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International Trade and Biological Invasions: A Queuing Theoretic Analysis of the Prevention

Problem

Abstract

We propose and develop a new framework for studying the problem of preventing biological

invasions caused by ships transporting internationally traded goods between countries and continents.

In particular, we apply the methods of queuing theory to analyze the problem of preventing a

biological invasion from a long run perspective. First, we characterize two simple regulatory regimes

as two different kinds of queues. Second, we show how to pose a publically owned port manager’s

decision problem as an optimization problem using queuing theoretic techniques. Third, we compare

and contrast the optimality conditions emanating from our analysis of the  and the M/M/I/U M/M/I/I

inspection regimes. We conclude by discussing possible extensions to our basic models.

Keywords: Natural Resources, Decision Analysis, Economics, Risk Management, Biological Invasion

JEL Classification: F18, L51, Q20
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The principal method of marine non-native species introduction is by means of the dumping of ballast water. Cargo ships typically
carry ballast water in order to enhance maneuverability and stability when they are not carrying full loads. When these ships come
into port, this ballast water must be discharged before cargo can be loaded. It is estimated that over 4000 species of invertebrates,
algae, and fishes are being moved around the world in ship ballast tanks every day. Focusing on just one country, it has been
estimated that as much as 13 billion gallons or 50 million metric tonnes of overseas ballast water enters Canadian coastal ports
every year. A recent study by the Smithsonian Environmental Research Center (SERC) in Edgewater, Maryland calculated that a
liter of ballast water typically contains several billion organisms similar to viruses and up to 800 million bacteria. For more details
on these issues, go to http://www.fundyforum.com/profile_archives and to the SERC web site www.serc.si.edu
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International Trade and Biological Invasions: A Queuing Theoretic Analysis of the Prevention

Problem

1. Introduction

In this age of globalization, there is increasing mobility of both humans and goods between

countries and continents. Ships are routinely used to transport a variety of internationally traded

goods between different countries. There is no gainsaying the fact that this international trade in

goods is generally beneficial to the countries involved. Indeed, there are several results in modern

trade theory which show that voluntary goods trade between nations is welfare improving for all the

nations involved. 

This notwithstanding, as Heywood (1995), Parker et al. (1999), and others have pointed out,

in addition to transporting goods between countries, by means of their ballast water, ships have also

unwittingly transported all kinds of non-native plant and animal species from one geographical region

to another.1 These non-native or alien species have often been very successful in invading their new

habitats and the resulting biological invasions have proved to be very costly to the countries in which

these new habitats are located. For the United States alone, the magnitude of these costs is

astounding. For instance, according to the Office of Technology Assessment (OTA (1993)), the

Russian wheat aphid caused an estimated $600 million worth of crop damage between 1987 and

1989. More generally, Pimentel et al. (2000) have estimated the total costs of all non-native species
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to be around $137 billion per year. 

It is important to understand that in addition to economic costs, invasive species also cause

significant ecological damage. As Vitousek et al. (1996) have noted, non-native species can alter

ecosystem processes, act as vectors of diseases, and diminish biological diversity. In this regard, the

work of Cox (1993) tells us that out of 256 vertebrate extinctions with a known cause, 109 are the

result of biological invasions. Even a single invasive species can cause tremendous damage. Savidge

(1987) tells us that following an invasion of Guam by the brown tree snake, all twelve of this island’s

bird species became extinct.

The point of this discussion is clear. Biological invasions can be and frequently have been a

huge menace to society. Given this state of affairs, one can ask what economists have contributed to

increasing our understanding of the regulation of biological invasions. Unfortunately, the answer is

not much. Although very recently economists have begun to address this question, it is still the case

that “the economics of the problem has...attracted little attention” (Perrings et al. (2000, p. 11)).

From a regulatory perspective, there are a number of actions that one can take to deal with

the problem of biological invasions. It is helpful to separate these actions into pre-invasion and post-

invasion actions. Pre-invasion actions relate to the so called prevention problem. The idea here is to

take actions that will effectively prevent a potentially damaging non-native species from invading a

new habitat. In contrast, post-invasion actions involve the optimal control of one or more non-native

species, given that the species has already invaded a new habitat.

