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SPORT AND COMMERCIAL FISHING INTERACTIONS : 

AN OPTIMAL CONTROL MODEL WITH IMPLICATIONS 

FOR POLICY AND RESEARCH 

Richard C. Bishop and Karl Samples* 

Abstract: 

A recreational sector is added t o a standard commercial fishing 
model to identify public decision variables which are important in 
dealing with sport- commercial conflicts. Shortcomings of current 
ecomomic inputs to policy making are identified and future research 
topics to remedy this are derived from the model. 

Because fish caught recreationally are more valuable than fish 

caught commercially, sports fishing should be favored whenever the two 

groups clash . So goes the argument heard by policy makers who are being 

asked with increasing frequency to allocate scarce fishery resources 

between sport and commercial interests.
1 

And, although this argument is 

distinctly economic in character, economists themselves have been mostly 

·1 h . 2 si ent on t e topic. This void in the literature is curious given the 

*Richard C. Bishop is an Associate Professor and Karl Samples, 
a Research Assis tant in the Department of Agricultural Economics and the 
Center for Resource Policy Studies at the University of Wisconsin- Madison. 
Colin Clark made several ver y helpful comments on an earlier draft. 

1
An interesting alternative interpretation is that sport fishing 

is "just" recreation and produces nothing economic, whereas commercial 
f i shing produces food , profits and employment. This argument, however, 
appears to be completely devoid of economic content . 

2 Two unpublished papers have recently appeared . See McConnell 
and Sutinen fo r an optimal control approach to this question that is 
somewhat similar to the pr esent effort. A very interesting static model 
has been developed by Anderson . Other relevant works include those by 
Copes and Knetsch; Brown and Hussen; Mathews and Wendler; Southey; and 
Rothschild, e t al. 
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large amount of research current ly being devoted to commercial fishing 

and to the estimation of demand functions for recreation of all kinds. 

It is also unfortunate, since--as the analysis in this paper will show-

the allocation of fishery resour ces involves economic relationships that 

are not adequately captured by comparing dockside commercial values of 

fish with expenditures or recreation benefits per pound. 

The present paper develops a bioeconomic model of recreational- · 

commercial fishing interactions. The results of the model should be of 

interest to both decision-makers and econimists . The model explicitly 

describes some of the variables that ought to be considered when comparing 

the economic contributions crf sport and commercial fishing . As such, it 

shows the decision- maker what is important from an economic point of 

view and why arguments like that given above are economic oversimplifica

tions. The economist will immediately recognize the possibilities for 

important additional research on both the theoretical and empirical 

levels. 

The Clark-Munro Linear Model 

The model presented here adds a recreational sector to the linear 

optimal control model developed by Clark and Munro and later discussed 

at length by Clar k . Let F(x) = the natural rate of growth of the fish 

population as presented in the Schaefer model of population dynamics, 

where x is the size of the fish population in question . Let p = 

the price per pound of fish caught commercially, where demand is assumed 

to be perfectly elastic. Let c(x) = the cost of catching a pound of 
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of fish as a function of the population size, c'(x) < 0. Let h = 

the fish harvest and h = the maximum possible rate of harvest, 
max 

so that 0 < h < h - max To simplify the notation, let p - c(x) = C(x), 

the rent per pound of fish caught commer cially . Thus, C'(x) > 0 . Let 

t denote specific points in time and o the social rate of discount. 

Except as otherwise stated below, all functions are assumed to be 

continuous and differentiable. 

The objective functional is given by 
(X) 

max J(h) = J e-otC(x) h dt 
0 

subject to 

dx dt = x = F(x) - h 

0 < h < h 
max 

x(O) = x 0 

The final constraint is an initial condition, that at t = 0, x stands at 

some given value x
0

• The problem is to choose an optimal control h(t) 

for all t such that J is maximized without exceeding the natural 

productivity of the fish population or the productive capacity of the 

fishing fleet . 

