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ABSTRACT 

Spatial data, which are data that include the coordinates (either by latitude/longitude or 

by other addressing methods) on the surface of the earth, are essential for agricultural 

development. As fundamental parameters for agriculture policy research agricultural 

production statistics by geopolitical units such as country or sub-national entities have been 

used in many econometric analyses. However, collecting sub-national data is quite difficult in 

particular for developing countries. Even with great effort and only on regional scales, 

enormous data gaps exist and are unlikely to be filled. On the other hand, the spatial scale of 

even the subnational unit is relatively large for detailed spatial analysis. To fill these spatial 

data gaps we proposed a spatial allocation model. Using a classic cross-entropy approach, our 

spatial allocation model makes plausible allocations of crop production in geopolitical units 

(country, or state) into individual pixels, through judicious interpretation of all accessible 

evidence such as production statistics, farming systems, satellite image, crop biophysical 

suitability, crop price, local market access and prior knowledge. The prior application of the 

model to Brazil shows that the spatial allocation has relative good or acceptable agreement 

with actual statistic data. The current paper attempts to generate crop distribution maps for 

Sub-Sahara Africa for the year 2000 using the spatial allocation model. We modified the 

original model in the following three aspects: (1) Handle partial subnational statistics; (2) 

Include the irrigation map as another layer of information in the model; (3) Add subsistence 

portion of crops in addition to the existing three input and management levels (irrigated, high-

input rainfed and low-input rainfed). With the modified spatial allocation model we obtain 5 

by 5 minutes resolution maps for the following 20 major crops in Sub-Sahara Africa: Barley, 

Beans, Cassava, Cocoa, Coffee, Cotton, Cow Peas, Groundnuts, Maize, Millet, Oil Palm, 
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Plantain, Potato, Rice, Sorghum, Soybeans, Sugar Cane, Sweet Potato, Wheat, Yam. This 

approach demonstrates that remote sensing technology such as satellite imagery could be 

quite useful in improved understanding of the spatial variation of land cover, agricultural 

production, and natural resources.  

 

 

JEL classification: C60; Q15; Q24 

Key Words: Sub-Sahara Africa, cross entropy, satellite image, spatial allocation, agricultural 

production, crop suitability  
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1. Introduction 

In the design and targeting of rural development strategies to stimulate economic 

growth and alleviate poverty, we have realized that it is very important to conserve natural 

resource base in order to maintain long-term sustainable growth. Since location matters from 

an agricultural perspective (as most other things too), the impact of the development strategies 

depends, in large extent, upon our better understanding of spatial determinants of agricultural 

development (Wood, Sebastian, Nachtergaele, Nielsen and Dai, 1999; Sebastian and Wood, 

2000). Spatial data (sometimes referred to as geo-referenced data), which are data that include 

the coordinates (either by latitude/longitude or by other addressing methods) on the surface of 

the earth, are essential for any meaningful development strategies. More and more agricultural 

economists argue for the importance of spatial data and actually use spatial analysis in their 

research (Nelson, 2002; Staal, Baltenweck, Waithaka, deWolff and Njoroge , 2002; Luijten, 

2003; Bell and Irwin, 2002; Anselin, 2002). As fundamental parameters for agriculture policy 

research agricultural production statistics by geopolitical units such as country or sub-national 

entities have been used in many econometric analyses. However, collecting sub-national data 

is quite difficult in particular for developing countries. Even with great effort and only on 

regional scales, enormous data gaps exist and are unlikely to be filled. On the other hand, the 

spatial scale of even the subnational unit is relatively large for detailed spatial analysis. To fill 

these spatial data gaps we proposed a spatial allocation model (You and Wood, 2003). Using 

a generalized cross-entropy approach, our spatial allocation model makes plausible allocations 

of crop production in geopolitical units (country, or state) into individual pixels, through 

judicious interpretation of all accessible evidence such as production statistics, farming 

systems, satellite image, crop biophysical suitability, crop price, local market access and prior 



 5

knowledge. The application of the model to Brazil shows that the spatial allocation has 

relative good or acceptable agreement with actual statistic data.  

