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Non- Parametric Demand Analysis : 

A Dual ity Approach 

, 

I - Introduction: 

Non-parametric analysis of consumer behavior allows the 

i nvestigation of a finite nwnber of data points wi th no ad hoc 

specification of functional forms for utility or demand functions 

(Afriat; Diewert, 1973; Varian, 1982, 1983; Diewert and Parkan) . An 

i n teresting result from the literature is that a finite number of 

ob servations allows consumers choices to be rationalized on the basis of 

a concave utility function. This is somewhat surprising given that 

consumer theory is often presented assuming a quasi-concave utility 

function (e.g. Lau; Diewert, 1974, 1982) and that all quasi-concave 

f unctions cannot be transformed into a concave function by a monotonic 

i ncreasing transformation (e.g. see Arrow and Enthoven, p. 781). While 

this result has been used to justify the use of concave utility 

f unctions in demand analysis (e . g ., Varian, 1982 , 1983; Diewert and 

Parkan) , it suggests the existence of a gap between the theory of 

consumer choice and the development of testabl e hypotheses based on a 

f inite number of demand observations: in this case, it is not poss i ble 

to distinguish empirically between a concave and a quas i - concave utility 

f unction . 

The obj ective of t h is paper is to f urther expl ore the testabl e 

hypotheses of consumer theory in the context of a non- parame tric 

approach. In particular, the implications of duality theory (as 

developed by Samuelson; Lau; Diewert, 1974 , 1982) for non-parame tric 



' 

demand analysis are investigated. We show that, when duality 

relationships hold, the non-parametric implications of the primal 

problem (the maximization of a direct utilily function subject to a 

budget constraint) differ from those of the dual problem (minimization 

of an indirect utility function subject to a budget constraint) . ") In 

other words, even when the two problems are theoretically equivalent, 

they can be empirically different based on a finite number of 

observations. For example, it is possible for consumption data to be 

consistent with the primal problem while being inconsistent with the 

dual problem . This suggests some important limitations of duality 

theory for empirical demand analysis. Furthermore, it is shown that 

imposing the implications of duality in the non-parametric approach 

implies additional restrictions that can be used in testing consumer 

behavior . The results further illustrate the existence of a gap between 

consumer theory and the empi rical analysis of consumption based on a 

finite number of observations. 

II - Utility Theory and Duality: 

In this section, we briefly review consumer theory and set up the 

notation for the paper . Consider the consumer probl em: maximize the 

u tility function U(x) with respect to the n-dimensional consumption 

vector x subject to the budget constraint p ' x ~ I, where p is a 

n-vector of commodity prices and I > 0 is consumer income. Defining 

normalized prices as v - p/I, this can be written as the primal problemll 

g(v) - Sup {U(x): v'x ~ 1, x c Rri> 
x 

(1) 



. ' 
~ ' . 

L 

4 

where g(v) denotes the indirect utility function. If U(x) is a 

continuous function for x c R.ri. then it achieves a maximum over the 

feasible set and g(v) in (1) is a continuous, non-increas ing ,ZI quasi-

convexll function for v c ~ (Diewert, 1974). 

Now, consider t he corresponding dual problem: 

U(x) Inf {g(v):v'x S 1, v £ R.ri>. 
v 

( 2) 

If g(v) is cont i nuous for v c R.ri, then it achieves a minimum over the 

feasible set and U(x) in (3) i s a continuous, non-decreasing ,!±! quasi­

concave2/ funct i on for x c ~· 

The conditions under which U(x) in (2) is equal to U(x) establish 

the existence of duality between the direct (U(x)) and indirect (g(v)) 

utili ty functions. Variations in the statement of these conditions can 

be found in the li terature. Following Diewert (1974, 1982), the 

_following condition will be assumed: 

Condition A: U(x) is a continuous, non-decreasing and quasi-concave 

function for x c R.ri.Q/ 

Under condition A, g(v) is continuous, non-increasing and quasi-

convex for v c ~· In order for g(v) to be continuous as well for v c 

R.ri, the function {g(v) :v c Rn++> can be extended to the non-negative 

orthant (v c R.ri) by continuity from be l ow .11 After extending g(v) to 

the non -negative orthant, then unde r condition A, problem (2) gene rates 

U(x) such that U(x) - U(x) for x c Rn++· Moreover, given U(x) - U(x) for 
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x £ ~. then their extension (by continuity from above) to the non­

negative orthant (x £~)would al~o coincide (see Diewert, 1974) . 

