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I . Introduction 

Ever since the pioneering work of Leontief, Koopmans and Dorfman , Samue lson 

and Solow, linear programming (LP) has played an important role in applied 

economic research. More recent advances in economic theory and opera tions 

research have greatly facilitated the formulation and solution of non-linear 

models. However, there are many problems which continue to lend themselves to 

linear analysis . Consider the widespread use of the linear programming approach 

for industrial process modeling . Recent examples include the Russell-Vaughan 

model of steel production (1971) and those of Thompson et al. ( 1977 ) for the 

petroleum refining, electric utility and chemical industries. These tend to be 

popular because of the fixed coefficient nature of specific manufacturing 

processes, with aggregate factor substitution arising from the use of activities 

with different relative factor intensities . 

Another common use of the LP approach is in the formulation of national 

planning models where a considerable degree of disaggregation is desired . A good 

ex&mple is provided by the CARD (Center for Agriculture and Rural Development) 

model of U.S . agriculture . In one version (English et al . ) the nation is 

divided into 105 producing regions, each with 10 land groups and detailed 

irrigation information. Twelve commodities are produced using 330 alternative 

crop rotations and a dozen different soil conservation alternatives . 

Transportation and marketing are also treated in this model . This detailed 

modeling of agriculture permits analysis of the link between broad national 

policies and natural resource use and production levels in particular producing 

areas . 

Despite their relative computational simplicity , there are many instances 

where repeated solution of the LP may be either too time-consuming, too costly , 

or simply uninformative. This has given rise to a literature on methods for 
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summarizing such models. For example, Griffin (1977a) uses pseudo data 

generated from an LP describing electricity power generation to estimate a 

translog, summary cost function . Use of the latter in the Wharton econometric 

model results in considerable computational savings. [He estimates (p. 113 ) 

that direct use of the LP would require it to be solved 100 times for each 20-

year macroeconomic forecast.) 

For those LP models used in policy analysis, the qualitative results 

provided by summary functions can prove extremely valuable . Policy analysts 

often do not have the luxury of waiting a day, or possibly a week , for "what if" 

questions to be answered by the large-scale , national planning models . 

Furthermore, they are often only interested in the qualitative results 

associated with the impact of a particular intervention. In such circumstances 

it is very desirable to have a set of elasticities summarizing the partial 

effects of various price and quantity changes on the full complement of 

endogenous variables in the LP . 

The proliferation of studies since Griffin's original application of the 

pseudo data technique is further testimony to the interest in obtaining summary 

measures of LP responses [eg . , Griffin (1977b, 1978), Kopp and Smith (1980, 

1981) Smith and Vaughan (1979, 1980, 1981)). However, widespread use of this 

approach has 

elasticities. 

been hampered by doubts about reliability of the summary 

Critics of this method (eg., Madala and Roberts) have pointed out 

that results may be quite sensitive to sample design . Griffin himself (1982), 

has expressed concern about the sensitivity of his results to the frequency and 

range over which the sample points are selected. This problem arises from the 

fact that the sampling is conducted independently of the underlying model 

structure. Depending on the location and nature of the LP's basis changes , a 
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given sampling strategy may be effective in one case, but not in another. 

Similarly, a slight change in sample design may yield very different estimates. 

In this paper, a new method for summarizing LP models which takes account 

of the underlying model structure is described. The selection of sample points 

is dynamic, and is based on information about the particular LP under 

consideration. This gives rise to an efficient and relatively robust algorithm, 

whereby each successive LP solution obtains a rapid reduction in the uncertainty 

about the true model structure. The power of this method is illustrated by the 

fact that it is equivalent to the pseudo data approach, when the latter is based 

on an infinite sample. 

Section II introduces the summary function problem in an intuitive way, and 

illustrates fundamental distinctions between the pseudo data method and the 

proposed approach. The latter is dubbed "Linear Program Swnmary Functions" 

(LPSF). In the third section the LPSF algorithm is developed in detail. 
/ 

Section IV provides a comparison of approaches and sampling strategies based on 

a relatively simple, well-understood LP model. A final section provides the 

reader with a summary and the conclusions which can be drawn from this research. 

II. Overview of the Summary Function Problem 

The major problem associated with current techniques for summarizing the 

price responsiveness of LP models is perhaps best illustrated in a visual 

manner. Figure 1 depicts the supply function for soybeans from the farm level 

model discussed in Section IV. Each of the eleven steps refers to a different 

optimal basis corresponding to soybean prices which vary over the range between 

75% and 125% of the base price. Since soybeans are used in rotation with other 

crops, as long as total acreage is fixed, there is little incentive to change 

crop mix for small price movements. This is reflected in the highly inelastic 
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supply function for all price changes between -25% and +20% of the base. 