 The current paper attempts to generate crop distribution maps (spatial production data) 

for Sub-Sahara Africa for the year 2000 using the spatial allocation model. However, we must 

make some changes in the original model first. In the above Brazil case, we ran the spatial 

allocation for each of the 28 states of Brazil because we have complete state-level production 

data (yield and area) for all the crops and all the states. However, collecting sub-national data 

in Sub-Sahara Africa (SSA) has been quite difficult even with lots of effort and time. Since 

the spatial allocation model simultaneously allocates all crops into the pixels within the spatial 

allocation unit (country or state), complete production data on the level of that spatial 

allocation unit are needed. For SSA it is only possible at country-level. Therefore, for the 

current SSA production allocation, the spatial allocation unit is country. On the other hand, 

we do want to include the existing sub-national data, no matter how spotty they are, to guide 

our allocation. So we modified our original spatial allocation model to deal with partial sub-

national data, which may be more realistic for most problems than our Brazilian case. In 

addition, we also add the irrigation map as another layer of information into our model. 

 In the following, we will first introduce different types of information which are 

included in the model.  Second, we will build the spatial allocation model using cross-entropy 

approach as we did before (You and Wood, 2003). Third, we apply the modified model to 

Sub-Sahara Africa and the results will be crop distribution maps for the selected crops. Finally 

we conclude with some remarks on the possible application of the results and on how to 

further improve the model. 

2. Data 
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The total agricultural land in SSA is about 903 million hectares in 2000, which covers 

about 40% of land surface and makes agriculture the most important land uses in SSA. The 

majority of agricultural land, about 82%, is permanent pasture while the total land for annual 

and permanent crops are only about 161 million hectares (FAOSTAT, 2003). SSA locates 

mostly in humid or sub-humid tropic zones with heterogeneous cover such as mixed forest, 

pasture, permanent and annual crop land.  The majority of farmers are smallholders or even 

subsistence farmers. Some staple crops such as plantain, cassava are commonly planted in 

farmers� backyards. All these result in quite a challenge for lots of our data introduced in the 

following. In our current allocation, we choose Year 2000 as our base year, and so all time-

dependent data will be based on 2000, or a three-year average from 1999 to 2001. 

We selected the following 20 crops for our spatial allocation for Sub-Sahara Africa: 

Barley, Beans, Cassava, Cocoa, Coffee, Cotton, Cow Peas, Groundnuts, Maize, Millet, Oil 

Palm, Plantain, Potato, Rice, Sorghum, Soybeans, Sugar Cane, Sweet Potato, Wheat, Yam 

 

2.1 Production statistics 

The country-level production data are available from FAO. Even with our great effort, 

the subnational data1 coverage of our base year (2000) is quite spotty. Figure 2.1 shows the 

subnational data coverage for the 20 selected crops. Just a few countries, namely Benin, 

Cameroon, D.R. Congo, Uganda, Zambia, Mozambique, have over half crops with available 

subnational data. Quite a few countries such as Angola, Republic of Congo, Gabon, Ivory 

Coast have only national data available. Across crops, cow peas, bean, maize and cassava, 

                                                 

1 In this paper subnational unit refers to the first geopolitical level under country such as districts in Uganda, 

regions  in Nigeria, provinces in South Africa. The second level sub-national data are hardly available for SSA. 
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which available subnational data cover over 70% of total subnational units, have more 

subnational data than the rest crops. Overall we only have approximately 40% coverage of 

complete subnational data.  

[Figure 2.1 Subnational data coverage map] 

2.2 Production pattern 

External inputs such as irrigation, fertilizer, pesticide, affect agricultural production in 

many ways. Therefore, disaggregating the crop area into different production systems 

according to the input level could potentially improve the spatial allocation. In addition, as we 

will find in the following section, agroecological suitability is also defined according to 

different input levels. For those area statistics we have, either on country-level or on sub-

national level, we partition each crop production into four levels: irrigated, rainfed�high input 

level, rainfed-low input level and subsistence. Although subsistence crops are almost all low-

input rainfed crops in SSA, we list it separately to better allocate these crops to where people 

live without considering crop suitability or even potential revenue. To break crop areas into 

the above four production systems remains quite a challenge due to lack of reliable data. We 

do that by a mixture of aggregate data, informal studies, and expert opinion.  

