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Is Equity a Constraint? Applications to Block
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1 Introduction

In choosing any policy, whether it be a regulation or a pricing scheme, it
is important to consider the social goals of the policy. Social goals might
include things like equity, giving incentives for conservation, or economic ef-
ficiency. Considering the scarcity of water resources in many parts of the
world, an important area of research is the effect of different water pric-
ing schemes. The water-pricing scheme can be chosen to affect the total
quantity of water demanded by consumers. However, other concerns may
be addressed via the chosen pricing scheme as well. Equity issues between
different water users, and economic efficiency of water use can be addressed.
Historically many water systems have used average cost pricing as a way
to recover costs. Increased water scarcity leads us to consider water reform
systems that move away from average cost pricing towards systems aimed to
promote conservation and increased water use efficiency.
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If the goal of water pricing policy is economic efficiency, then water mar-
kets are a first-best solution. There is an extensive literature on the op-
timality of water markets to achieve the most efficient allocation of water
use. This literature began with the work of Burness and Quirk [1]. They
argue that if water rights are tradable between heterogeneous water users,
the most efficient outcome will result. In this literature, there isn’t a need
to mention the role of a water agency, because bargaining between parties
will achieve the economically efficient (first-best) outcome. This argument
relies on a lack of transaction costs for water trading. Because of the high
costs involved with water storage and conveyance, transaction costs may be
prohibitive to trading in water, especially between non-adjacent land areas.
When the required assumptions do not hold, there is a role for a water agency
in determining water prices and allocations to users.

A first-best pricing policy is to price water at the marginal cost of sup-
ply. If budget balance is required, this should be achieved through non-
distortionary (lump sum) transfers. We will derive the first-best pricing out-
come and compare it to several second-best pricing policies, including tiered
pricing and average pricing. This analysis will be done for agricultural water
supplied to land that is heterogeneous in quality, and will require budget
balance of the water utility. Water agencies are often constrained to a zero
profit condition. This is particularly true of a state-owned water utility, or
in a place like California where many water districts are run for the benefit
of their members.

Despite the fact that the economic efficiency of water trading or marginal
cost pricing has been well-established, the number of water systems through-
out the world that use such systems is close to zero. Some may argue that
equity considerations are important in this choice. This paper develops a
framework to analyze the equity and efficiency of various water pricing op-
tions, including tiered pricing. It recognizes that water users are heteroge-
neous in their characteristics and demand, and this heterogeneity will have
to be incorporated in the design and assessment of alternative water pricing
mechanisms.

2 Empirical Model

Let y denote output per acre; x, applied water per acre; and γ, land quality.
Land quality varies from γ to γ with density g(γ). The production function
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per acre is y = f(x, γ) with fx > 0, fxx < 0, and fγ > 0, where the subscripts
denote partial derivatives. We normalize the price of output to equal one,
and all other prices are relative to the price of output.

There is a fixed cost per acre, denoted by k. This includes the costs
of preparing the land for planting and controlling pests. For simplicity, we
assume that this cost does not depend on the size of a farm or on the quality
of the land. The parameter δ(γ) indicates the proportion of land with quality
γ used for a specific crop by the farmer. Aggregate water use is denoted by
X, and the cost of providing water is composed of a fixed cost, denoted by
F and a variable cost, denoted by V(X), with V ′ > 0 and V ′′ > 0. It is
generally assumed that the marginal cost of supplying water increases as the
total quantity supplied increases. This is because the least expensive water
sources are generally developed first. Increasing the supply of water requires
deeper pumping of groundwater, or the delivery of surface water from further
away.

3 Measuring Efficiency and Equity

A component that is crucial to the work we present in this paper is the choice
of an appropriate measure for both efficiency and equity.