The relevant Hamiltonian function is 

H = e - o tC(x) h + A(t)[F(x) - h], 

where A( t) is the adjoint variable. Clark and Munro apply the basic 

theorems of optimal control theory to derive a set of three necessary 

conditions for the optimum, assuming that one exists with positive x 

over all time and positive h over at least part of the time. These 

necessary conditions are: 
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I. that h is chosen over all 0 < t < 00 such that H is maximized. 

II. aH _ -~ ( t ) ax -
III . x = F(x) - h 

Clark and Munro ahow that these conditions imply a " singular solution" for 

x, symbolized by x*, which is defined implicitly by 

F ' (x*) + C'(x*)F(x*) = 0 
C(x*) 

and that the optimal time path for commercial harvest is given by the 

piecewise continuous function 

h for all t such that x(t) > x* 
max 

h(t) F(x*) for all t such that x(t) = x* 

0 for all t such that x(t) < x* 

This is the op t imal control for the case where there is only a commercial 

fishery. Now let us add a recreational sector. 

The Model with Recreational Fishing Added 

Let g = the rate of catch in the recreational fishery. Let 

gmax be the maximum rate of harvest by recreational fishers, so that 

0 ~ g ~ gmax· Let R(x) = the rent per pound of fish caught recreat ionally, 

with R' (x) > O. As in commercial fishing, presumably the cost of catching 

a pound of fish would be expected to decline, the larger the biomass. 

Furthermore, it is intuitively appealing to assume that recreational 

demand for fish is positively related to the rate of angler success, as 

measured, say , by fish caught per f ishing day . Empirical studies by 

Stevens and Talhelm support this v iew . One would expect that normally 

angler success and biomass would be positively related as well. In the 
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present model we in effect assume that the recreational demand for fish 

is perfectly elastic with respect t o quantity caught (g) but shifts 

with b i omass (x) . 

One other assumption must be made before we state the revised 

model formally: it is assumed that society 's obj ective is to maximize t he 

present value of the rents from the fish population in question . Over-

emphasis on the efficiency goal can lead to problems as discussed by 

Bromley and Bishop. Nevertheless, op timization provides useful benchmarks 

for later analysis. Furthermore, remarks in the introduction demonstrate 

that efficiency is already pl aying a role in the policy debate over alloca-

tion of fishery resources between commer cial and recreational interests . 

Hence, we proceed on that basis. 

The revised problem can now be s t ated. 
00 

max 

subject to 

J(g,h) = Je-ot[R(x)g + C(x)h ]dt 
0 

(1) x = F (x) - g - h 

0 < h < h - max 

x (O) = x0 

The new Hamiltonian function is 

- Qt 
H = e [R(x)g + C(x)h] + ~ (t)[F(x) - g - h] 

where ~ (t) is t he adjoin t variable in the new pr oblem. At this point , 

however, le t us rearrange H as follows : 

where cr 
1 

and cr
2 

are "switching functions", 



e- otR(x) 

cr
2 

= e- o tC (x) 

ljJ (t) 

- ljJ (t) 

In order to describe the characteristics of a solution, the 

first necessary condition must be modified t o allow for two control 

variables, g and h . 
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I' . The values of g and h at all points in time 0 < t < ~ 

must be such that H is maximized. 

Necessar y condit ion II remains the same and III is modified to 

i nc lude recreational harvest: 

III '. ~ = F(x) - g - h 

Some Char acteristics of the Solution 

Assuming that a solution to our problem exists which involves 

positive x at all future times and positive g and /o r h for at least 

part of the time , we can begin t o explore the char acteristics of that 

solution by examining I '. One approach to maximizing H would be 

(2) 
aH e-otR(x) - ljJ ( t ) 0 -= = ag 

3H = e-o t C(x) - ljJ ( t) = 0 dh 
(3) 

These equations help define the singular solution t o the pr oblem and yield 

our firs t important r esul t . The adj oint variable ljJ(t) is interpreted as 

the value at the margin of increasing the fish popula tion by one pound 

along the op timal t i me path (Clark; Dor fman) . It is hard to imagine a 

realistic case where i t would no t be a single- valued func tion of time. 