2.3 Population density 

Profit relations are amongst the main determinants of the type and volume of 

agricultural production activities and play a fundamental role in formulation of development 

plans and related decisions. For traded crops, farmers� decision to grow what and where 

depends very much on the profitability of the crop production. Even for subsistence crops the 

values of crop productions are also important factor for farmers to make planting decision. 

Market, even as imperfect market as in Sub-Sahara Africa (Khernallah, Delgado, Gabre-
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Madhin, Minot and Johnson, 2000), is important factor in the evolution of agricultural 

production system. Another determinant factor is market access which is an indicator of 

transaction cost from the location to the nearby markets (Bolwig and Wood, 2002). The 

market access affects both cost of production (via input market such as fertilizer, pesticide, 

seed etc) and gross revenue (via transportation cost and other transaction, for example). 

Currently we have no complete data for road network and market distribution in SSA, and so 

we simply use population density as an approximate to market access.  

[Figure 2.2 Population density of Sub-Sahara Africa] 

 We use Gridded Population of the World (GPW) Version 2 which provides global 

estimates of population counts and population densities (persons per square kilometer) for 

1990 and 1995 (CIESIN, IFPRI and WRI, 2000). National figures have been reconciled to be 

consistent with United Nations population estimates for those years. Figure 2.2 is the map of 

population density for Sub-Sahara Africa. In the current model, population density provides 

spatial variability for crop prices (PriceVarij in the following Eq.(3.13)). Though the local 

crop prices are affected by many factors one of which is population density, the following 

simple linear interpolation is used to calculate PriceVarij from population density data.  

(2.3)    
kk

ki
ij MinPopMaxPop

MinPopPop
iceVar

−
−

=Pr  

where MinPopk and MaxPopk are the population densities at 20% and 90% at Country K�s 

cumulative population density distribution curve2, Popi is the population density for pixel i. 

We realize that the price variation with population depend on specific crops. For example the 

                                                 

2 In fact, MinPopk = Max(MinPopk , 5). If MinPopk  is less than 5 people per square kilometer, there may be just 

forest with little agricultural land. 
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price of perishable products such as vegetable drops faster away from population center than 

non perishable products such as maize and rice. We keep crop identifier j at the equation in 

order to add crop-specific price variation with population in the future though it is not done 

here now. 

 

2.4 Land cover image 

Satellite-base land cover image is an important guide for the allocation model. As 

more and better remotely-sensed data become available with the new technology and the 

improvement of our ability to interpretate the image data, the land cover data will 

dramatically improve the accuracy of our production allocation. The time when satellite takes 

these land use data should coincide with the chosen year of our allocation. For Sub-Sahara 

Africa, we use Africa Land Cover 2000 from Global Land Cover 2000 project (GLC2000). 

GLC2000 makes use of VEGA 2000 data: a dataset of 14 months (November 1 1999 � 

December 31 2000) of pre-processed daily global data acquired by the VEGETATION 

instrument on board SPOT 4, made available through a sponsorship from members of the 

VEGETATION programme (http://vegetation.cnes.fr/).   

[Figure 2.3 Agricultural extent for Sub-Sahara Africa] 

2.5 Global irrigation maps 

The Land and Water Development Division of Food and Agriculture Organization of 

the United Nations and the Center for Environmental Systems Research of the University of 

Kassel, Germany, have been co-operating in the development of a global irrigation mapping 

facility. The final result is a global irrigation map, which shows the amount of area equipped 

for irrigation around 1995 as a percentage of the total area on a raster with a resolution of 5 
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minutes. The way the map is generated is not uniform across countries. Due to the map 

generation method, the quality of the map can never be uniform. The overall quality of the 

map depends heavily on the individual quality of the data for the different countries. The area 

actually irrigated in 1995 was smaller, but is unknown for most countries.  

