
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 
 
 
 
 
 
 

Distribution Choice Under Null Priors and Small Sample Size 
 
 
 
 
 

Paul A. Feldman, James W. Richardson, and Keith D. Schumann 
Agricultural and Food Policy Center 

Department of Agricultural Economics 
Texas A&M University 

College Station, Texas 77843-2124 
Phone: (979) 845-8014 

Fax: (979) 845-3140 
Email: paulf@tamu.edu 

 
 
 
 
 
 
 
 

Selected Paper prepared for presentation at the American Agricultural Economics 
Association Annual Meeting, Denver, Colorado, August 1-4, 2004 

 
 
 
 
 
 
 
 
 
 
Copyright 2004 by Paul A. Feldman, James W. Richardson, and Keith D. Schumann.  All 
rights reserved.  Readers may make verbatim copies of this document for non-
commercial purposes by any means, provided that this copyright notice appears on all 
such copies. 



 2

Introduction 

 Modeling economic systems often involves making assumptions about how data 

are distributed.  Given the nature of economic problems the task of determining how the 

salient data are distributed is often a difficult one.  There is a wealth of literature on how 

key economic variables are distributed and the findings have conflicted and been at best 

inconclusive.   One of the most notable discussions in Agricultural Economics is the 

question of how crop yields are distributed.  For the past forty years empirical studies 

have been published in various journal discussing the distributions of crop yields, 

including contributions from Atwood, Shaik, and Watts; Day; Gallagher; Goodwin and 

Kerr; Just and Weninger; Moss and Shonkwiler; and Ramirez, Misra, and Field. 

 For the discussion on yield distributions there is a wealth of data; however, as 

with most economic problems the issues surrounding crop yields are complex making the 

analysis difficult.  Given the complexity of economic issues and the difficulty of making 

distributional assumptions when dealing with reasonable sample sizes, it is an even 

greater challenge to estimate distributions for economic variables when the data is scarce.  

The problem of small sample sizes is a common one when dealing with economic data, 

which creates problems when making statistical inferences.  D’Agostino and Stephens 

suggest that to achieve a reasonable power with a goodness-of-fit test samples sizes 

should not be less than twenty observations.   This is often a luxury that economists do 

not have. 

 Quite often an economist’s only tool in choosing the appropriate distribution for 

data is their knowledge about the system from which the data comes.  This paper looks at 

the problem of distribution selection from the viewpoint of total naiveté.  We would like 
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to know which distribution performs the best when there is no knowledge of how the data 

were generated.  In a Bayesian sense we would like to see which distribution performs 

the best when our priors on distributional assumptions are the null set. 

 

Methodology   

 To answer the question of which distribution performs the best we have set up a 

Monte Carlo experiment.  This experiment evaluates how robust a set of seven 

distributions are in estimating the true distribution of a random sample of data.  The set of 

distributions ( )g x  that are evaluated are the Beta, ( ),B α β ; Gamma, ( ),Gm α β ; 

Logistic, ( ),L µ σ ; Log-Log, ( ),LL µ σ ; Lognormal, ( ),Ln µ σ ; Normal, ( ),N µ σ ; and 

Weibull, ( ),W α β .  These distributions were chosen because they have been widely used 

to simulate economic data.  Each of the distributions in ( )g x  are used to estimate the true 

distribution ( )f x  taken from the set of distributions ( )f x  where the distributions 

in ( )f x  are the same set as in ( )g x . 

 A flowchart in Figure 1 maps out the steps of the experiment.  The first step of the 

experiment is to select a distribution ( )f x , such as Beta, to be evaluated from the set of 

distributions ( )f x .  The distribution ( )f x  is pre-specified with known parameters by the 

analyst with the only limitation being that the ( )0 0.05P x < < , Such as Beta(3,5).  This 

limitation is in place to emulate the fact that most economic data is nonnegative.  The 

second step is to generate a random sample { }1 2 10, , ,kx x x x= … of ten data points from the  
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Figure 1.  Steps in the Procedure to Rank Distributions 

 
 

distribution ( )f x .  Step three is to calculate the parameters for each distribution in ( )g x  

given the sample kx  using the MLE method. 

Select ( )f x  from ( )f x  
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size 10n =  from ( )f x  

Estimate parameters for distributions 
( )g x  from the data in Step 2 using MLE 
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and each ( )g x  

Repeat Steps 2 - 5 
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calculate CDF for each distribution in ( )g x  
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 In step four the CDF’s for each distribution in ( )g x  are calculated using the 

MLE’s of their parameters.  The CDF’s are defined by 100 data points calculated using 

probabilities ranging from 0.05 to 0.95 at equal intervals evaluated with the inverse 

transform method. 

 In step five the CDF’s for ( )g x , denoted ( )G x , are individually compared against 

the CDF of the true distribution ( )F x  to evaluate how well the distributions in ( )g x  

estimate ( )f x .  To make this comparison to we developed a goodness-of-fit criterion 

based on the empirical distribution function.  The formula for the goodness-of-fit 

criterion is defined as 

( )1  ( )( ) ( )( ) 2
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This formula is relatively straightforward in that it is based on the sum of squared 

differences between the true distribution and the estimated distribution.  The tail 

weighting function iw  is used to reflect the importance of tail probabilities in economic 

modeling.  The tail weighting function is based on the parabolic function 
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Thus iw  amplifies the contribution toω  as ( )G x  differs from ( )F x  in the tails of the true 

distribution. 