However , supply is quite responsive to soybean price changes greater than +20%. 

How might one best summarize this supply relationship? The simplest 

approach involves computing an arc elasticity which evaluates quantity change 

over the entire range of prices . Since the base case is our point of reference, 

the percentage quantity and price changes are computed relative to their base 

levels. This yields an arc elasticity of supply equal to 0 . 343. Unfortunately 

this overstates the model's price responsiveness over most of the relevant 

range. 

By contrast the pseudo data technique samples a number of points between 

the extremes of ± 25% and fits a curve through them. Once again the elasticity 

may be computed with reference to the base case. The results (see Section IV, 

for more details) may be shown to depend heavily on the number of points 

1 
sampled. For example, adding the base price to the two ex tremes results in a 

supply elasticity of 0.60. As more points are added this estimate becomes more 

reliable . Thus , for 5 prices it is 0.51 and for 11 evenly-spaced sample points 

along the soybean price axis the supply elasticity (evaluated at the base price) 

drops to 0.39. 

As noted above, the sensitivity of estimated elasticities to sampling 

frequency has been a source of great concern. Without prior knowledge of the 

model's underlying structure it is impossible to determine a "good" sample 

design. Furthermore, in many cases successive sample points may do little to 

reduce uncertainty about the underlying supply relationship. For example, 

consider the case where the sample consists of eleven evenly spaced points in 

the range of ±25% (one for every 5% price change). This places 10 of the 11 

points along the segments A- E , over which there is almost no supply response . 
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By the same token the segments F-J are not sampled at all. This is clearly an 

undesirable situation. 

The Linear Program Summary Function (LPSF) technique outlined in the next 

section takes into account the fact that sample responses are derived from a 

linear programming model. This knowledge permits us to utilize techniques from 

sensitivity analysis in order to extract considerable information about the 

underlying model structure with each additional sample point. Furthermore, we 

are able to place bounds on the extent of our remaining ignorance. This gives 

rise to a dynamic sampling process which rapidly reduces this uncertainty. 

The advantages of this approach are readily evident from Figure 1. Based 

on information from the 3 LP solutions at± 25% and the base price, the LPSF 

algorithm constructs the segments A, C and K. Furthermore, bounds are placed on 

the maximum remaining error. Since this is greatest between C and K the next 

sample point comes between these two segments. (Details of this procedure are 

provided in the following section.) In particular, segment E is discovered 

next. The sampling sequence for the remaining segments is determined 

dynamically (using the same criteria) in the following order: H, B, F, D, I, G, 

J. After 11 solutions of the LP we have discovered a great deal about the 

"true" supply function. This is a considerable improvement over the pseudo data 

technique where the eleven solution case neglected key pieces of the piecewise

linear soybean supply function. 

After fitting a smooth summary function to the true response surface, an 

elasticity may be computed. The resulting base-price supply elasticity is 0.21 

which is an improvement over the alternative techniques. Of course none of 

these alternatives is as reliable as using the piecewise linear supply function 

directly . As long as the specified price perturbation is along a sampled 

direction, the LP response can simply be "read off" of the piecewise linear 
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supply function . This gives the same result as would be obtained by re-solving 

the entire LP. If the price perturbation does not lie along a sampled 

direction, a differentiable summary function provides a l ogically consistent 

method for evaluating the approximate response . 

III . Development of the Algorithm 

In this section the Linear Program Summary Function algorithm i s developed 

in detail. By way of introduction, as well as for the purposes of comparison, 

a brief review of the pseudo data technique in our notation is presented here. 

Pseudo Data Revisited 

Consider the following parametric linear program designed to determine the 

profit maximizing commodity bundle (X). 

resource endowments (R) are given. 

(1) 0 T 
max~ - (P + oD.) X 

l. 

subject to: AX~ R, 

x ~ 0. 

Prices in the base case (PO) and 

The matrix A is comprised of technological coefficients. The vectors D. 
l. 

(i-1, .. . , I) denote the directions in which the objective function coefficients 

will be perturbed , and a is a scalar denoting the amount of the perturbation.
2 

The pseudo data technique generates data for estimation of the associated profit 

function by choosing several directions D., and values for the perturbation 
l. 

parameter, 

objective 

o. 3 The jth value for direction D. will be denoted o . .. The optimal 
l. l.J 

0 
function values, denoted ~*(P , R) (where P - (P +a . . D.)) , are then 

l.J l. 

recorded for use in the estimation problem. 