In such a case, the indirect utility f~nction g(v) completely 

characterizes the direct utility function (and vice -versa) . Such 

duality relationships have been investigated in details in the 

literature (e.g. Hout hakker; Samuelson; Lau; Diewert, 1974, 1982; 

Blackorby et a l.) . By suggesting a l ternative formulations of consumer 

theory, duali ty relationships have stimulated much research on the 

characterization of consumer behavior (e.g. Christensen et al . ; 

Ander son; Lau, 1977; Christensen and Manser ; Weymark). 

For our purpose, it will be useful to discuss t he implications of 

duality in the context of saddl e point criteria. First, consider the 

saddle point problem: 

Find x* £ ~ and A~ £ R+ such that 

L(x,A~,v) S L(x*,A;,v), S L(x*,Ap,v) for all x £ ~ . Ap £ R+ (3) 

where L(x,Ap,v) = U(x) +. Ap[l-v ' x). 

It is well known t hat if a saddl e point exi sts, then x* in (3) is a 

(no t necessari l y unique) solution to problem (1), i.e. x* argmax 

(U (x): v'x S 1, x £ ~}. However, for the converse to be true, we need 

the following condition: 

Condit ion B: 

- there exists an x such t hat v 'x < 1 (Slater ' s condition). 

- the set K - {( z 0 ,z1): z 0 ~ - U(x), z1 s 1-v'x, for some x £ ~} 

is convex. 
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If condition B is satis fied , then x* being a solution to problem (1) 

implies that (x*, A~) is a saddle point solution to problem (3) (see 

Karlin; Sposito). Thus, under condition B,t t he saddle point criterion 

(3) i s both necessary and sufficient for x* to b e a solution of the 

maximimization problem (1) . Note that condition Bis satisfied if the 

utility function U(x) is quasi-con~ave~ and prices are finite.2/ In 

such a situation, finding a saddle-point solution to (3) is therefore 

equivalent to finding a solution to problem (1). 

Similarly, on the dual s ide, consider the saddle point problem: 

Find v* c 'Rii and A~ c R such that 

where V(v,A,x) g(v) + A[v' x- 1] 

Using the same arguments as in the prima l case, if the indirec t 

utility function g(v) is quasi -convex and quantities are finite, then 

the saddle point criterion (4) is both necessary and sufficient for v* 

to be a (not necessarily unique) solution of the minimization problem 

(2), i.e. v* - argmin (g(v): v ' x ~ 1, v c Rii> · Under such conditions , 

finding a saddle poin t solu tion to (4) is therefore equiva l ent to 

finding a solu tion to problem (2). These formulations are now used in 

the context of a non-parametric analysis of consumer demand. 

· • III - The Non-Parametric Approach 

The non-parametric approach to demand analys is consists in 

analyzing a finite body of data with no ad hoc specification of 
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functional forms for demand equations (see Afriat; Diewert, 1973; 

Varian, 1982, 1983). We assume that we have T observations on 

(norma lized) prices and quantities consumedf (vt, xt), t - 1, ... ,T. We 

also assume that these prices and quantities are positive and finite. 

The non-parametric approach investigates the implications of utility 

theory for these observations . 

First, consider the primal problem (1) where the utility function 

U(x) is continuous. If U(x) does not satisfy the monotonicity and 

curvature properties stated in condition A, then it is well known that 

it will never be possible to observe choices from the decreasing regions 

of the utility functions nor will it ever be poss ible to observe the 

non-convex regions of the indifference curves (e.g . Weymark). Thus, 

consumer data could not distinguish between a continuous utility 

function and some appropriate utility function satisfying condition A 

(i.e. non-decreasing and quasi-concave). In this sense , condition A 

implies no loss of generality as far as empirical implications of the 

theory are concerned. For this reason, we will treat condition A as a 

maintaine d hypothesis and assume that it is satisfied in the discussion 

presented be low. 

Considering the primal problem (1), then t he following results are 

obtained (see the proof in the Appendix ). 