3.1 Measurements of Inequality

There are several choices available for a measure of inequality. The first is
the percentage of the population facing a certain input price who are priced
out of the market entirely (the percentage without access to the resource).
In a similar vein, we could define the measure of inequality as the percentage
of the population whose input use is less than xL, where xL is defined as a
’lifeline quantity’, or a minimum subsistence level. For example, estimates
of the minimum necessary quantity of water per capita for consumption and
sanitation range from 20 to 40 liters ([4]). While these inequality measures
are somewhat crude, the benefits of using them is that they are relatively
easy to understand and calculate. Previous work had used a similar type
of measure of inequity. In a study of a government run irrigation system in
the Philippines, Ferguson [3] uses the amount of land that does not receive
sufficient irrigation water as a measure of inequity.

Another method that we use to measure inequality is a comparison of the
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Figure 1: Measuring Inequality

cumulative distribution functions of the resource use patterns by population.
We define h(γ) as the density function of the percentage of total resource use,
and H(γ) as the cumulative distribution function of total resource use, with
H(γ) = 0 and H(γ) = 1. We compare distributions of resource use and con-
sider one to be more equitable than another if it second-order stochastically
dominates the other.

An example of this is in Figure 1. In Figure 1, we graph the distribution of
the population (G(γ)), along with two possible distributions for cumulative
water use. We denote these with H1(γ) and H2(γ). Using the second-order
stochastic dominance criteria, we consider H1(γ) to achieve a higher level of
equity than H2(γ). If some proportion of the population has zero consump-
tion of the resource, the distribution function will be flat over a range of
values of γ, and then will increase.

3.2 Measurements of Inefficiency

In existing water pricing systems throughout the world, inefficiencies can
result from many sources. These include a lack of appropriate pricing and
subsidies on other costs associated with water use, such as electricity, among
many others ([5], [6]). However, in this paper we assume that producers do
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not have market power to influence input prices, and that other inputs to
production, such as electricity, fertilizers, or labor are priced without market
distortions.

When a water utility charges the same price for each unit consumed, as
with marginal or average cost pricing, the measurement of inefficiency is fairly
straightforward. We consider the measure of inefficiency as the deadweight
loss resulting from a suboptimal allocation of resources. By definition, this
is the area between the marginal cost and marginal benefit functions above
the optimal level of resource use. However, we make a slight simplification
and approximate this using the area of a triangle, and denote the measure

of inefficiency as 1
2
(X

actual −X
∗
)(V ′(X

actual
)− w).

When a water utility charges different prices based on the level of con-
sumption, the measurement of inefficiency is a little more complicated. Ex-
amining the amount of inefficient water use in this scenario requires us to
consider the proportion of the population that do not buy their last unit at
marginal cost, instead of the total amount of the resource purchased below
marginal cost.

4 Optimal Allocation Rule

In this section we develop the optimal pricing rule for a utility that sells
water at a constant price to its customers. We assume that the amount of
water demanded at a given price increases as γ (land quality) increases.

We model the rent per acre (r(γ)) as the following:

r(γ) = (f(x(γ, w), γ)− k − wx(γ, w)) (1)

4.1 Individual Profit Maximization

We begin by modeling a profit-maximizing farmer, who has to decide whether
to produce, given the quality of his land and the price of water. We model
the optimization problem as follows:

max
x(γ,w),δ(γ)

(f(x(γ, w), γ)− k)δ(γ)− wx(γ, w) (2)

Farmers will decide to plant on an acre (δ(γ) = 1) if the total revenues
exceed the total costs. If total costs exceed total revenues, the land will
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be left fallow or used for some other crop and δ(γ) = 0. There exists a
critical land quality (γL) where the rent per acre is zero. At this point,
f(x(γL, w), γL)− k = wx(γL, w). At this land quality, total revenue per acre
equals total cost. This separates a region of higher quality lands that will be
fully farmed from lower quality lands that will not be farmed. The lowest
land quality in use, γL is a function of k, and w. From this result, we find
the following:

δ(γ) = 1 and r(γ) > 0 for γ > γL(k, w)

δ(γ) = 0 and r(γ) ≤ 0 for γ ≤ γL(k, w)

On any acre with positive production, water use will be determined by
the price of output (p), the price of water (w), and the land quality (γ). A
farmer will choose the optimal amount of water (x∗) to apply so that the
following condition holds:

∂f(x∗(γ, w), γ)

∂x∗(γ, w)
= w (3)

In subsequent sections, we define x∗(γ, w) as the profit maximizing level
of input use for an individual with land quality γ facing input price w, and
y∗(γ, w) = f(x∗(γ, w), γ) as the profit maximizing choice of output.

