified
direct or indirect (differentiable) utility function. Thus, the non-
parametric analysis proposed extends the empirically testable content of
consumer theory. We hope that our results will help stimulate the

testing of the theory and its use in demand analysis.
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Appendix

Proof of Lemma 1:

From section II, we know that, given finite prices and a continuous
quasi-concave function U(x), the solution x; of the primal problem

g(ve) = Max (U(x): vé xsi, ¥R
x

is equivalent to the solution (x¢ ¢ R;,At e RY) of the saddle point problem
L(X,A£,ve) < L(Xe,Ae,Ve) < L(Xg,A,ve), for all x ¢ R;, AezR' (Al)
where L(x,)A,v) = U(x) + A[1l-v'x].

The saddle point problem (Al) implies Atll-vé xt] = 0 and

or
Bix,) = Ule) + Ae [Xg Vo113 8, Bl o0, Ap & RY,

which is expression (5).
To show that (5) implies consumer utility maximization, define the
function

£(xg) = Min (V¢ + A¢ [vé Xg-1], A¢ € RY). (A2)
t

It follows that the function f(xg) is continuous, non-decreasing and
concave (and hence quasi-concave). Using (5b), (A2) implies that f(xg)
= Vg. Also, from (A2), we have

Max (f(x): vg x-1 =0, x £ R}) < Max (Vg + Ag [vg x-1]:
x X

v; x-1 =<0, x ¢ R;, Ag € Rt} = Vg

It follows that xg = argmax (f(x): v; R, ® e R;], i.e. that x4 is a

< solution to a utility maximization problem for s=1,...,T, where the utility
? function f(x) is defined in (A2).
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Footnotes

In our notation, R.n denotes the non-negative orthant where X =
(Z15...%5)" ¢ Rn means Xy = 0, for all i. Similarly, Rn denotes the
positive orthant where xj ¢ R;+ means xj > 0, for all i.

Given v = (v1,...,vy)', g(v) is non-increasing if g(v) = g(v) for Vi

vy, for all i. It is decreasing if vy < vy for all i implies g(v) <
g(v).

g(v) is quasi-convex if and only if (v:g(v) =< k} is a convex set for
every scalar k.

U(x) is non-decreasing (increasing) if -U(x) is non-increasing
(decreasing).

U(x) is quasi-concave if -U(x) is quasi-convex.

Diewert (1974) assumes a weaker condition: rather than being continuous
for % & R*, U(x) can be assumed to be only "continuous enough" for x ¢
Ry'- However, the former condition implies the latter one (see Diewert,
1974).

See Diewert (1974) for a discussion of the procedure for this extension.

The quasi-concavity of U(x) implies that the set K is_convex., To see
this, choose two distinct_points x and % such that U(x) = U(x) Also,
choose z ¢ K given x and z ¢ K given X. Define z = az + (l-a) z and X =
ax + (l-a) x for some a ¢ [0,1]. The linearity of the budget
constraint implies that zl < 1-v'x. Also, the qua51 concavity of U(x)
(where U(x) = U(x) = U(x)) implies that zo > - U(x). Thus, the set K is
convex.

Positive income and finite prices guarantee that Slater’s condition is
satisfied.

The conditions presented by Varian are:
Ag > 0
V < Ve + A [Vt Xg - Vt X¢) ]
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As can be easily verified, our equations (5) reduce to the conditi?ns
presented by Afriat or Varian undet non-satiation (where Ay > 0, vy %X =

1).
]
With Min (g(v): v'x <=1, v ¢ R;) - - Max {-g(v): v x =<1, ve Rg) and

W v

the saddle point characterization (4), the proof of Lemma 2 follows from
Lemma 1.

Hence, g(v) is continuous, decreasing and quasi-convex in R$+.

Hence, g(v) is differentiable, strictly decreasing and strictly quasi-
convex.