As Madala and Roberts (1980) point out, given sufficient price variability 

in the pseudo data set, this restricted profit function may be estimated 
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directly , using ordinary least squares. This problem may be stated as follows 

(output and resource levels remain constant and are therefore suppressed): 

I J 
(2) min l l 

i-1 j-1 

0 0 2 
(G(P +a .. D. 18) - ~*(P +a .. D.)] 

1J 1 1J 1 

where G(PIO) is the estimated cost function, given the vector of parameters 8. 

A commonly employed functional form for G(•) is the translog: 

N N N 
(3) G(PIO) - p0 + l Pk ln(pk) + 1/2 l l Pmn ln(pm) ln(p ) 

k-1 m-1 n-1 n 

This may be viewed as a second-order Taylor series approximation to the 

logarithm of the true profit function, ~*. in the neighborhood of the unit price 

vector. Once symmetry and homogeneity are imposed, this yields 1 + 2(N-l ) + 

l /2((N-1)
2 

- N - l] parameters in the 8 vector. 

Rather than working with the profit function directly, it is common 

practice to apply Hotelling's lemma and estimate the associated net supply 

equations (Griffin, 1977a). In the case of the translog, this yields share 

equations of the form: 

(4) 8lnG - S (PIO) - ~ + 
alnpk k k 

Thus problem (2) becomes one of minimizing the system sum of squared residuals 

associated with actual and fitted profit shares. Regardless of whether (3) or 

(4) -- or even both -- are estimated, the pseudo data methodology remains quite 

sensitive to the choice of sample values (a .. ' s). 
1J 

Furthermore, it fails to 

capitalize on our knowledge about the basic structure of the underlying process 

model. 

Linear Program Summary Functions 

The proposed alternative to pseudo data is the Linear Program Summary 

Function (LPSF). The LPSF is created by a two step process. The first step is 

to construct a piecewise-linear summary function for the LP. The second step is 
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to estimate a differentiable summary function which is, by some measure, "close" 

to the piecewise-linear summary function. The most important difference between 

the summary function and pseudo data methods is that the new method takes into 

account the fact that the responses due to price changes are actually being 

generated by a linear program. 

Consider, for a moment, the situation wherein we know the optimal objective 

value of the LP for every reasonable configuration of prices. In this case, the 

optimal value for each variable, Xi may be determined by computing the 

derivative of the optimal objective response function with respect to the 

appropriate price. Hence, there is no further information about the primal 

solution that can be obtained by solving the linear program. Linear program 

summary functions are approximations to this optimal objective response 

function. 

What is known about the optimal objective response function as a function 

of prices? LP theory tells us that this function is convex and piecewise-

linear. Also, the points where the optimal function is nondifferentiable 

correspond to points where basis changes occur . The response function forms a 

polytope in n+l dimensional space (where n is the number of prices in the 

summary) . Figure 2 displays the negative of the optimal objective response 

* * (Z - -~ ) as a function of two prices. Ideally, we would like to have an 

efficient method for. generating this polytope. Any useful method for describing 

the polytope would have to store a quantity of information equivalent to a list 

of the extreme points of the 
4 

facets. Unfortunately, this seems to be 

impractical, since a facet of the polytope may potentially have the same number 

of extreme points as there are bases for the LP . Furthermore, the computation 

of each extreme point requires the solution of a linear system . Thus, a simpler 

problem must be defined. 
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Consider again how the pseudo data technique is used to generate data. 

First a base price, about which the approximation will be constructed, is 

chosen . Second, the response function is evaluated at various prices along line 

segments in price space that intersect the base price. This would seem to 

suggest a useful intermediate step between finding the entire response surface 

on the one hand and sampling only a few points on the other. Thus, the true 

response function is constructed over selected lines in price space that 

intersect the base price (Po). Figure 3 displays the optimal response function 

with two lines imposed in price space (ab and cd). Their projection onto the 

optimal response function results in the piecewise linear arcs a'b' and c'd'. 