[Figure 2.4 Irrigation map for Sub-Sahara Africa] 

In the current spatial allocation, we use the irrigation map as another layer to inform 

the model where to allocate the irrigated areas. In Sub-Sahara Africa, rainfed agriculture 

dominates, and irrigation is quite spare as shown in Figure 2.4 (d). South Africa and 

Madagascar are the two countries with major irrigated areas, about 1.43 million hectares and 

1.15 million hectares respectively. Countries such as Mauritania, Chad, Congo D.R. and 

Namibia have little irrigation.   

2.6 Agroclimatic crop suitability 

Different crops have different thermal, moisture and soil requirements, particularly 

under rainfed conditions. The Food and Agriculture Organization of the United Nations 

(FAO) with the collaboration of the International Institute for Applied Systems Analysis 

(IIASA), has developed the Agro-ecological Zones (AEZ) methodology that enables rational 

land-use planning on the basis of an inventory of land resources and evaluation of biophysical 

limitations and potentials. AEZ methodology provides a standardized framework for the 

characterization of climate, soil and terrain conditions relevant to agricultural production. 

Crop modeling and environmental matching procedures are used to identify crop-specific 

limitations of prevailing climate, soil and terrain resources, under assumed levels of inputs 

and management conditions. The AEZ methodology provides maximum potential and 

agronomically attainable crop yields and suitable crop areas for basic land resources units 
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(usually grid-cells in the recent digital databases). (Fischer et al 2001; FAO, 2003). We only 

use the following three production system types in FAO/IIASA suitability datasets: Irrigated � 

high input (we simply call it �irrigated�), Rainfed � high input, Rainfed � low input.  For each 

crop by the above three input levels, we define our suitable land as the sum of the following 

four classes: very suitable, suitable, moderate suitable and marginal suitable. 

Correspondingly, the yield is calculated as the area-weighted average of the above four 

suitable classes. (FAO, 1981; FAO 2003). Some crops have many types, such as highland and 

lowland maize germplasm, sub-divided by maturity class. The single �maize� crop surface is 

a composite in which each pixel would use the best variety. Figure 2.3 shows the suitability 

surfaces for maize in SSA. We show both potential yield and suitable area distributions under 

either high input or low input rainfed conditions. As we can see, maize is widely suitable in 

Sub-Sahara African except in the extremely northern countries such as Mauritania, Mali, 

Niger, Chad and extremely southern countries such as Angola, Botswana and South Africa. 

Maize normally doesn�t require irrigation, which is shown by the less suitable areas for 

irrigated maize (Figure 2.4 (c )). However, the irrigated maize has a much higher potential 

yield than rainfed maize. The average potential yield for irrigated maize in Sub-Sahara Africa 

could be as high as 390kg/ha  while the corresponding figures for high-input and low-input 

rainfed maize are 290kg/ha and 40kg/ha (Figure 2.6). 

[Figure 2.5 Suitability surfaces of maize - Area ] 

[Figure 2.6 Suitability surfaces of maize - Yield ] 

3. Modified Spatial Allocation Model 

3.1 Cross-entropy approach 
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The origin of entropy goes back to famous Boltzmann�s distribution law in 

thermodynamics (Jaynes, 1979). It is a measure of �disorder� of molecules in a system. One 

of the fundamental law of nature is the second law of thermodynamics, which says the 

entropy of a closed system never decreases and increases whenever possible.  Shannon (1948) 

introduced information entropy to measure the uncertainty (state of knowledge) of the 

expected information, which gives birth to the science later called information theory. In 

information theory, information is not what you know but uncertainty, that is, information is 

statistical property of a message. Any probability distribution pi, i= 1, 2, �, n, of a random 

variable provides some information about that variable. Intuitively, information should be a 

decreasing function of  pi because the more unlikely an event, the more interesting it is to 

know that it can happen (p.34-35, Sen, 1975; Bera and Billias, 2002). Shannon defined 

entropy H(p) as a weighted sum of the information �lnpi, i= 1,2,�,n with respective 

probabilities as weights: 

(3.1)     )(lnln)(
1

pEpppH
n

i
ii −=−= ∑

=

 

with convention that 0ln0=0. E(lnp) is expected value of lnp. 