4.2 Social Optimality

Taking the behavior of an individual farmer as given by equations 2 and 3,
we consider the optimization problem facing a social planner who charges
the same price for each unit of water consumed:

max
w

∫ γ

γL(k,w)
(y∗(γ, w)− k)δ(γ)g(γ)dγ − F − V (X) (4)

Deriving the first order conditions for a social optimum shows that, as
expected, the price of the input (water) should equal the marginal cost of
provision. Therefore, we define w∗ = V ′(X).

Aggregate water use will be the following:

X =
∫ γ

γL(k,w∗)
x∗(γ, w∗)g(γ)dγ
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This equilibrium is likely to violate the no-profit condition for a utility. If
Xw∗ > F + V (X) the utility accumulates profits. If a zero profit condition
is imposed, then any profits or losses will have to be distributed in a non-
distortionary manner. For example, each acre of land may receive a share of
the profits, or pay a per-acre fee to cover the losses. In practice, this type
of mechanism is unrealistic due to the difficulty in implementation. For this
to be non-distortionary, these rebates/fees have to be independent of the
amount of water a farmer uses, the crop he/she grows, or if he/she leaves
land fallow.

5 Average Cost Pricing

Average cost pricing is often used when a utility is constrained to zero profits.
However, the use of average cost pricing is economically inefficient, because
the marginal cost of providing water to the user doesn’t equal the price
the user pays for water. If fixed costs (F ) are small relative to variable
costs (V ), the average cost will be below the marginal cost. It is usually
assumed that this is the case. There are a few reasons for this. One reason
is that the conveyance and storage costs (variable costs) of supplying water
are high. Also, the government or an outside agency often subsidize the fixed
costs of developing a water project. This has been true in both developed
and developing countries. For example, in the United States, most of the
water projects in the Western United States were either paid for or highly
subsidized by the federal government. In many developing countries, water
projects have been built from external funding received by agencies such as
the World Band or the International Monetary Fund. When fixed costs aren’t
a concern, those managing the water simply want to recover the variable costs
of water provision.

In the following, we use a superscript A to denote behavioral choices under
average-cost pricing, and a superscript * to denote behavior under marginal-
cost pricing. We denote the water price by wA, which is determined so that
total revenues just cover the total costs of water provision, as shown below:

wA =
F + V (X

A
)

X
A

As above, we define the lowest quality of land in operation by γA
L . Given

these conditions, if it is profitable to operate, a farmer will choose to apply

7



water so that the following condition holds:

∂f(x∗(γ, wA), γ)

∂x∗(γ, wA)
= wA

Total water demanded will be the integral of the individual demands:

X
A

=
∫ γ

γA
L (k,wA)

x∗(γ, wA)g(γ)dγ

Average cost pricing can lead to inefficient water use. This is because
water users are not choosing quantities at the margin efficiently. When wA is
less than w∗, too much water will be demanded at the margin. The change
in total water use will be both at the intensive and at the extensive margins,
as shown below.

X
A

= X +
∫ γ

γL(k,w∗)
(x∗(γ, wA)− x∗(γ, w∗))g(γ)dγ

︸ ︷︷ ︸
change at the intensive margin

+

∫ γL(k,w∗)

γ
L(k,wA)

x∗(γ, wA)g(γ)dγ

︸ ︷︷ ︸
change at the extensive margin

(5)

Proposition 1 The welfare loss under average cost pricing is increasing in
the slope of the variable cost function (V (X)), and decreasing in the rate of
change of yield (f(x, γ)) to greater levels of inputs.