In price space these lines are parallel to the price axes. Thus , they move only 

one price at a time so that o
1

- (1, 0) and o
2

- (0, 1). The generalization to 

lines which are not parallel to the axes is straightforward and implies two non-

zero elements in the D. vector. 
1 

To understand the approximation technique, it is useful to consider a 

"slice" of the graph in Figure 2 taken parallel to the P1 axis and through the 

base price. This captures that portion of the optimal objective response 

function given in Figure 4. The vertical axis in this figure corresponds to the 

* level of the (negative) optimal objective response, Z (P), where: 

0 
p - p + alDl 

As before, PO denotes the base price about which the local approximation to the 

response function will be constructed, o
1 

denotes the direction in which prices 

are being perturbed, and a
1 

denotes the amount of the perturbation. In this 

subspace, the response function retains the properties of the full surface -- it 

is concave, piecewise linear and points where the function is nondifferentiable 

correspond to basis changes. 
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* At this point it must be noted that even the task of determining Z (P) 

above the lines ab and cd in Figure 3 may become impractical when the number of 

linear pieces is very large . Hence, a method for efficiently generating a good 

approximation to the response function using a minimum of LP evaluations is 

needed. (Note that by using techniques from sensitivity analysis each 

evaluation of the LP yields the slope, intercept and end points of one linear 

piece.) Since the idea is to create a local approximation, the function only 

needs to be constructed over a limited range of perturbations about the base 

price. In the context of Figure 3, this means that the true response function 

is only sampled between the lower and upper bounds given by L
1

, and u
1

, 

respectively. 

The piecewise linear approximation algorithm commences by determining the 

linear pieces that contain the extreme values for ai (call these "endpieces"). 

At any stage of the approximation process there is a collection of intervals 

over which the response function is known and another collection of intervals 

where it is unknown. For example, in Figure 5 segments containing PO and each 

of the endpieces have been found. The remaining 2 pieces are "unknown" since 

they have not yet been sampled. At this point the approximation may simply be 

"completed," or the sampling process may be continued . 

Completion of the approximation is achieved in the following manner: over 

the intervals where the function is unknown, extend the linear pieces from the 

adjacent intervals (where the function is known) until they intersect. For 

example, this involves extending c'e' in Figure 5 out to g'. Similarly the 

segment g'f' is added. This simple procedure always results in a function which 

is defined over the entire interval and which shares the most important 

properties of the true response function (piecewise linearity and concavity). 

One measure of the error made by the completion process is the integral of the 

l 
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absolute value of the difference between the true and approximate func tions over 

the range: L
1 

~ a
1 

~ u
1

. This error measure is bounded due to the concavity of 

the response function. A lower bound on the function itself may be computed by 

connecting the end points of the linear pieces of the intervals adjacent to an 

unknown interval (eg . , e'f' in Figure 5). On the other hand, the completion 

described above provides an upper bound on the true , but unknown response 

function. Hence , the error in forming the completion can be no greater than the 

integral of the difference between these two functions . This integral 

corresponds to the sum of the areas of the shaded triangles in Figure 5. When 

this global error bound becomes sufficiently small, further sampling in that 

direction stops and the resulting completion will be used in place of the true 

response function . 

In addition to permitting formulation of an intuitive stopping rule, the 

error bounds for the individual intervals may be used as the basis for a dynamic 

sampling process. In particular, the next sample value of the perturbation 

parameter, a
1

, may be placed in that interval with the largest error bound. The 

precise value for a
1 

is chosen so that half of the area of the error triangle 

lies on either side of it . In the context of Figure 5, this results in the next 

sample point along o
1 

being determined by a 
new 

This method of dynamically 

selecting sample points results in a rapid reduction in approximation error, 

even when the error triangles are highly skewed. 

In addition to the stopping rule based on global error, it may be desirable 

to exclude some unknown intervals from consideration a s c andidates for the next 

evaluation. For instance , if an interval is very short or the height of the 

error triangle is small, it may be desirable to ignore the interval. Similarly, 

if the change in slope between the adj acent known inte rvals is small there may 

be little gained by evaluating the LP in the unknown interval. Finally, for 
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practical purposes it is useful to specify a maximum number of linear pieces 

that will be sought along each direction. 