Lemma 1: The following statements are equivalent 

a) xt ~ argmax (U(x): v~ x s 1, x c ~} for a set of normalized 

prices (vt, t - 1, . . . ,T}, where U(x) satisfies condition A. 
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b) there exist Vt, At, t-1, ... ,T, such tha t 

(Sa) 

(Sb) 

c) there exists a concave function f(x) that rationalizes the 

data in the sense that 

Xt = argmax {f(x):v~ x ~ 1, x c Rri>· 

Theorem 1 i s a n extension of the non-parametric results obtained by 

Afriat, Diewert (1973) and Varian (1982, 1983). For example, the 

necessary and s ufficient conditions for the data (xt,vt) to be 

consisten t with utility maximization are given in equations (S). Note 

that these conditions differ from the ones presented by Varian (1982, 

1983).lQ/ The r eason is that we did not impose non-satiation on the 

utility function U(x). Without non- satiation , it i s possible that the 

budget constraint will not b e binding. From the complementary slacknes s 

condition, this implies that the multiplier At can b e zero. Thus , while 

previous results have been restricted t o the case where At > 0 ( see 

Afriat; Diewert, 1973; Var i an, 1982, 1983), we con sider the more general 

case where At ~ o.ll/ 
, 

~nder non- sat i ation, note that (S) becomes At > 0, and As xt [vt -

, 
income At is positive and the budget constraint is binding, i. e. vs Xs 

1. The n, under differentiability, this implies the well known Roy's 

• identity 8g(v)/8v =-A* x* (see Anderson and Ta kayama, p. 506 ) . 

Now, consider the dual problem ( 2 ). The following result h olds:111 

-- - -- _ _____________,j 
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Lemma 2: The fo llowing statements are equivalent: 

a) vt - argmin {g(v) : v'xt s 1, v £ Rri> for a set of quantities 

{xt, t~l, .. . ,T}, where g(v) is a continuous, non-increasing 

and quasi-convex function. 

b ) there exist Vt, At• t - 1 , . .. ,T, such that 

(6a) 

(6b) 

c) there exists a convex function h(v) that rationalizes the data 

in the sense that 

v t - argmin {h(v):v'xt S 1 , v £ Rri>· 

Equations (6) present necessary and sufficient conditions for the 

data (xt,vt) to be consistent with the dual (indirect) utility 

minimization problem (2). Note that , under non-satiation of U(x), (6) 

- , - , 
becomes At> 0, As Vt [xt-xsJ S Vt - Vs ~ At vs [xt -xsJ, as the marginal 

utility of (normalized) income At is positive and the budget constraint 
, 

is b inding, i.e. vs xs - 1. Then, under differentiability, this implies 

t h e well known Wold ' s identity, 8U(x)/ax , * * 
A V . 

Comparing (5) with (6), note that the inequalities (6b) differ from 

those obtained in the context of the primal problem (Sb). This suggests 

that, given a finite number of observations, the dual approach to 

u t ility theory has in general different implications for consumer 

behavior compared to the primal approach. For example , consider the 

case where condition A is satisfied and duality between the primal 

p roblem (1) and the dual problem (2) holds. Then, t he two problems give 

theoretically equivalent representations of consumer preferences. They 



' t . .. 
.... 

10 

can also provide equivalent representations of consumer behavior (see 

Samuelson; Lau; Weymark). However, from (5) and (6), the two problems 

can be empirically different in the context of a finite number of 

observations. In particular, it is possible for consumption data to be 

consistent with the primal problem (1) while being inconsistent with the 

dual problem (2) (or vice -versa). This indicates an important 

limitation of duality theory in empirical demand analysis: by exploring 

only selected points of the consumption set, the primal problem applie d 

to a set of consumer data is not empirical l y equivalent to the dual 

problem. In other words, there is a gap between consumer theory 

' (assumed to hold at all points) and the empirical analysis of consumer 

behavior based on a finite number of observations. 

I n this context, should some of the dua l ity restrictions be imposed 

in non-parametric demand analysis? We have argued above that, given the 

continuity of preferences, condition A implies no loss of generality i n 

empirical consumption analysis. In this case, duality relationships 

between U(x) and g(v) would be expected to hold for xt and vt in the 

positive orthant (and by extension to the non-negative orthant), 

implying that U(xt) - g(vt) (see Diewert, 1974, 1982). This implie s 

t hat ~t - Vt i n Lemma 1 and Lemma 2 . Furthermore, consider the case 

where the funct i on U(x) is continuous, increasing and quasi-concave for 

x £ Ri;,.111 and define the closed convex set M(U) - {v: g(v) ~ U, v c Ri;l 

* * ++ where U - g(v ), v c ~ being a boundary point of M(U). Then , the set 

of normal ized supporting hyperplanes to M(U) t h rough the point v* 

constitutes t he solution set to the primal problem (1) (see Diewert, 

1974). In this case , the prima l and dual problems provide equivalent 

L 
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representations of consumer behavior (e.g. Weymark). From Lemma 1 and 