Most economic analyses of the regulation of biological invasions have focused on the

desirability of alternate actions in the post-invasion scenario. We now briefly discuss four

representative studies. Barbier (2001) shows that the economic impact of a biological invasion can
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be determined by studying the nature of the interaction between the non-native and the native species.

He notes that the economic impact depends on whether this interaction involves interspecific

competition or dispersion. Eiswerth and Johnson (2002) analyze an optimal control model of the

management of a non-native species stock. They show that given presently available scientific

information, the optimal level of management effort is sensitive to ecological factors that are species

and site specific and stochastic. Olson and Roy (2002) have used a model of a stochastic biological

invasion to examine conditions under which it is optimal to eradicate the non-native species and

conditions under which it is not optimal to do so. Finally, Eiswerth and van Kooten (2002) have

shown that even when hard data about the spread of an invasive species are unavailable, it is possible

to use information provided by experts to formulate a model in which it is optimal to not eradicate

but instead control the spread of an invasive species.

The above studies have certainly increased our understanding of regulatory issues in the post-

invasion scenario. This notwithstanding, to the best of our knowledge, the only paper that has

formally analyzed the prevention problem, i.e., the regulation of a potentially damaging non-native

species before invasion is Horan et al. (2002). These researchers model non-native invasive species

as a form of “biological pollution.” They then compare the properties of preventive management

strategies under full information and under uncertainty. Our paper is different from this paper in three

important ways. First, we are not interested in comparing the properties of management strategies

under full information and under uncertainty. In this regard, we suppose from the start that

uncertainty is an integral component of the prevention problem confronting a regulator. Second, we

use queuing theory—to the best of our knowledge for the first time—to provide a long run

perspective on the stochastic setting in which our regulator operates. Finally, we use aspects of this
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Excellent textbook accounts of queuing theory can be found in Gross and Harris (1974), Wolff (1989), and Ross (2003).
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stochastic setting to set up objective functions that our regulator optimizes.

The rest of this paper is organized as follows. Section 2 first provides a brief primer on

queuing theory and then it focuses on the two queuing models that we use to study the prevention

problem confronting our regulator. Section 3 uses the first of these two queuing models to provide

a detailed analysis of the regulator’s prevention problem. Section 4 does the same using the second

of our two queuing models. Section 5 compares and contrasts the optimality conditions emanating

from our analysis of two specific queuing inspection regimes. Section 6 concludes and offers

suggestions for future research.

2. Queuing Theory and the Prevention Problem

2.1. A primer on queuing theory

Queuing theory is concerned with the mathematical analysis of waiting lines or queues.2 At

a very basic level, all queuing models have three characteristics. In particular, they can be described

by (i) a stochastic arrival process, (ii) a random service time or times distribution function, and (iii)

the deterministic number of available servers. The arrival process is often but not always described

by the Poisson process. When this is the case, the times between successive arrivals are exponentially

distributed and, as is well known, the exponential distribution is memoryless or Markovian in nature.

Consequently, the Poisson arrival process is commonly denoted by the letter M.

The service times are clearly stochastic and hence these times can, in principle, be arbitrarily

distributed. However, these services times are frequently modeled with the exponential distribution

function which is memoryless or Markovian in nature. Hence, in this case, the letter  is also usedM
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to represent the service time distribution function. Finally, the deterministic number of servers is

typically denoted by some positive integer. 

So, for instance, the notation  refers to a queuing model in which the arrival processM/M/1

is Poisson, the service time is exponentially distributed, and there is a single server. Similarly, the

notation  refers to a queuing model in which the arrival process is Poisson, the service timesM/G/5

are generally distributed, and there are five servers. It is possible to complicate this basic three part

construct in several ways and in this paper we shall do so by adapting this basic three part construct

to our biological invasion prevention problem.

2.2. The biological invasion prevention problem

Consider a stylized, publically owned port in a specific coastal region of some country. Ships

with ballast water arrive at this port typically to load cargo and to then transport this cargo to some

other port. Occasionally, it may also be the case that some ships that come into our port with ballast

water will first unload cargo and then load new cargo for shipment to some other port in the world.