Once the piecewise linear response function has been constructed it may be 

used directly, or as with the pseudo data technique, it may be used as the input 

to an estimation routine. Unlike the pseudo data technique, the estimation 

routine for a differentiable summary function must be designed to accomodate an 

infinite number of data points. For purposes of illustration, consider the 

problem of fitting a differentiable summary function to the optimal objective 

response function in Figure 5. As noted above, given sufficient price 

variability, it is possible to fit the cost function directly, using a least 

squares criterion. In the continuous (infinite sample) case the analogous 

parameter estimation problem becomes: 

(5) I f Ui 0 
min I (G(P +a . D. je) 

8 i-1 L. i i 
i 

da. 
i 

'Where 8 denotes the parameters of the differentiable summary function, G( • ), and 

[Li,Ui] denote the extreme values for the perturbations from the base price 

(along the i-th direction, D. ). 
i 

(Note that this is a least squares problem 

using an infinite number of data points.) This problem is illustrated in one 

dimension with a quadratic summary function in Figure 6, where the objective is 

to minimize a measure of the shaded area. Just as the pseudo data estimation 

could be conducted with a system of behavioral equations (by appealing to 

Hotelling's lemma), so can (5) be reformulated to apply to such a system . Once 

again we assume the translog form for G (•) so that this system is expressed in 

shares rather than quantities. 

For many of the desirable functional forms, the integrals in question may 

have no closed form expression (e.g. translog demand equations). Furthermore, 

even when closed form expressions do exist, the objective is nonlinear . 
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Fortunately both of these obstacles are easily surmounted. For the purposes of 

this study, the estimation problem was solved using the MINOS 5.0 nonlinear 

optimization package (Murtaugh and Saunders [1983)). The integration of the 

objective terms in (5) is handled numerically using routines that have been 

specialized for the optimization framework (see Kaylen and Preckel (1986)). 

Details on the performance of this method are discussed in later sections. 

IV. Empirical Implementation 

In order to illustrate use of the proposed LPSF algorithm, it has been 

applied to a relatively small, well-understood process model. This permits the 

comparison of a range of sampling issues, including questions of sampling 

frequency and direction. For the initial analysis, Griffin's approach -

perturbing one price at a time -- is employed to demonstrate that as sampling 

frequency grows, the difference between pseudo data estimates and those of LPSF 

diminishes. The second step involves perturbing relative prices simultaneously 

(diagonal directions). We find that this changes the results dramatically, and 

conclude that the hitherto unexplored issue of sampling direction is crucial to 

the construction of an accurate summary function. 

A. The Process Model 

The process model employed here is a modified version of the Purdue Crop 

Budget Model (B-9) (McKinzie , et al.). The B-9 is among the most extensively 

validated of all process models, having been used daily by extension and 

research staff, graduate and undergraduate students, as well as by thousands of 

midwest farmers over the course of its 15-year evolution. It is a linear 

programming formulation of a profit maximizing farm firm. The formulation 

utilizes highly detailed information including the farm's machinery working 
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rates, available time for working in the field during different periods of the 

production year, and cultivation practices. 

Timing of production activities is given particular attention in the B-9 

model . Expected crop yields are generally acknowledged to decline as planting 

(and harvesting) of the crop are delayed. However , it is not economical to 

maintain the machinery necessary to plant (harvest) all of the crop at one time. 

This process model captures tradeoffs between the cost of larger, more expensive 

machinery sets and the benefits associated with improved yields due to 

timeliness of planting and harvesting. The latter effect serves to promote 

diversification among crop outputs. While corn is often the most profitable 

crop to be planted during late April and early May, soybeans may be the 

preferred alternative in late May. This ' occurs since soybean yields decline at 

a slower percentage rate than do corn yields as planting is delayed. In 

addition, there are significant economies from rotating corn and soybeans. 

Costs rise for corn grown continuously on the same land. Yields decline for 

both continuous corn and continuous soybean crops. The effect of including 

these complementarities from crop rotation is to give the product transformation 

curve for corn and soybeans more curvature in the region of equal acreages. 

Thus, holding other things constant, a greater change in relative prices is 

required to achieve a given amount of substitution between these crops. 

B. Sampling Along the Axes 

One of the major issues in summary function analysis pertains to the 

directions in price space (D ~ 's) along which the sampling should be conducted. 
1 

As noted, Griffin perturbs a single price at a time, thus sampling along the 

axis directions. This provides sufficient variability to infer cross-price 

effects if it is the demand (share) equations which are being estimated. (O f 

course, if the profit function were to be estimated directly , some combination 
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of simultaneous price movements would be required to estimate interaction 

terms.) 

Table 1 presents a selection of gross supply elasticities from the translog 

profit functions (estimated 5 in share equation form) for different data sets . 

The first row corresponds to the estimates obtained by nwnerical integration 

designed to minimize the squared difference between the fitted translog share 

equations and those implied by the piecewise linear profit function with a 

maximum of 11 pieces being evaluated per direction . The next three rows A . 2-A.4 

of elasticities correspond to pseudo data estimation of share equations with 11 , 

5 d3 . · 1(1 h " ) 6 
, an points, respective y a ong eac axis . 