Proof of Proposition 1: See appendix.

6 Tiered Pricing Solution

A tiered pricing system is a way to provide budget balance of the water
utility, but to also have marginal cost pricing at higher levels of water use.
This will provide the incentives for efficient water use at the margin, as well
as addressing equity concerns.

The pricing system is an increasing block rate system. This type of system
is commonly used in electricity markets. However, it has been largely ignored
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in the water literature. With tiered pricing, there will be a certain amount
of water allocated to each acre of land in production at a low price. This
quantity will be denoted by x0, and it is available at a price of w0. For
any water above x0, the price will equal the marginal cost of provision, wM .
There are several reasons that an increasing block rate pricing system would
be used in water pricing. The first reason is for economic efficiency - it
changes the price of the last unit of water used, so that at the margin a user
chooses water use efficiently. Another reason could be for equity reasons. If
it is a priority of agricultural policy to keep small family farms in business,
it might motivate a tiered-pricing policy. If small farms that require less
water pay a reduced price, it would help to keep those farmers in business
(essentially, this would be a transfer from large farmers to small farmers).

The model here is of an allocation per production acre. There are other
ways that a tiered pricing system could be implemented. For example, a
water user could be allocated some percentage of their historical usage at a
low rate. In this case, the allocated quantity will be x0(γ), instead of having
the allocation constant among users. Another possible scenario is that each
grower receives a certain allocation of water for a low price, regardless of the
number of acres the grower farms. However, we argue that if there is large
heterogeneity across farm sizes and land quality, the most feasible system is
a per acre allocation.

Since the quantity of water demanded at a given price increases as land
quality (γ) increases (due to greater input-use efficiency), lower quality lands
will buy at the lower price w0, while the higher quality land will receive their
allocation, and will buy more water at the higher price wM . Mathematically,
this assumption can be stated as if γ1 > γ2, then x∗(γ1, w) > x∗(γ2, w)∀w.
Using the tiered pricing system will create up to 4 categories of water users,
based on land quality. Some of these categories may be empty for certain
land distributions or for certain values of the parameters.

1. The first category includes those who cannot farm profitably at water
price w0. As with the optimal solution, there will be some value of land
quality that separates the land that is in production from land kept
fallow. We define γL(k, w0) as the lowest quality land in production.

2. The second category is those who set marginal product equal to price
w0. Here we define γS

L(x0, w0) as the highest quality land that uses
water at price w0 efficiently.
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3. The third category is those who use water inefficiently - they buy x0

at price w0, but in doing so they are not setting the value of marginal
product equal to the input price. They would be willing to buy more
water, but not at price wM .

4. The fourth category is those who use water efficiently at the high price
of wM . The lowest level of land quality in this group is γS

H(x0, w
M),

which we define as the lowest quality land that uses water at price wM

efficiently.

An example of this is in Figure 2. In this figure, there are only three
types of user characteristics that shape the demand for water. We define
these three types as γL, γM , and γH . When faced with the same level of
input price, each type demands a different quantity of water. Demand from
each type is shown with its respective marginal benefit curve, denoted by
MB(γi). Given the choice of x0 and w0 shown in the figure, the only group
of users that purchase water at an efficient level is γH . Therefore, γH is in the
fourth category of users defined above. The first group, γL is in the second
category, while the second group, γM , is in the third category. There are no
users in the first category, since all buy some amount of water at the low
price (w0).

The land qualities that separate these categories are functions of the
parameters of the problem, as shown below. The exogenous variables in
the problem are k, and F . Continuing the notation from earlier, we use a
superscript T to denote behavioral choices under tiered pricing.