In either case, the arrival of these ships coincides with the arrival of a whole host of (potentially

deleterious) biological organisms. It is reasonable to suppose that the arrival rate of these biological

organisms is proportional to the arrival rate of the aforementioned ships. Consequently, we shall not

model these biological organisms directly. Instead we shall focus on the ships that bring—by means

of their ballast water—these organisms to our port. Given this interpretation, the arrival process of

the ships in our port constitutes the arrival process for the queuing models that we employ in this

paper. Now, consistent with a wide variety of queuing models, we suppose that the ships in question

arrive at our port in accordance with a Poisson process with rate α.

Because we are interested in preventing invasions by the potentially deleterious biological
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organisms, arriving ships must be inspected before they can either load or unload cargo. We assume

that our port has  inspectors, where  is any positive integer. Put differently, at any point in time,I I

our port will be able to simultaneously inspect a maximum of  arriving ships. Further, ships areI

inspected on a first come first served basis. If more than  ships arrive at our port during a particularI

time interval then the ships that are not already being inspected must wait in queue. An alternate

interpretation of this state of affairs is that our port has  docks and that one inspector is assignedI

to each of these  docks. Therefore, at any specific moment in time, a maximum of  ships can beI I

docked and inspected. Finally, since no port is physically able to accommodate an arbitrarily large

number of ships, we suppose that there is an upper limit  on the maximum number of ships that canU

be allowed to queue in our port. The port system consists of ships that are being inspected, ships that

are waiting in queue, the  inspectors, and the port manager.I

Note that because we are studying the prevention of biological invasions in this paper, all I

inspectors will have a zero tolerance policy. As a result, inspection is necessarily a laborious and time

consuming activity. Before a ship can be cleared for loading or unloading cargo, an inspector must

guarantee that this ship’s ballast water contains no potentially harmful organisms. To provide this

assurance, a specific inspector can take a number of actions. These include (i) the shipboard filtration

of ballast water, (ii) the treatment of ballast water with heat, chemicals, and ultraviolet radiation, and

(iii) the shore based treatment of ballast water. 

As indicated in the previous paragraph, inspections will typically require varying amounts of

time. For instance, if an inspector knows that a particular ship has taken on ballast water in an area

where there are no known biological invaders then (s)he may be able to clear a ship relatively quickly.

In contrast, if it is the case that a particular ship has taken on ballast water during a phytoplankton
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bloom, then the chance of this ship’s ballast water containing potentially detrimental organisms is

much higher, and hence a lot more time will be required to clear this ship. This discussion should

convince the reader that the time taken to complete an inspection is necessarily a random variable.

As such, we suppose that this random variable is exponentially distributed with mean 1/β.

We now have all the essential components of our queuing models. We shall analyze two

specific inspection regimes. In both regimes the arrival process of ships is Poisson with rate  andα

the inspection times are exponentially distributed with mean  In the first inspection regime, there1/β.

are  inspectors and the upper limit on the maximum number of ships in our port is  In the secondI U.

inspection regime, the number of inspectors and the upper limit on the maximum number of ships in

our port coincide and they are both denoted by the positive integer  Using the language of queuingI.

theory, our first inspection regime is a  model and our second inspection regime is aM/M/I/U

 model. In this notation, the meaning of the first two  has already been explained in theM/M/I/I M )s

last paragraph of section 2.1. In addition, from the above explanation, it should be clear that the I

refers to the number of inspectors and the  refers to the finite capacity of our port. We nowU

proceed to a formal discussion of our queuing theoretic approach to the biological invasion

prevention problem.