Hence, (2) and (3) can hold simultaneously only in the rather uninteres ting 

special case where R(x*) = C(x*) wher e x* is the optimal bi omass . 
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Here society is indifferent between sport and commercial fishing once 

x* is attained. Otherwise, and this is a more interesting result, once 

the singular time path is reached, either h or g must go to zero, 

except under special circumstances discussed below. Stated differently, 

once the steady state is achieved, either recreational or commercial 

fishing must cease. This is a direct outgrowth of the linearity of the 

model. 

What characterizes the singular time path? If we take equation 

(3) and necessary conditions II and III' and follow t he same steps as 

Clark and Munro, the result is the familiar 

where now x* 2 is the optimum level of biomass if commerical fishing is 

optimal along the singular time path . Likewise, let xt = the optimal 

biomass if recreational fishing is socially preferred. Following the 

same procedures for (2), II and III' yields 

(4) 
R'(xf)F(xf) 

F'(xf) + ~~~~~
R(xf) 

Society's pr oblem is to choose between x* 1 
and x* 2 

as the long term 

goal for biomass and to choose an optimal plan to approach the pref erred 

steady state . There are two sets of critical factors here . The first 

relates to the sensitivity of the net values of sport and commercial catches 

to biomass . The second set relates to the capacities of the fleets . The 
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impacts of these factors will be illustrated with two cases. 

Case 1. If we assume that R(x) > C(x) for all x, then a 

strong case exists for devoting t he fish resource completely to recreation 

so long as the fishery is in the s t eady stat e x* l 
as defined in 

Equation (4) and the recreation sector has the capacity to harvest the 

catch, i . e . gmax ~ F(xt) . Even her e, however, commercial fishing may be 

economically eff i cient under certain conditions. 

Fir s t , consider the path to the steady state . Suppose , for 

example, that x(O) = K, the carrying capacity of the environment in the 

absence of exploi t ation. The model would signal this by showing 

cr
1 

> 0, i.e. rent per pound exceeds the value of l/J , the adjoint var iable. 

So long as t his holds, condition I ' means that g must be set at 

gmax· This is the so-called "bang- bang" approach to equilibrium. In 

addition, the appr opriate value for the other control variable h must 

be considered. There are three possibilities . The first is that 

- ot 
e C(x) < l/l(t) for all x > x* - l 

in which case commercial fishing is 

never economical . On the other hand, it is conceivable that 

e- otC(x) > l/J(t) 

make cr
2 

> 0 and 

for some values of x larger than 

I' would require that h = h max 

x*. 
l 

This would 

A possible 

scenario would then be to have both sport and commerical fishing at the 

maximum rate for an initial period of time, a second phase of develop-

ment where commercial fishing is eliminated but sport fishing continues 

at full capacity, and a third, equilibrium phase where h = 0 and 

g = F(x7) in perpetuity. 



There is a third possibility and a rather interesting one. 

This would be the case if the recreational fishery has insufficient 

capacity to move to the steady state, prescribed by Equation (4), 

i . e . g < F(x*
1
). max This would mean the -ct 1jJ = e C (x) in the steady 

state. Then conditions II and III' plus the necessity that g = gmax 

must hold (cr 1 > 0 continues to be true in the long-run) can be 

manipulated algebraically to define a new optimal biomass 

by 

c' (x)[F(x) - gmaxl 
F(x) + - -------

C(x) 

R' (x)g + _ ___ m_ax_ = 0 
C(x) 

Commercial fishing continues in the steady state at a level 

h = F(x) g - max· 

-x defined 

It should be noted that cases where C(x) > R(x) for all x 

are also conceivable. Here the analysis would be symmetrical except 
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that commercial fisheries would tend to dominate. It is also possible 

that at some values of x, R(x) > C(x), while at others the reverse 

holds. This brings us to the second case . 

Case 2. Let us suppose that for larger levels of biomass, 

say x < x .s_ K, R(x) > C(x) but that for 0 < x .s_ x, C(x) > R(x). 