 Jaynes (1957) adopted information entropy concept and proposed the maximum 

entropy principle in statistical inference: the least informative probability distribution pi can 

be found by maximizing the entropy H(p). In (3.1), the solutions are: pi = 1/n, i= 1, 2, �, n, 

H(p) = ln n. Put the principle in other words: in the absence of information to the contrary, all 

possible states of system are equally likely. Generalized maximum entropy (GME) approach 

is based upon this principle. 

 Following (3.1), the cross-entropy of one probability distribution p={p1, p2 , �, 

pn}with respect to another probability distribution q={q1, q2 , �, qn} can be defined 
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 (3.2)     )(ln)(lnln),(
1

qEpEqppqpCE
n

i
iii −=−= ∑

=

 

This is actually a measure of distance between two probability distributions p and q. If we 

choose the non-informative q, i.e, q = {1/n, 1/n,�, 1/n}, then CE(p, q) becomes: 

(3.3)   npHnppqpCE
n

i
ii ln)(lnln),(

1
−−=−= ∑

=

 

Therefore maximizing entropy is in fact a special case of minimizing cross-entropy with 

respect to a uniform distribution. The cross entropy (CE) approach  can be stated as a 

minimization problem where the objective function is the cross entropy and the constraints are 

some side conditions, the prior knowledge. 

 A comprehensive book by Golan, Judge and Miller (1996) has brought much interest 

in applying the entropy approach (Lencer and Miller, 1998; Paris and Howlitt, 1998; 

Robinson, Cattaneo and El-Said, 2000; Zhang and Fan, 2001). The unique feature of the 

entropy approach is to overcome two empirical problems that hamper traditional 

econometrics: multi-collinearity and ill-posed problems (underdetermined or partial 

incomplete data) (Paris and Caputo, 2001; Golan, Judge and Miller, 1996). The idea is to 

remove irrelevant information at the beginning of a problem rather than taking pains to make 

dubious assumptions. Preckel (2001) compares least squares and entropy methods from a 

penalty function perspective, and concludes that the differences between these two 

approaches boil down to how the supports for errors and coefficients are defined in 

generalized cross-entropy approach. When the supports are specified to be symmetric, wide, 

and centered on zero for the residual errors, the coefficient estimates are essentially 

indistinguishable (Preckel, 2001). Shen and Perloff (2001) estimate a ratio of parameters 

using different methods and concludes that GME (and Bayesian method of moments) 
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estimator has a much smaller mean square errors and average biases than do ordinary least 

squares (OLS). A recent article by Bera and Bilias (2002) does an excellent synthesis on 

different estimation approaches such as method of moments, maximum entropy, maximum 

likelihood, empirical likelihood, estimating function and generalized methods of moments. 

The article unifies many of these estimation techniques in the framework of Cressie and Read 

(1984) power divergence criterion, and puts these techniques in an interesting historical 

perspective.  

3.2 Modified spatial allocation model 

 We built our spatial allocation model on the cross entropy approach (You and Wood, 

2003). Now we modified the model to accommodate partial sub-national data and new 

irrigation maps. Let sijl be the area share allocated to pixel i and crop j at input leve l with a 

certain country (say X) in SSA. CropAreajl is the total physical area for crop j at input level l, 

and Aijl  the area allocated to pixel i for crop j at input level l in country X. Therefore: 

(3.4)    
jl

ijl
ijl CropArea

A
s =  

Let πijl be the prior area shares we know by our best guess for pixel i and crop j at 

input level l in country X. The modified spatial allocation model can be written as follows: 

(3.5)  ∑ ∑∑∑∑∑ −=
i i j

ijlijl
lj

ijlijl
l

ijlijls
ssssCEMIN

ijl

ππ lnln),(
}{

 

subject to: 

(3.6)   ljs
i

ijl ∀∀=∑ 1  

(3.7)   iAvailsCropArea i
j

ijljl
l

∀≤×∑∑  

(3.8)   ljiSuitablesCropArea ijlijljl ∀∀∀≤×  
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(3.9)   JjkaSubCropAresCropArea jk
ki

ijljl
l

∈∀∀=×∑∑
∈

 

(3.10)   iIRRAreasCropArea i
Ll

ijljl ∀≤×∑
∈

 

(3.11)   ljisijl ,,01 ∀≥≥  

where: 

 i : i = 1, 2, 3, �, pixel identifier within the allocation unit, and 

j: j = 1, 2, 3, �, crop identifier (such as maize, cassava, rice) within the allocation unit, and 

l: l = irrigated, rainfed-high input, rainfed-low input, subsistence, management and input 

levels for crops 

k: k = 1, 2, 3, �, identifiers for sub-national geopolitical units  

J:  a set of those commodities which sub-national production statistics exist 

L:  a set of those commodities which are partly irrigated within pixel i. 