3. The M/M/I/U Inspection Regime

3.1. The probabilistic essentials

Recall that our analysis of the prevention problem is being conducted from a long run

perspective. As such, our first task is to determine the long run or stationary probabilities for our

 inspection regime. To this end, let  denote the number of ships in our port at anM/M/I/U X(t)

arbitrary time  Further, let t.
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(1)Pk/limt64Prob{X(t)'k}

denote the stationary probability that there are exactly  ships in our port. We are interested ink

determining the  However, before we do this, it is important to note two things. First, in the{Pk}.

queuing models of this paper,  can also be interpreted as the proportion of time that the portPk

system contains exactly  ships. Second, because the finite capacity of our port is  the state spacek U,

of this inspection regime can be indexed by  where  In words, this means that when therek k'0,...,U.

are  ships in the port no additional ships will be permitted to enter this port.U

To compute the  note that because of the upper limit  on the maximum number of{Pk}, U

ships that may enter our port, the relevant arrival rate of ships is not  but α

(2)αk'
α if 0#k<U
0 if k$U.

Similarly, because of the presence of this finite capacity, the pertinent inspection rate is also not β

but

(3)βk'
kβ if 0#k<I
Iβ if I#k#U.

Now, the correct expression for  will depend on whether the actual number of ships in ourPk

port (indexed by ) satisfies the condition  or the condition  The first condition saysk (0#k<I) (I#k#U).

that the actual number of ships is less than the total number of inspectors  and hence at any givenI

point in time some inspectors are idle. The second condition says that the actual number of ships lies

somewhere in between the total number of inspectors and the finite capacity of the port  Now, theU.
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We are assuming here that  If this condition does not hold then the expression for  in equation (4) would be a little different.ρ…1. Pk
For additional details, see Gross and Harris (1974, p. 105).
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threat of a biological invasion is greatest in ports where there is a lot of ballast water that needs to

be inspected. In turn, there will be a lot of ballast water when a number of ships with ballast water

arrive at our port. In this case, the actual number of ships will, most likely, exceed the total number

of inspectors and hence inspectors are unlikely to be idle. The upshot of this discussion is that given

the subject matter of this paper, the more interesting and the more realistic of the two conditions is

the condition  Therefore, in the rest of this section, we suppose that the condition (I#k#U). (I#k#U)

holds. Using this condition, equations (2)-(3), and equations 3.24 and 3.25 in Gross and Harris (1974,

p. 105), we can tell that the required stationary probability  satisfiesPk

(4)Pk'(
1

I k&II!
)(
α

β
)k[j

k'I&1

k'0

1
k!

(
α

β
)k
%

(α/β)I

I!
(

1&ρU&I%1

1&ρ
)]&1, k'I,...,U,

where 3 This completes our first main task. ρ'α/Iβ.

The reader should note that the arrival of ships into our port does not result only in the arrival

of potentially damaging biological invasions. Specifically, the loading and the unloading of cargo in

our port constitutes economic activity driven by international trade between our port and ports in

other nations. This trade driven economic activity clearly results in benefits to society and hence any

reasonable analysis of the biological invasion prevention problem must account for this positive

impact of economic activity on society. If we suppose that the volume of trade driven economic

activity is proportional to the number of ships  in our port then the expected number of ships S E[S]

can serve as a useful proxy for the magnitude of this trade driven economic activity. Consequently,
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our next task is to determine  for our  inspection regime. E[S] M/M/I/U

The reader should note that the expectation  is actually the sum of two parts. The firstE[S]

part is the expected number of ships that are in queue, waiting to be inspected, and the second part

is the expected inspection time. Using this fact and equations 3.26 and 3.27 in Gross and Harris

(1974, pp. 106-107), we can infer that in our model  is given byE[S]

(5)E[S]'
P0(Iρ)Iρ

I!(1&ρ)2
[1&ρU&I%1

&(1&ρ)(U&I%1)ρU&I]%I&P0j
k'I&1

k'0

(I&k)(ρI)k

k!
,

where P0'[j
k'I&1

k'0

(1/k!)(α/β)k
%{(α/β)I/I!}{(1&ρU&I%1)/(1&ρ)}]&1.

This completes our discourse on the probabilistic essentials. We now follow Batabyal (1996)

and first formulate and then discuss an optimization problem that describes the prevention problem

confronting the manager of our publically owned port.