While the existence of the case in reality is an empirical question, 

it has some intuitive j ustification. Fishing with r od and reel is not 

a very effective method for catching most species. A fairly large 

biomass may be r equired to maintain success rates at sufficiently high 
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levels and to keep costs down . Also, the average size of the f ish may 

be critical in recrea tional fis heries and size usually decreases as 

biomass declines. Thus, while R(x) may be qui te large when x is 

relatively high, it may decline rapidly wi th decreases in biomass . 

Commercial rent per pound, on the other hand, may be much less sensitive 

t o biomass . Thus this appears to be a case of some practical interest . 

We will assume that there are no capacity problems such as 

those discussed t oward the end of Case 1, above . Also, r ecall that 

and x* 
2 

are the optimal levels of biomass for recreational and 

commercial f ishing as defined above. We must consider three possibilities.
3 

(a) It may hold that x* 
l 

and x* 
2 

are both less than A x . 

This would mean that once x fal ls below x, C(x) > R(x) and the 

results would follow Case 1 . That is x * 
' 2 

is optimal and recreational 

fishing will be economically ( i . e . cr
1 
~ O) i f at all, only during the 

phase befor e the steady state is achieved. Commercial f ishing continues 

at h until x* max z is reached and at h = F (x~) 

(b) Suppose now that both x* l and x* 2 

t hereafter. 

exceed A x . Then , 

since R(x) > C(x ) for all relevant biomass levels, the situation is 

3A fourth possibili t y , that Xf < x < x~ , is mathematically 
inconsistent wi th the assumptions . The defini t ion of Xf implies 
R(xt ) = ~ (t ) if it is the optimal steady s tate. However, by defini t ion 
R(xf ) < C(xt) when x~ < x. Thus Xf < x implies C(xf) > ~ ( t) which 
means that xt could not be the optimal solution for the overall pr oblem . 
Having x~ > x would likewise imply that R (x~) > C (x~) = ~( t) so 
that neither point could be optimal . 
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again analagous to Case 1 but now recreational fishing is the goal in 

t he steady state and commercial fishing is economical only in dis-

equilibrium if at all. 

(c) If x~ < x < x~, the problem becomes more complex and 

the solution canno t be determined on ~ priori grounds. 

A conclusion which follows from di scussion of the two cases 

above is that the relative values of R(x) and C(x) for any given 

biomass x do not alone provide a clear indication of whether r e-

creational or commercial fishing is most efficient in the steady state. 

Also necessary t o consider are the values o f R(x) and C(x) at the 

optimal biomass levels x* l 
and x~ , as well as whether t here exists 

sufficient harvesting capcity in each fishery. But this raises another 

question. In the absence of a binding capacity cons traint is it 

necessarily true that a fishery must be devoted exclusively to either 

sport or commercial fishing if efficienCYis to be achieved? As noted 

previously, this outcome is a direc t r esult of the linearity of our 

model. Once nonlinearities are introduced, efficiency may well call 

for a multiple-use fishery. 

Multiple Use in the Steady State 

To construct the more realistic non-linear model it is 

necessary to change the definitions cf our benefit functi ons. Let 

R(x , g) equal the marginal net benefits of rec reational fishing and 

C(x,h) equal the marginal net benefits of commercial fishing . We 

assume that over relevant values of x , g , and h , that 



aR(x,g) 
ax > o, 

aR(x,g) 
ag < o. 

ac(x,h) > O 
ax ' 

ac(x,h) < O 
ah • 

Total net benefits given some level of x are functions of the catch 

rates s uch that 

" 
g 

R = f R(x,g)dg 
0 h 

" f C(x,h)dh. c = 
0 

The problem is then set up as: 
00 

maxJ(g,h) = J e-Ot[R + C]dt 
0 

subject to x = F(x) - g - h 

x(O) = x
0 

The Hamiltonian expression for this problem is then 

-o t " " H = e [R + C] + ~(t)(F(x) - g - h] 

where ~(t) is again the adjoint variable . 