 The CDF’s of each distribution in ( )G x  is compared to ( )F x  by calculating anω  

for each ( )G x  in the set ( )g x  as well as a linearly interpolated empirical distribution of 

the data.  This gives a set { }, , , , , , ,k E B Gm L LL Ln N Wω ω ω ω ω ω ω ω ω=  for 
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the thk sample kx of ( )f x .  Step six is the repetition of steps two through five for 500t =  

times giving 500 random samples for each ( )f x .  For each repetition a set of kω  is 

calculated from the random sample kx .  In step seven an average is taken for each ( )g xω  

as ( ) ( )
1

1 t

g x g x
kt
ω

=

Ω = ∑ giving a set { }, , , , , , ,E B Gm L LL Ln N WΩ = Ω Ω Ω Ω Ω Ω Ω Ω .  For step eight 

each ( )g xΩ  inΩ  is ranked to evaluate which distribution ( )g x  fitted ( )f x  most 

accurately.  The ninth and final step is to repeat this procedure for each ( )f x  in ( )f x . 

 The selection of parameters for each ( )f x  is done in a somewhat arbitrary 

manner.  Three sets of parameters are chosen for each ( )f x  in order to explore how 

differences in shape and scale of a distribution affect the accuracy of estimates ( )g x  

of ( )f x .  Table 1 contains the parameterization for each true distribution used in the 

analysis. 

 In economic analysis there may be the existence of data which come from a 

bimodal distribution.  Therefore the list of distributions in ( )f x  was expanded to include 

mixture distributions.  Two mixture distributions were added for each distribution 

 
 Table 1.  Parameters for Distributions in ( )f x  

Param 1 Param 2 Param 1 Param 2 Param 1 Param 2
Beta 3 3 3 5 5 3
Gamma 2 10 5 15 8 5
Logistic 140 5 140 15 140 25
Log-Log 80 10 80 25 80 40
Lognormal 3 0.5 4 0.5 5 0.5
Normal 100 15 100 25 100 35
Weibull 2 100 3 100 4 100

Distribution 1 Distribution 2 Distribution 3
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in ( )f x .  There was no cross distributional mixtures, i.e. each mixture distribution 

contained only two parameterized distributions of the same type.  Each mixture 

distribution was sampled and estimated using the distributions in ( )g x  using the 

procedure described above.  Parameters were chosen for each distribution in a manner 

that would make it difficult if not impossible to determine from a small sample the 

modality of the true distribution.  This ensured that the estimation of the mixture 

distributions using the unimodal distributions in ( )g x  would be a reasonable procedure.  

Table 2 contains the parameterization for each true mixture distribution used in the 

analysis. 

 

Results 

 The experiment for this paper was conducted in Microsoft Excel using the 

Simetar software tool (Richardson, Schumann, and Feldman).  Random samples were 

generated using the Monte Carlo methods available in Excel.  Parameter estimates were 

calculated using Simetar’s MLE functions.  Both Excel and Simetar functions were used 

to calculate the CDF’s using the inverse transform method.  The Simetar function 

 
Table 2.  Parameters for Mixture Distributions in ( )f x  

Param 1 Param 2 Param 1 Param 2 Param 1 Param 2 Param 1 Param 2
Beta 3 10 10 3 3 3 7 7
Gamma 5 5 10 10 5 10 10 5
Logistic 10 5 20 5 200 35 100 15
Log-Log 60 10 100 10 100 10 80 70
Lognormal 3 0.3 4 0.2 2 0.5 4 0.5
Normal 70 20 150 30 150 55 200 15
Weibull 2 5 5 1,000 2 1 5 10,000

Distribution 1 Distribution 2 Distribution 1 Distribution 2
Mixture 1 Mixture 2
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CDFDev was used to calculateω  and the simulation engine in Simetar was used to 

generate the 500 repetitions. 

 Table 3 shows the rankings of ( )g x  when the true distribution ( )f x  is 

Normal(µ,σ).  The distributions ( )g x  are listed at the top of the table and the parameters 

selected when ( )f x  is Normal are listed on the left side of the table.  Each row is 

associated with a given set of parameters and contains the ranking of how well the 

distribution ( )g x  fit the parameterized ( )f x .  The last row in the table is the overall 

ranking of the distributions in ( )g x  for all parameterizations of the Normal distribution.  

For the first and third parameterizations of a Normal distribution, ( )f x , the Normal 

distribution, ( )g x , was ranked number one and ranked second for one parameterization.  

Overall the Normal distribution was ranked number one for fitting data that were truly 

distributed Normal. 

 An overview of Table 3 shows the rankings of ( )g x  did not significantly change 

when the scale of ( )f x  changed.  Changes in rank of more than one position occurred 

only for the Empirical, Lognormal, and Weibull distributions when ( )f x  was Normal.  