3.2. The optimization problem

Our port manager understands that the international trade driven economic activity in this port

coupled with the need for inspections to keep out potentially deleterious biological organisms

generates benefits and costs to society. Therefore, our port manager is interested in optimizing the

net benefit to society and this net benefit is given by the benefit resulting from international trade

driven economic activity less the cost of biological invasions.

Let us consider the benefits from economic activity first. Ships arrive in our port at the rate α.

However, a certain proportion of these ships, i.e., those that arrive when there are  ships alreadyU

in the port do not enter this port. Now,  is the proportion of time that our port is full. From thisPU

it follows that in a particular time period, say a month, entering ships in effect arrive at our port at
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Because the arrival rate of ships must be a positive integer, strictly speaking, we should say that ships arrive at the rate of the
integer part of  We suppose the reader understands this. As such, in the rest of this paper, we shall not focus on this detail.α(1&PU).

5

The reader will note that we are implicitly supposing that  can be treated as a continuous choice variable. Put differently, we areI
assuming that the optimal integer  can be approximated by the optimal continuous  If this is not the case then integerI I.
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the rate of 4 Let the per month benefit to society from the trade driven economic activityα(1&PU).

resulting from the arrival of the  ship be  where  is the expected numberkth Bk'Bk(E[S],1/β,tk) E[S]

of ships in the port,  is the average time taken by an inspector to inspect a ship, and  is the total1/β tk

tonnage of the goods being loaded and/or unloaded from the  ship. Given this specification of thekth

individual ship benefit function, we can see that the total benefit facing our port manager per month

equals α(1&PU) j

k'α(1&PU)

k'1
Bk(E[S],1/β,tk).

Moving to the costs, we suppose that the per month cost of biological invasions depends on

the expected number of ships in our port system  and on the number of inspectors  who areE[S] I

working in this port. As such, this per month total cost can be expressed as  The readerC(E[S],I).

should note two features of our benefit and cost modeling thus far. In particular, although the benefit

function depends on a system aggregate, i.e., on  it also depends on the individual shipE[S],

arguments  and  In contrast, the cost of biological invasions depends entirely on the system1/β tk.

aggregates  and  This modeling strategy reflects our belief that whereas the benefits fromE[S] I.

economic activity depend on individual ship features and on system wide characteristics, the cost of

biological invasions depends less on what is happening at the level of each arriving ship and more on

what is happening in our port in the aggregate.

Now using the delineation of benefits and costs from the previous two paragraphs, we can

state our publically owned port manager’s optimization problem. This manager chooses the number

of inspectors  to solve5I



programming techniques will have to be used to determine the optimal number of inspectors. For more on integer programming,
see Wolsey (1998).

14

(6)max{I}α(1&PU) j

k'α(1&PU)

k'1
Bk(E[S],1/β,tk)&C(E[S],I).

subject to  Now, suppose that the solution to problem (6) yields an interior maximum. Then,I$0.

omitting the complementary slackness condition, the Kuhn-Tucker condition for a maximum is

(7)α[(1&PU)Σ
œk

MBk(@)

ME[S]
ME[S]
MI

&Σ
œkBk(@)

MPU

MI
]'

MC(@)
ME[S]

ME[S]
MI

%

MC(@)
MI

.

The optimal number of inspectors  solves equation (7) and this equation reveals the basicI (

tradeoff confronting our port manager in a straightforward manner. Specifically, equation (7) tells us

that in selecting the number of inspectors optimally, the port manager will balance the benefit from

economic activity with the cost from biological invasions. In particular, equation (7) informs us that

in choosing the number of inspectors optimally, our port manager will equate the marginal benefit

from economic activities (the LHS) with the marginal cost of biological invasions (the RHS).

Examining the LHS of equation (7) in greater detail, we see that the marginal benefit from

economic activities is actually the weighted difference of two terms. The weight on the first term

 is  the effective arrival rate of ships in our port.α(1&PU)Σ
œk{MBk(@)/ME[S]}{ME[S]/MI} α(1&PU),

Further, this first term captures the indirect impact that the optimal number of inspectors has on the

marginal benefit through the  variable, i.e., the expected number of ships in our port. The weightE[S]

on the second term  is  the arrival rate of ships not accounting for the fact thatαΣ
œkBk(@){MPU/MI} α,

there is an upper limit on the number of ships that our port can accommodate at a specific point in
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time. This second term captures the direct effect that the optimal number of inspectors has on the

marginal benefit through the stationary probability  that there are a maximum of  ships withPU U

ballast water in the port under study. 