Using this notation, the second-best optimization problem is:

max
x0,w0

∫ γS
L(x0,w0)

γL(k,w0)
(f(x∗(γ, w0), γ)− k)g(γ)dγ +

∫ γS
H(x0,wM )

γS
L(x0,w0)

(f(x0, γ)− k)g(γ)dγ

+
∫ γ

γS
H(x0,wM )

(f(x∗(γ, wM))− k)g(γ)dγ − F − V (X
T
) (6)

Subject to the following two conditions:

F + V (X
T
) =

∫ γS
L(x0,w0)

γL(k,w0)
w0x(γ, w0)g(γ)dγ +

∫ γS
H(x0,wM )

γS
L(x0,w0)

w0x0g(γ)dγ +

+
∫ γ

γS
H(x0,wM )

(w0x0 + wM(x(γ, wM)− x0))g(γ)dγ (7)
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Figure 2: Example of Increasing Block Rate Pricing with Heterogeneous
Users

wM = V ′(X
T
) (8)

The following also hold, based on the definition of the variables:

X
T

=
∫ γS

L(x0,w0)

γL(k,w0)
x(γ, w0)g(γ)dγ +

∫ γS
H(x0,wM )

γS
L(x0,w0)

x0g(γ)dγ +

+
∫ γ

γS
H(x0,wM )

x(γ, wM)g(γ)dγ (9)

x∗(γS
L , w0) = x0 (10)

x∗(γS
H , wM) = x0 (11)

f ′(γ, w0) = w0 ∀ γ s.t. γL ≤ γ ≤ γS
L (12)

f ′(γ, wM) = wM ∀ γ s.t. γS
H(x0, wM) ≤ γ ≤ γ (13)
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Setting λ1 as the shadow value of the budget constraint, and λ2 as the
shadow value of marginal cost pricing at the top tier, the first order conditions
of the problem are as follows:

∂L

∂w0

=
−∂γL

∂w0

((x∗(γL, w0)w0)g(γL)
︸ ︷︷ ︸

∆ output value from tail

+
∫ γS

L(x0,w0)

γL(k,w0)
w0

∂x∗

∂w0

g(γ)dγ
︸ ︷︷ ︸

∆ output value from low tier

−

− V ′(X
T
)
∂X

T

∂w0︸ ︷︷ ︸
∆ variable costs

+λ1( V ′(X
T
)
∂X

T

∂w0︸ ︷︷ ︸
∆variable costs

+
∂γL

∂w0

w0x
∗(γL, w0)g(γL)

︸ ︷︷ ︸
∆ revenue from tail

−

−
∫ γS

L(x0,w0)

γL(k,w0)
(x∗(γ, w0) + w0

∂x∗

∂w0

)g(γ)dγ
︸ ︷︷ ︸

∆ revenue from low tier

− x0(1−G(γS
L))︸ ︷︷ ︸

∆ revenue from other tiers

) +

+λ2 (V ′′(XT )
∂XT

∂w0

)
︸ ︷︷ ︸

∆ marginal costs

= 0(14)

∂L

∂x0

=
∫ γS

H(x0,wM )

γS
L(x0,w0)

p
∂f

∂xo

g(γ)dγ

︸ ︷︷ ︸
∆ output value of middle tier

+ (wM − w0)(1−G(γS
H))︸ ︷︷ ︸

∆ subsidy to high tier

+

+λ1( V ′(X
T
)
∂X

T

∂x0︸ ︷︷ ︸
∆ variable costs

− w0(G(γS
H)−G(γS

L))︸ ︷︷ ︸
∆ revenue from the middle tier

+

+ (wM − w0)(1−G(γS
H))︸ ︷︷ ︸

∆ subsidy to the high tier

) + λ2 V ′′(X
T
)
∂X

T

∂x0︸ ︷︷ ︸
∆ marginal cost

= 0 (15)

An important factor is the shape of the land density function g(γ). The
tiered pricing solution will be very different if most of the density is located
near the center of the distribution or if most of the density is near the upper
and lower limits. For certain land density functions, tiered pricing can achieve
the first-best solution, while still satisfying the balance budget requirement.
If the tier is set so that every water user is in the top tier, water use will
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reproduce the first-best solution. There could be multiple sets of (x0, w0)
that satisfy the first order conditions of the problem.