For our purposes it is only necessary to explore some of the 
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characteristics of the steady state solution to this problem. Assuming 

that such a solution exists, conditions I', II, and III' above can be 

used to derive necessary conditions which can be rearranged to show that 

(5) 

(6) 

(7) 

R(x*,g*) = C(x*,h*) 

aR./ax + ac/ax 
F'(x*) + C(x*) = o 
F(x*) = g* + h* 

Expression (6) implicitly defines the optimal biomass, x*, fo r the 

population of fish in question . The harvestable surplus F(x*) is then 

divided between sport fishing at a rate of g* and commercial fishing 

at a rate of h* such that marginal net benefits f r om the two fisheries 

are equal (Equation 5). 

Thus, once benefits come to depend on the catch levels, it is 

quite conceivable that efficient exploitation of fish population could 
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involve joint use by sport and commercial fishers after the steady 

state has been reached. 

Conclusions 

The paper began by pointing out that there is a tendency in 

policy debates to compare sport and commercial fishing on the basis of 

recreation benefits per pound caught versus the dockside values of 

commercially caught species. We are now ready to draw some conclusions 

about the potent ial pitfalls of this type of argument and to suggest 

some lines of resear ch that will facilitate more meaningful comparisons . 

The first conclusion- -and we really did not need an optimal 

control model to tell us this--is that costs are important. Docks ide 

values of commercially caught fish do not reflect costs . Recreation 

benefits when calculated in conventional ways do exclude direct costs 

to t~e recreationists, but may neglect management costs born by the 

taxpayer. Meaningful economic comparisons of sport and commercial 

fishing must be based on net benefits . 

Secondly, and this is par ticularly apparent from the non-

linear model, it is net benefits at the margin that must be compared . 

To use average recreation benefits per pound is a flagrant v iolation 

of this principle and probably exaggerates recreat ion values . Going back 

to our non-linear model, if the assumptions are correct, 
A 

R - > R(x , g) . 
g 

Thus, meaningful comparisons must be made on t he basis of mar ginal net 
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values. 

Thirdly, before economic contributions can be adequately 

compared, recr eational fishing benefits have to be related empirically to 

recreational catch. This is critical because most fishing demand 

studies relate price to recreation days not fish caught. Fish are 

only one input into the production of recreation days. Simply dividing 

total recreation benefits by catch to get average penefits per pound 

is like dividing gross farm income by pound of fertilizer to get the 

ecomomic contribution of fertilizers to farm income . Meaningful 

comparisons must be based on the der ived demand for fish . 

Furthermore, the economic contributions of sport and commer cial 

fisheries depend on x , g, and h . For one vector of values of these 

variables, sport fishing may look advantageous, while for ano t her vector, 

commercial fishing may appear more economically attractive. Meaningful 

comparisons must take account of the sensitivity of marginal and total net 

benefits to changes in biomass, sport catch , and commercial catch . The 

importance of the relationships between biomass and total net benefits 
11 

is illustrated by the various equations for determining x* (e . g. 

Equations (4) and (6)). The models show that conditions outside the steady 

state and the fishing capacity of two interest groups may also be im-

portant. 

Comparison of dockside values and recreation benefits per pound 

caught has occurred, of course, to fill a void left by the scarcity of 

more adequate economic analyses . This leads t o topics for fu ture research . 

A t op priority is the q~antificationof the derived demand for fish in 
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recreational uses. Some important work relating to this issue are 

currently underway at Michigan State, Wisconsin, and elsewhere, but much 

more work is needed. Also1 better demand curves for commercially caught 

species and further investigations of the cost of both types of fishing 

are needed. In addition, we presently know little about the distri-

butional implications of alternative policies. 

Many theoretical problems also remain that must be solved if 

we are to have solid theoretical principles to guide empirical research . 

What if there are two species of fish instead of one and the 

recreational species is predator and the commercial species is prey? 

What i f the two species compete? What if one or both interest groups 

continue to operate under open access? What if commercial fishing has 

recreational benefits through seafood restaurants and the contri-

4 
bution the fleets make to the coastal atmosphere? 

Clearly economists have much work to do before they can 

adequately assist public decision- makers confronting conflicts between 

sport and commercial fishers . 

4McConnell and Sutinen consider the parallel case where 
recreationists can market their catches. 
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