Focusing initially on the own-price elasticities of supply and demand, note 

that as the number of sample points increases from 3 to 5 to 11 , the pseudo data 

estimates generally move towards the elasticities derived from the LPSF 

technique. This suspicion is confirmed by a more formal measure of distance 

between the full matrices of elasticities . The Frobenius norms 7 
of the 

difference matrices, derived by subtracting each of the pseudo data elasticity 

matrices from the LPSF matrix , are given in the last colwnn of Table 1 . They 

indicate that this distance declines from 1.96 to 1 . 75 and then to 1 . 49 as the 

number of sample points increases. 

The own-price elasticities in part A of Table 1 are roughly of the same 

order of magnitude, however , the situation for selected cross-price elasticities 

is somewhat different. In particular, the demand elasticity for machinery with 

respect to the price of soybeans is much greater for the LPSF estimates, as is 

the labor/ corn price elasticity of demand. The sign of the wheat/ soybeans cross 

price elasticity actually differs in sign . This is quite disturbing and leads 

us to question the reliability of the cross-price elasticities when sampling is 

solely along the axes . 
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C. Introducing Simultaneous Variation in Relative Prices 

While the axis directions provide sufficient price variability for 

estimating cross-price effects when one works with share equations (instead of 

the profit function itself), there are many cases where the resulting estimates 

may be quite unreliable. Consider, for example, the following two functions: 

f ( P) -

g(PI!) -

1 - p 
1 

f(P) 

l+!-P -P 
1 2 

l+!+P
1

-P
2 

l+!+P
1

+P
2 

l+!-P
1

+P
2 

if 

if 

if 

if 

if 

if 

if 

if 

if 

P1~P2 and 

pl~-P2 

P1~P2 and 

pl~-P2 

P2~P1 and 

p2~- Pl 

P2~P1 and 

p2~-Pl 

IP1I~! or 

IPz l ~! 

pl~! and 

p2~! 

pl~-! 

p2~! 

pl~-! 

p2~-! 

pl~! 

where the second function, g, is parameterized by!, a very small positive 

number. Level sets for the functions f and g are displayed in Figure 7 (! is 

chosen to be indistinguishable from zero in this graph). Letting the base price 
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be the origin, it is clear that these functions and their gradients agree when 

only one price is perturbed at a time. However, given that they agree above the 

axes and that they are both concave, these functions are as far from each other 

8 
as possible away from the axes. While this is an artificial example, it 

illustrates the fact that cross price effects may only be reliabl y measured by 

considering diagonal directions which perturb several prices at once (e.g. the 

dashed lines in Figure 7). For the LP model introduced above , consideration of 

all possible combinations of price movements yields 63 diagonal directions. 9 

Selected elasticities from the LPSF based on introduction of the diagonal 

sample design are presented in the first line of Part Bin Table 1 ( line B.l ) . 

Several of the cross-price terms change dramatically, when compared with line 1 

of Part A, the most notable case is that of the wheat/ soybeans cross-price 

elasticity which changes from +0.01 to -0.41. Of course, the off-diagonal net 

supply elasticities are ultimately linked to their own-price counterparts via 

the homogeneity condition . Thus, the latter may also be affected, as is indeed 

evident from Table 1 . However, it is reasuring to note the similarity in gross 

supply elasticities for the three crop outputs in this model. 

D. Efficiency Gains From Dynamic Sampling 

Having noted the importance of introducing non-axis directions into the 

sample design, it is interesting to turn to the issue of sampling frequency, 

given a specific set of directions. In this section the 63 diagonal directions 

serve as the basis for examining the early efficiency gains from additional LP 

evaluations. 

The LPSF algorithm begins by evaluating the LP at base prices and at the 

extreme point in each sampling direction . LPSF estimates based on these three 

segments in each of the 63 directions are given in line B. 3 of Table 1. The 

corresponding pseudo data estimates are given on line C. 3 of the same table. 
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Each of these lines may be compared to the more accurate estimates in lines B.l 

and C.l, respectively . The distance between the full matrices is given by the 

Frobenius norms in the final column of rows B. 3 and C.3 . Thus, the LPSF 

estimates with three evaluations are somewhat closer to their "true" LPSF 

counterparts (Frobenius norm - 0.67), than are the pseudo data estimates with 

three points to those with 21 points (Frobenius norm 0.72) . This is not 

surprising, given that the LPSF approach is based on three line segments whereas 

the latter estimates are based on three points. The longer the length of these 

3 segments, the greater the advantage of the LPSF approach. 