Proposition 2 If the pair (x0, w0) is chosen so that 0 < x0 < x∗(γ, wM),
then the first-best outcome can be achieved through tiered pricing.

Proof of Proposition 2: See appendix.

Proposition 3 if 0 < x0 < x∗(γ, wM), the choice of (x0, w0) does not affect
the measure of inequality.

Proof of Proposition 3: See appendix.

Proposition 4 If x0 is determined by other considerations, such as a lifeline
quantity (chosen by a measure of a minimal need) and x0 > x∗(γ, wM), then

• the inefficiency resulting from tiered pricing is increasing in x0.

• the inefficiency is exacerbated when a large proportion of the land is of
moderate quality.

• the inefficiency is decreasing in the responsiveness of the yield function
(f(x, γ)) to higher input use.

Proof of Proposition 4: See appendix.

7 Conclusion

In this paper, we have presented a framework for analyzing equity and effi-
ciency measures of resource use when users of that resource are heterogeneous
in their characteristics and demand. One result that we show is that the tail
end of the distribution of users will determine whether tiered pricing is effi-
cient, while the moments of the distribution will determine the measure of
loss when there is inefficiency. We identify two sources of inefficiency with
tiered pricing - a level of entry that is too high and excessive use by existing
users. These are effects at the intensive and extensive margins, and both
will create inefficiency. The parameters of the distribution of users and their
demand will determine the relative importance of each source of distortion.
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The next step is to analyze certain production and distribution functions.
This can be done both analytically and with a simulation program. One
production function that has been used to look at agriculture is a quadratic
production function, such has been done by Caswell and Zilberman [2] in
modeling the California cotton industry.

Other production functions that are often used in analyzing agricul-
tural production are a Von-Liebig (fixed proportion) technology, or a Cobb-
Douglas production function.

These extensions, along with an examination of other water-pricing poli-
cies are the next step in this research. The question of choosing an appropri-
ate water-pricing policy is extremely important and timely. As the number
of people in water scarce regions and the environmental needs for clean water
grow, disputes over water use and water rights are certain to be a part of our
future.
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A Appendix

A.1 Proof of Proposition 1

Proposition 1: The welfare loss under average cost pricing is increasing in
the slope of the variable cost function (V (X)), and is decreasing in the rate
of change of yield (f(x, γ)) to greater levels of inputs.

In this proposition, we make two claims. To show they are correct, we
first remind the reader of the measurement of inefficiency we use when users
pay the same price for each unit consumed. We consider the traditional
measure of deadweight loss, and approximate this with a triangular area for
ease of calculation. Accordingly,

DWL ≈ 1

2
(X

A −X
∗
)(V ′(X

A
)− wA)

For the first claim, we consider how a change in the slope of the variable
cost function (mathematically a change in V ′(X)) changes the measure of
inefficiency. The proof is straightforward, since

∂(DWL)

∂V ′(X)
≈ 1

2
(X

A −X
∗
)

As X
A

> X
∗
, this expression is positive. Therefore, deadweight loss

increases as the slope of the variable cost function increases. It is important
to note that since consumers respond to the price charged (wA), the total

quantity used (X
A
) does not depend on the cost function.

For the second claim, we first note that the aggregate demand (X) for a
resource at a single price is simply the sum of all individual demands. There-
fore, we consider the impact of the shape of the production function on an
individual’s demand. We use the result of the individual profit maximization
that for any input price wi, an individual will set ∂f(x,γ)

∂xi
= wi. Taking a

first-order Taylor series expansion around ∂f(x,γ)
∂xA yields the following:

∂f(x, γ)

∂xA
≈ ∂f(x, γ)

∂x∗
+

∂2f(x, γ)

∂x∗2
(xA − x∗)

Substituting in the condition for profit maximization and rearranging
terms yields the following:
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(wA − w∗)
∂2f(x,γ)

∂x∗2
≈ (xA − x∗)

The term ∂2f(x,γ)
∂x∗2 is negative by assumption, validating the fact that input

price and quantity demanded are inversely related. This term measures the
rate of change of the yield function in response to changes in input quanti-
ties, and the larger this rate of change, the smaller the change in quantity
demanded after an input price change. The intuition behind this is that if
the change in yield responds quickly to changes in inputs, a smaller change
in inputs is necessary to satisfy the profit maximization condition.