Lem.ma 2, the following result is obtained: , 

Proposition 1: The following statements are equivalent: 

a) Xt - argmax {U(x): 
, 

Vt X ;S 1, ~ c Rril where U(x) is a continuous, 

increasing and quasi-concave function, 

Vt - argmin {g(v) : v' Xt :$ 1, v c Rril where g(v) is a continuous, 

decreasing and quasi-convex function, 

and U(xt) ~ g(vt) , t - 1, ... ,T . 

b) there exist Vt, At, At, t - 1, .. . ,T, such that 

At > 0, At > 0 (7a) 

vs :$ Vt + At 
I 

[xs Vt-1) (7b) 

Vt :$ vs + At 
, 

[vs Xt-1) . (7c) 

Equations (7) provide directly testable conditions that the data must 

satisfy if it is to be consistent with the dual formulation of consumer 

theory as stated above. Testing these conditions consists in checking 

whether there exist solutions to a set of linear inequalities. The 

existence of such solutions can be checked easily by solving a linear 

programming problem (see Diewert, 1973). 

Note that equations (7) are more restrictive than equations (5) in 
' 

the primal problem or e quations (6) in the dual problem . For example, 

while the existence of a solution to (7) implies the existence of a 

solution to (5) and (6) , the converse does not necessarily hold. To the 

extent that it is reasonable to assume convexity of preferences and non-

satiation of U(x) as a maintained hypothesis, this suggests that the 
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empirical testing of consumer behavior should be done u sing (7) rather 

than (5) or (6). Previous non- parametric demand analysis (which is 

based on (5); see Diewert, 1973; Varian, 1982, 1983) explores only the 

implications of the primal problem (1). Ip contrast, equations (7) 

reflects the empirical implications of both (1), the prima l problem, and 

(2), the dua l problem. Since the non-parametric implications of the two 

p~oblems are not equivalent, more precise r esults would be obtained 

using Proposition 1 (instead of Lemma 1 or Lemma 2) in the non-

parametric analysis of consumer behavior. 

Finally, note that the multipliers At and At are allowed to b e 

different in Proposi tion 1. More r estrictive assumptions on the nature 

of the obj ective function in (1) or (2) can imply that the primal and 

dual multipliers are the same. This is the case when U(x) and g(v) are 

connected by Legendre transformation, where the utility function U(x) is 

differentiable , strictly increasing and strictly quasi-concave.~ and 

at equilibrium A; - A~ - aU(x). x - - ag(v) v (see Samuelson; Lau). 
ax av 

Under such conditions, the optimal solutions to problems (1) and (2) are 

unique and At - At in (7). The following result is then a special case 

of Pr,oposition 1. 

Corollary 1: The following statements are equivalent 

a) Xt - argmax {U(x): v~ x S 1, x c Rril where U(x) is a 

differentiable, strictly increasing and strictly quasi-concave 

function, 
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vt - argmin {g(v): v ' xt ~ 1 , v c ~}where g(v) is a 

d ifferentiable, strictly decreasing and strictly quas i-convex 

function, 

U(xt) - g(vt) and A* (vt) * (xt), t~l, ... IT . p = Ad 

b ) there exist Vt, At I t - 1, ... ,T, such that 

At > 0 (Sa) 

vs ~ Vt + At 
I 

[xs vt- 11 (Sb) 

I 

Vt ~ vs + .At [vs Xt-1] . (Sc) 

Again, equat i ons (S), which are more restrictive than (7), coul d be 

used in the empirical investigation of consumer behavior . To the extent 

that the duality representations considere d in Proposition 1 and 

Corollary 1 are commonly assumed as maintained hypotheses in demand 

analysis, then equations (7) or (S) should provide a u seful basis for a 

non-parametric analysis of consumption data. 

IV - Conclusion 

While duality theory suggests that, under some regularity 

conditions, the primal and dual approach to consumer behavior are 

equivalent, a non-parametric demand analysis based on a finite number of 

observations indicates that the primal and dua l problems are in general 

not empirically equivalent. This presents additional evidence of the 

existence of a gap b etween consumer theory and the analysis of a finite 

number of observations on consumption. 