The Empirical ranged from being ranked fifth to eighth, the range for the Lognormal was 

fifth to ninth, and the Weibull ranged from first to fourth.  The insensitivity in the ranking  

 
Table 3.  Rankings of ( )g x  for ( ) ( ),=f x Normal µ σ  
Dist / Params Empirical Beta Gamma Logistic Log-Log Lognormal Normal Weibull
Normal(100,15) 8 7 3 2 9 5 1 4
Normal(100,25) 5 6 4 3 9 8 2 1
Normal(100,35) 5 7 4 3 8 9 1 2
Overall Rank 5 6 4 3 8 7 1 2  
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to changes in the scale of the distribution ( )f x  was consistent for all distributions 

in ( )f x  and was also the case for changes in the shape of the distribution ( )f x . 

 Table 4 shows the overall rankings of ( )g x  for all of the distributions in ( )f x  

when ( )f x  is unimodal.  In most cases the best estimator of ( )f x  was the same 

distribution in ( )g x , as indicated by the bold values in Table 4.   Exceptions occurred 

for ( ) ( ),f x Gm α β= where the rank of ( ) ( ),g x Gm α β=  was second, ( ) ( ),f x Ln µ σ=  

where the rank of ( ) ( ),g x Ln µ σ=  was third, and ( ) ( ),f x B α β=  where the rank 

of ( ) ( ),g x B α β=  was fifth. 

 The overall ranking of distributions in ( )g x  for all distributions in ( )f x  show 

that the Weibull distribution fit ( )f x  the best for all distributions in ( )f x (Table 4).  The 

next best distribution was the Normal with the Beta distribution performing the worst. 

 Table 5 summarizes the rankings of ( )g x  when the true distribution ( )f x  is a 

mixture distribution.  The shape, scale, and location of the distributions had a greater 

affect on the rankings of the mixture distributions than on the unimodal distributions. 

 
Table 4.  Rankings of ( )g x  for All Unimodal ( )f x  

Empirical Beta Gamma Logistic Log-Log Lognormal Normal Weibull
Beta 4 5 6 3 7 8 2 1
Gamma 6 8 2 5 1 7 4 3
Logistic 6 8 4 1 7 5 2 3
Log-Log 7 8 2 4 1 3 5 5
Lognormal 7 8 2 5 1 3 6 4
Normal 5 6 4 3 8 7 1 2
Weibull 5 7 4 3 6 8 2 1
Overall Rank 6 8 3 4 5 7 2 1  
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The only distribution in the set ( )g x  that was unaffected by shape and scale was the 

Lognormal distribution, which performed poorly under all parameterizations. 

 The overall rankings for how well the distributions in ( )g x  estimated the mixture 

distributions showed significant changes in the ranking of some of the distributions.  

Although the Beta performed the worst when estimating the unimodal distributions, it 

was the best distribution when estimating the mixture distributions.  The Weibull moved 

from the number one ranking in unimodal estimation to being ranked fourth in estimating 

the mixture distributions.  The Normal distribution, however, was ranked second in 

estimating both the unimodal distributions and the mixture distributions. 

 

Conclusion 

 When modeling an economic system it is of great importance to know how the 

variables in the system are distributed.  Often times there are limited data for the 

variables in the system and it is difficult to make statistical inferences about how the 

variables are distributed.  This makes knowledge of the system an important tool for the 

analyst when making distributional assumptions.  We examined how well a set of 

distributions ( )g x  perform when there is limited information about the variable for which  

 
Table 5.  Rankings of ( )g x  for All Mixture Distributions from ( )f x  

Empirical Beta Gamma Logistic Log-Log Lognormal Normal Weibull
Beta 4 3 6 4 7 8 1 1
Gamma 5 3 5 2 1 8 3 5
Logistic 8 3 6 3 1 7 1 5
Log-Log 6 4 3 2 7 8 4 1
Lognormal 3 2 7 3 5 8 1 6
Normal 3 1 6 5 7 8 3 1
Weibull 2 1 7 4 5 8 3 6
Overall Rank 5 1 7 3 6 8 2 4  
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a distribution is being estimated. 

 The results of the study indicate that from the Empirical, Beta, Gamma, Logistic, 

Log-Log, Lognormal, Normal, and Weibull distribution the most robust distribution is the 

Normal distribution.  The Normal distribution had the best overall performance in 

estimating the true distribution for both unimodal and mixture distributions.  This result is 

not surprising given the central limit theorem and the assumption of normality made in 

many statistical techniques. 

 One interesting finding from this study is the performance of the empirical 

distribution of the data in estimating the true distribution.  Because the empirical 

distribution is bounded by the data it regularly under estimated at least one of the tails of 

the true distribution.  However, when irregularities were added by using mixture 

distributions the empirical distribution often performed better than in the unimodal case.  

 This study was a simple experiment to determine how well certain distributions 

estimate the true distribution.  Even when examining the seven distributions used in this 

research there are literally millions of permutations for the parameterization of the true 

distribution which time constraints did not allow us to examine.  If all of these 

permutations were examined the findings may differ.   
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