Of course there are additional advantages to the LPSF approach . In 

particular, the dynamic sampling procedure stands out . As noted above, 

additional LP evaluations are selected in a manner which brings about a rapid 

reduction in the possible approximation error, whereas the pseudo data approach 

is oblivious to accumulated information about model structure. (For this 

example problem, the reduction in the total error during the early stages of 

sampling is typically on the order of 60% per L . P. evaluation. During later 

stages as the number of unknown intervals increases - the reduction is 

somewhat less; i.e. 20% per L . P. evaluation . ) This distinction is reflected in 

the speed with which the distances between the elasticities in B. l and B.3, on 

the one hand, and those in C . l and C . 3, on the other, are reduced as additional 

sample points are added. Lines B.2 and C. 2 of Table 1 provide estimates of the 

LPSF and pseudo data elasticities when two more LP evaluations are permitted 

along each of the 64 directions. As expected, the efficient selection of 

additional sample points results in more rapid convergence using the LPSF 

algorithm. In particular, the two new evaluations reduce the Frobenius norm by 

2/ 3's, as opposed to only one -half in the case of pseudo data. 
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A final point of interest in this empirical section arises from evaluation 

of the distance between the 7 and 63 direction summary functions. The Frobenius 

norm for this difference matrix under the LPSF approach is 1.91. The comparable 

number for pseudo data (11 observations per direction) is 0 . 94. These distances 

are generally larger than those separating elasticities based on shared methods 

and directions with fewer points per direction (Parts Band C of Table 1). The 

implication is that these summary function elasticities are more sensitive to 

sampling direction than they are to sampling frequency. 

V. Summary and Conclusions 

In this paper we have introduced a new method for summarizing the economic 

content o·f linear programming models. Dubbed "Linear Program Summary Functions" 

(LPSF), it provides considerably more reliable summary elasticities than the 

pseudo data method introduced by Griffin in 1977. In fact the LPSF approach may 

be viewed as pseudo data with an infinite sample. 

The increased reliability of the LPSF methodology stems from its 

efficient, dynamic sampling of the underlying model structure. This sampling 

strategy is designed to maximize the reduction in approximation error between a 

constructed, piecewise linear profit function and the model's true underlying 

response function. At any point in time the sampling process may be halted and 

the constructed response function completed. An upper bound on the remaining 

error may be computed and provides a measure of the quality of this 

approximation. Of course the latter may be improved upon at some later date, if 

increased accuracy is desired. Fitting a differentiable summary function to the 

completed response function is often desirable and a method for doing so is also 

presented in this paper. This enabled a direct comparison with the pseudo data 

approach. 

l 
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The difference between LPSF and pseudo data methods for summarizing LPs was 

further explored in Section IV, using a relatively simple model. As expected, 

increases in the number of pseudo data points yielded summary elasticities which 

were generally closer to their LPSF counter parts. The greater efficiency of 

the LPSF sampling procedure was also borne out in this example. 

Perhaps the most important discovery in the context of the numerical 

example is the importance of diagonal directions in determining the size and 

sign of cross-price elasticities. While it is technically possible to estimate 

these second-order interaction effects with axis sampling only (via use of 

Hotelling's lemma), the results change significantly when simultaneous price 

variation is introduced . This problem was anticipated with a hypothetical 

example (Figure 7), but it is significant that this issue crops up in a commonly 

employed model. As a result, we hypothesize that introduction of additional 

sampling directions may be relatively more important than increasing the 

frequency of sampling along given (presumably axis) directions. This is a 

hypothesis which deserves further examination as a part of future research 

efforts in this area. 
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Footnotes 

1. The results also depend on the direction of sampling, choice of functional 
form and estimation technique. The estimated elasticities in this section are 
based on axis sampling directions (perturbation of one price at a time) and 
least squares estimation of a system of translog share equations. See Sections 
III-IV (esp. footnote 3) for more details. 

2. Griffin chooses the Di to be unit vectors. This means that he is perturbing 
one price at a time . 

3. Griffin (1977a) chooses values for a so that (with the directions chosen to 
be unit vectors) the individual prices are set to 50%, 80%, 90.5%, 110%, 125%, 
and 200% of the base values . 