By exploiting dua lity r e lationships be tween the pr ~~nl and the dual 

problems , we de rived a series of non-pa r ametr ic tests of c onsumer 

L 
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behavior. Such tests should be useful to evaluate the consistency of a 

finite number of consumption data with various hypotheses . For example, 

equations (8) in Corollary 1 could be u sed to test whether consumption 

behavior can be equivalently modeled from some p a r ametrically specified 

d irect or indirect (differentiable) utility function. Thus, the non-

parame tric analysis proposed extends the empirically testab l e content of 

consumer theory. We hope that our results will help stimulate the 

testing of the theory and its use in demand analysis. 
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Appendix 

Proof of Lemma 1: 

From section II, we know that, given finite prices and a continuous 

quasi-concave function U(x), the solution xt of the primal problem 

g(vt) - Max {U(x): v~ x S 1, x £ ~} 
x 

is equivalent to the solution (xt £ R.ri,At £ R+) of the saddle point problem 

.L(X,At,vt) ~ L(xt,At,vt) S L(xt 1 A,Vt), for all x £ ~. A£ R+ (Al) 

where L(x,A,v) - U(x) + A[l-v'x]. 
, 

The saddle point problem (Al) implies At[l-vt xtl = 0 and 

or 

which i s expression (5). 

To show that (5) implies consumer utility maximization, define the 

function 

f(xs) =Min {Vt+ At (v~ Xs-1), At£ R+}. 
t 

It follows that the function f(xs) is continuous, non-decreasing and 

(A2) 

concave (and hence quasi-concave). Using (Sb), (A2) implies that f(x 5 ) 

Vs · . Also , from (A2), we have 

Max {f(x): v~ x-1 S 0, x £ R.ri> s Max {Vs+ As [v~ x-1) : 
x x 

It follows that xs - argmax {f(x): v~ x s 1, x £ Rri>. i.e. that Xs is a 

sol ution to a utility maximization problem for s - 1, ... ,T, where the utility 

function f(x) is defined in (A2). 



18 

Footnotes 

11 In our nota tion, ~ denotes t he non-negative orthant where x -
(x1, .. ·Xn)' £~means xi~ 0, fo r all i. Similarly, ~denotes the 
positive orthant where xi £ ~ means xi > 0, for a l l i. 

Z/ Given v - (v1 •. .. ,vn) ' , g(v) is non-increas ing if g(v) 5 g(v) for vi 5 
vi~ for a ll i. It i s decreasing if vi <vi for a ll i i mplies g(v) < 
g(v) . 

'J./ g(v) is quasi - convex if and only if {v:g(v) 5 k} is a convex set for 
every scalar k. 

!±/ U(x) is non-decreasing (increasing) if -U(x) is non- increasing 
(decreasing). 

21 U(x) i s quasi -concave if -U(x) i s quasi -convex. 

fi.I Diewert (1974) assumes a weaker condition : ra ther than being continuous 
for x £ ~. U(x) can be assumed to be only "continuous enough" for x £ 
~· However, the former condition implies the l atter one (see Diewert , 
1974) . 

11 See Diewert (1974) for a discussion of the procedure for this extension. 

~/ The quasi-concavity of U(x) implies that the set K is convex. To see 
this, choose two distinct points~ and x such that U(~) - U(x). Also, 
choose z £ K given ~ and z £ K given x. Define z = az + (1-a) z and x 
ax + (1-a) x for some a£ [0,1 ). The linearity of the budget 
constraint implies tha t z1 5 1-v' x. Also, the quasi- concavity of U(x) 
(where U(x) ~ U(~) - U(x) ) implies that z 0 ~ - U(x). Thus, the set K is 
convex. 

~/ Positive income and finite prices guarantee that Slater ' s condition is 
satisfied. 

The conditions 
.At > 0 
Vs 5 Vt + 

presented by Varian are : 
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111 As can be easily verified, our equations (5) reduce to t he conditions , 
presented by Afriat or Varian under non- satiation (where At > 0, v t xt 
1) . , 

111 With Min {g(v): v ' x ~ 1, v £ ~} - - Max {-g(v): v' x s 1, v c R..ril and 
v v 

the saddle point characterization (4), the proof of Lemma 2 fol lows from 
Lemma 1. 

1ll Hence , g(v) is continuous , decreas ing and quasi - convex in~· 

JAi Hence, g(v) is differentiable , strictly decreasing and strictly quasi­
convex. 