Availi: total agricultural land in pixel i, which is equal to total agricultural area estimated from 

land cover satellite image as described in the previous section.  

Suitableijl : the suitable area for crop j at input level l in pixel i, which comes form 

FAO/IIASA suitability surfaces as introduced in the previous section. 

IRRAreai : the irrigation area in pixel i from global map of irrigation (Siebert et al, 2001). 

  Comparing to the original spatial allocation model (You and Wood, 2003), there are 

two new constraints: equations (3.9) and (3.10).  Constraint (3.9) sets the sum of all allocated 

areas within those subnational units with existing statistical data to be equal to the 

corresponding subnational statistics. Constraint (3.10) includes the irrigation information: the 

sum of all allocated irrigated areas in any pixel must not exceed the area equipped for 
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irrigation indicated in global map of irrigation (Siebert et al, 2001). The objective function 

and all other equations are similar to the original model. This modified model could deal with 

incomplete data coverage at subnational levels, and in this sense it broaden the scope of 

spatial allocation model. Incomplete data may be the rule rather than the exception in real 

world, in particular in developing countries. 

 Obviously a informed prior(πijl) is very important for  the success of the model. We 

create the prior based upon the available evidence. First for each pixel, we calculate the 

potential revenue as 

(3.12)  ijlijljlijjijl SuitableySuitabilitYieldiceicev ××××= varPrPrRe  

where Pricej  and Yieldjl are the price index and the average yield for crop j at input level l 

(yield only) for the allocation unit (countries in SSA), Suitabilityijl is the suitability for crop j 

at input level l and pixel i, which is represented as proportion (value between 0 and 1) of the 

optimal yield as described in Section 2.7. Pricevarij  is the price variability (value between 0 

and 1) for crop j and pixel i.  Currently we use the population density as an approximate to 

spatial price variation. Then we pre-allocate the available statistical crop areas (at various 

geopolitical scales) into pixel-level areas by simple weighting: 

(3.13)    lij
v

v
PercentaSubCropAreArea

ki
ijl

ijl
jljkijl ∀∀∀××=
∑
∈

Re
Re

 

where Areaijl is the area pre-allocated to pixel i for crop j at level l, Percentjl is the area 

percentage of crop j at input level l. For those geopolitical units without area statistics, we 

simply merge them together and obtain the total area for that merged unit by subtracting the 
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sum of available subnational areas from national total. After this pre-allocation, we calculate 

the prior by normalizing the allocated areas over the whole country. 

(3.13)    lij
Area

Area

i
ijl

ijl
ijl ∀∀∀=

∑
π  

 

4. Results 

The application of the spatial allocation model faces two major challenges. First one is 

the inconsistency among the various constraints due to imperfect data. For example, the sum 

of all the statistical crop areas may be even larger than the cropland available from satellite 

image at either national or subnational levels. Therefore, the constraint (3.7) in the model are 

directly conflicting to constraint (3.6) if at national level or constraints (3.9) if at subnational 

level, and the optimization problem becomes infeasible.   Similar conflicts may appear among 

the rest of the constraints: less available irrigated area than the sum of statistical irrigated 

crops areas ((3.6) or (3.9) vs. (3.10)), less cropland than the irrigated area ((3.7) vs. (3.10)), 

less suitable areas than the statistical crop areas ((3.8) vs. (3.6) or (3.9)). These conflicting 

constraints have to be solved before we could run the model. Actually, these inconsistencies 

happen for every SSA country in the current application. We wrote computer programs (in 

FoxPro language) to deal with these conflicts. In principle, we treat the production/area 

statistics as the �truth�3, and then modify the areas from other sources. For example, we scale 

                                                 

3 We don�t claim that the statistics (either national or subnational) are more reliable than say, satellite image. We 

set statistics as a benchmark to make the results more comparable since these statistics are widely used and 

recognized. 
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up cropland areas if they are less than the sum of statistical crop areas. For those pixels where 

there is zero cropland but positive irrigated areas, we set the cropland areas equal to the 

irrigated areas.  