4 . A facet of the polytope 
plane in n+l dimensional 
points of the polytope. 

is defined by the intersection of the polytope and a 
space where the intersection contains only boundary 

5 . To make the 
price changes of 
Thus, these axis 
introduction, where 

axis and diagonal directions of comparable length, relative 
±67% were evaluated for both axis and non-axis directions . 
direction elasticities are different from those in the 
±25% relative price changes were employed. 

6. Pseudo data points were obtained directly from the same picewise linear 
profit function which was used to fit the LPSF. 

7 . The Frobenius norm is defined as [L. L· d . . 
2

]
112 

where the diJ' represent 
elements of the difference matrix. 1 J iJ 

8. A small technical point the functions are as far from each other as 
possible in the limit as f approaches zero. 

9. The 63 diagonal directions are appropriate for constructing a seven price 
summary function. These directions may be constructed by considering a seven
dimensional hypercube having sides of length two and baricenter at the origin. 
The coordi9ates of the corners of the hypercube are (±1, ±1, ±1, ±1, ±1, ±1), 
yielding 2 directions from the origin. Since we consider both positive and 
negative perturbations (a< 0 as well as a~ 0), there a6e twice as many corners 
as there are distinct directions. Hence, there are 2 - 64 distinct diagonal 
directions . One of these directions, (1, 1, 1, 1, 1, 1, 1), increases (or 
decreases) all prices simultaneously. Since the objective function is 
homogeneous in the seven prices, this amounts to a rescaling of the objective. 
Hgnce, that direction may be excluded from the sample design, leaving us with 
2 - 1-63 diagonal directions in the sample design. Note that it is unnecessary 
to include the axis directions in our sample design due to homogeneity of the 
L.P. in our seven prices. Perturbation along an axis direction, amounts to 
increasing (or decreasing) a single price relative to all others. Since base 
prices have all been scaled to one, perturbation along a direction with all but 
one component equal to -1 and the remaining component equal to +l increases ( or 
decreases) one price relative to all others. Hence , these directions are 
equivalent, and it is sufficient to sample only along the 63 directions 
described above. 
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Table 1. Selected Gross Elasticities of Supply and Demand 

own-Price Elasticities* 

c. s. w. 

Part A. 7 Axis: Directions 

A. l LPSF: 11 pieces 1. 70 .83 2.42 

A. 2 PDATA: 11 points 1. 52 .86 2.41 

A. 3 PDATA: 5 points 1.32 .78 2.64 

A. 4 PDATA: 3 points 1. 37 .87 2.40 

Part B. 63 Diagonal Directions 

B.l LPSF: 11 pieces 1. 66 .90 2.44 

B.2 LPSF: 5 pieces 1. 71 .90 2.35 

B. 3 LPSF: 3 pieces 1. 83 .97 1.99 

Part c. 63 Diagonal Directions 

C.l PDATA: 11 points 1.63 .87 2.36 

C.2 PDATA: 5 points 1.49 .77 2.32 

c. 3 PDATA: 3 points 1.54 .84 1. 90 

c. = Corn s. = Soybeans 
o. = Other Inputs 

W. = Wheat 

L. M. SID 

-.15 -.26 -.18 

-.14 -.15 -.11 

-,18 -.15 -.07 

-.20 -.17 -.05 

-.11 -.14 -.06 

-.14 -.14 -.05 

-.18 -.17 -.04 

-.14 -.18 -.09 

-.15 -.16 -.10 

-.20 -.20 -.12 

L. = Labor 

Cross-Price Elasticities Distance 

h w. ~ ~ Frobenius 
o. c. s. s. w. Norm 

-.03 .86 .01 -.27 .05 0 

-.16 .53 -.27 -.11 .10 1.49 

-.06 .47 -.32 -.13 .20 1. 75 

-.02 .45 -.39 -.12 .23 1.96 

-.12 .32 -.41 -.45 -.01 0 

-.11 .31 -.36 -.43 -.03 0.22 

-.11 .34 -.22 -.46 -.09 0.67 

-.07 .33 -.39 -.26 -.04 0 

-.01 .26 -.26 -.36 -.01 0.35 

-.01 .28 -.15 -.32 -.01 0.72 

M. = Machinery S/D = Storage and Drying 
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Figure 1: Soybean Supply Response Along 

Axis Direction 
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Figure 2: The Response Function 
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Figure 3: Sampling Directions in 
Price Space 
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Figure 4: The Response Surface Above a 
Sampling Direction in Price Space 
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Figure 5: The Approximation Process 
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Figure 6: The Differentiable 
Approximation 
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Figure 7: Level Sets for Two Response 
Func tions in Two-Price Space 
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