A.2 Proof of Proposition 2

Proposition 2: If the pair (x0, w0) is chosen so that 0 < x0 < x∗(γ, wM), then
the first-best outcome can be achieved through tiered pricing.

The intuition is that this pricing policy puts all water users in the top tier
- those who buy water efficiently at marginal cost. As discussed earlier, we
define the level of inefficiency as the difference between the optimal level of

aggregate resource use and the actual level, as denoted by X
T −X

∗
. Using

the categories defined earlier, if x0 < x∗(γ, wM), the first three categories are
empty, and the entire population is in the fourth category. This is the group
that uses water efficiently at price wM . Under these assumptions, the total
quantity used under tiered pricing is the following:

X
T

=
∫ γ

γ
x∗(γ, wM)g(γ)dγ

Since wM is equal to the marginal cost of water (V ′(X)), aggregate de-
mand is equivalent to demand under marginal cost pricing. However, a water
utility earns a lower level of profits than under marginal cost pricing, since
not all units are priced at marginal cost. More specifically, total revenues are
equal to the following expression:

Total Revenue = (x0w0) +
∫ γ

γ
wM(x∗(γ, wM)− x0)

Therefore, the utility can be held to a zero-profit condition, while effi-
ciency in water use among users is still achieved.
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A.3 Proof of Proposition 3

Proposition 3: if 0 < x0 < x∗(γ, wM), the choice of (x0, w0) does not affect
the measure of inequality.

To show that this is true, we consider the decision from each individual of
how much water to use under tiered pricing and under marginal cost pricing.
As shown in the proof of proposition 2, each individual uses the same amount
of water under both tiered pricing and marginal cost pricing. Therefore, the
distribution of water use under each pricing scheme is identical. Therefore,
while customers pay a lower total price for their water use, the distribution
of quantity used does not change.

A.4 Proof of Proposition 4

Proposition 4: If x0 is determined by other considerations, such as a lifeline
quantity (chosen by a measure of a minimal need) and x0 > x∗(γ, wM), then

• the inefficiency resulting from tiered pricing is increasing in x0.

• the inefficiency is exacerbated when a large proportion of the land is of
moderate quality.

• the inefficiency is decreasing in the responsiveness of the yield function
(f(x, γ)) to higher input use.

We denote the level of inefficiency by the difference between aggregate
water use under marginal cost pricing and under tiered pricing. This differ-

ence is X
T −X

∗
. Inefficiency results from those users who are in the first and

second category defined earlier - those that set the marginal product of water
equal to w0 and those that use exactly x0. First, we show the following:

X
T −X

∗
=

∫ γS
L(x0,w0)

γL(k,w0)
(x∗(γ, w0)− x∗(γ, wM))g(γ)dγ

+
∫ γS

H(x0,wM )

γS
L(x0,w0)

(x0 − x∗(γ, wM))g(γ)dγ

Differentiating this expression with respect to the variable x0 and simpli-
fying gives the following expression:
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∂(X
T −X

∗
)

∂x0

=
∂γS

H

∂x0

x0g(γS
H) + G(γS

H)−G(γS
L)

Both components of the expression are non-negative. The first shows the
increased inefficiency resulting from a greater proportion of the population
using water inefficiently. The second component shows how those who are
already using water inefficiently exacerbate that inefficient use when the level
of x0 is increased.

For the last part of this statement, refer to the proof of proposition 1,
where we show that a greater responsiveness of the yield function to higher
water use decreases inefficiency. The same argument holds for the proportion
of the population who buy water below marginal cost under tiered pricing.
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