The second challenge is the huge size of the optimization problem, in particular for big 

countries. With the current grid resolution of five minutes, middle-size country such as South 

Africa has about 10,000 pixels with nonzero agricultural land (pixels with zero agricultural 

land are excluded from the model run).  South Africa produces 16 of the 20 crops considered, 

and each crop has four input levels. Therefore the total number of unknowns for South Africa 

is in the range of 600,000, which is relatively large for a nonlinear programming problem. 

Large countries such as Angola and Congo, D.R. are even larger problems. In addition the 

objective function with logarithms is a challenge for any nonlinear programming solver. 

GAMS (2003) is used to solve the model. The requirement for CPU time depends on specific 

countries, ranging from a few minutes to over 50 hours on our Dell desktop with 3.2 GHz 

CPU and 1GB RAM.  

  We run the modified spatial allocation model country by country for all 51 countries4 

in Sub-Sahara Africa. A post-processing program would take the results from GAMS and 

calculate both the harvest areas and productions by pixels. Figure 3.1 shows the crop area 

distribution maps for all the 20 crops considered. These are the 5 x5 minutes (about 9000 

hectares in Africa) crop distribution maps. 

[Figure 4.1 Estimated crop distribution maps of Sub-Sahara Africa] 

5. Final Remarks 

                                                 

4 Some island countries such as Mayotte, Seychelles have no or little agriculture productions. 
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We have proposed a spatial allocation model of crop production based on a cross-

entropy approach (CE). The approach utilizes information from various sources such as best 

available production statistics, satellite imagery, biophysical crop suitability assessments, 

irrigation map, as well as population density, in order to generate plausible, disaggregated 

estimates of the distribution of crop production on a pixel basis. With this spatial allocation 

model we obtain 5 by 5 minutes resolution maps for the 20 major crops in Sub-Sahara Africa. 

We also find that new technologies such as remote sensing and image processing prove to be 

useful tools for exploring the spatial heterogeneity of agriculture production, infrastructure 

and natural resources. On the other hand, working at a spatial scale of individual pixels 

creates many data management and computational challenges. Some of these challenges need 

to be met through improved numerical methods and mathematical optimization software.  

Though the current model provides what appear, in the absence of �truth� regarding 

the real distribution of production, to be reasonable results, more work is underway to 

improve its performance. The obvious way forward is to improve the underlying quality of the 

parameters currently included in the model, since the end results can only be as accurate as 

the input information. These include better approximations of the agricultural extent, more 

realistic crop suitability surfaces, and more research on the association between crop 

production and population density. On the other hand, we could also add more information 

into the model. For example, household or agricultural survey information on the location and 

quantity of crop production would provide a direct, sampled calibration of the entire crop 

distribution surface. If such information exists and it is of reasonable quality, it will definitely 

improve the estimation accuracy. We could also add some other behavioral assumptions. For 

example, it seems reasonable to assume that farmers would opt to plant a higher revenue 
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crops in any given location, all other things being equal. But potential revenue is in reality a 

proxy for potential profitability, and some could argue that risk minimization might also play 

a role. Thus there are several options for further work in exploring alternative drivers of crop 

choice, both individually and in crop combinations, in each location. 
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Figure 2.1 Subnational data coverage 
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Figure 2.2 Population density for Sub-Sahara Africa 
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Figure 2.3 Agricultural land 
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Figure 2.4 Irrigation map 
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Figure 2.5 Crop suitability surfaces � suitable areas 
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Figure 2.6 Crop suitability surfaces � potential yield 
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Figure 3.1 Estimated crop distribution maps of Sub-Sahara Africa 
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