Unlike the expression for the marginal benefit, the marginal cost of biological invasions is the

sum of two terms. The first term  captures the indirect effect that the{MC(@)/ME[S]}{ME[S]/MI}

optimal number of inspectors has on the marginal cost through the  variable, i.e., the expectedE[S]

number of ships in our port. The second term  accounts for the direct impact that the{MC(@)/MI}

optimal number of inspectors has on the marginal cost of biological invasions. Since equation (7)

cannot, in general, be solved analytically, one will have to resort to numerical methods to obtain the

optimal number of inspectors  We now proceed to discuss the second of our two inspectionI (.

regimes.

4. The M/M/I/I Inspection Regime

4.1. The probabilistic essentials

Unlike the  inspection regime, in the regime of this section, the number of inspectorsM/M/I/U

in the port is equal to the maximum number of ships that this port can accommodate. In symbols

 Now given that our analysis is being conducted from a long run perspective, our immediate taskI'U.

is to compute the stationary probabilities —given by equation (1)—for this  inspection{Pk} M/M/I/I

regime. Before we calculate the  observe that in this section the condition  applies. This{Pk}, (0#k#I)

condition tells us that the actual number of ships in our port is less than or equal to the total number

of inspectors  and hence at any given point in time it is possible that some inspectors are idle. TheI

reader will note that because  it makes sense now to work with this condition  and notI'U, (0#k#I)

the condition  of the previous section. Now, using equation 3.31 in Gross and Harris (1974,(I#k#U)
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p. 109), we infer that the long run probability  we seek is given by Pk

(8)Pk'
(α/β)k/k!

j
j'I

j'0
(α/β)j/j!

, k'0,...,I.

This completes our first primary task. 

As in section 3, the loading and the unloading of cargo in our port represents economic

activity driven by international trade between our port and ports in other countries. This trade driven

economic activity obviously results in benefits to society and hence we shall account for these benefits

in our analysis. To this end, we assume that the expected number of ships  is a useful proxy forE[S]

the magnitude of this trade driven economic activity. As such, our next task is to ascertain  forE[S]

the  inspection regime. To obtain the relevant  let us substitute  in equation (5) andM/M/I/I E[S], I'U

then simplify the resulting expression. This gives us 

(9)E[S]'I&P0j
k'I&1

k'0

(I&k)(ρI)k

k!
,

where P0'[j
k'I&1

k'0

(1/k!)(α/β)k
%{(α/β)I/I!}]&1.

This completes our discussion of the probabilistic essentials. We now formulate and then

discuss an optimization problem that characterizes the prevention problem facing the manager of our

publically owned port.

4.2. The optimization problem

Our port manager is aware of the fact that the international trade driven economic activity in



17

this port combined with the need for inspections to keep out possibly injurious biological organisms

results in benefits and costs to society. As such, this port manager is interested in maximizing the net

benefit to society and this net benefit is given by the benefit resulting from international trade driven

economic activity less the cost of biological invasions.

Let us consider the benefits from economic activity first. Following the discussion in section

3.2, the gross benefit facing our port manager per month is  whereα(1&PI) j

k'α(1&PI)

k'1
Bk(E[S],1/β,tk),

the arguments of this benefit function are as in section 3.2. The reader will note that this benefit

function is different from the benefit function of the  inspection regime of section 3 in threeM/M/I/U

ways. First, the effective arrival rate is  and not  Second, the upper limit of theα(1&PI) α(1&PU).

summation now is  and not  Finally, as equations (5) and (9) tell us, the expressionα(1&PI) α(1&PU).

for the  argument in the above benefit function is not the same as the corresponding expressionE[S]

for the section 3.2 benefit function.

As far as the costs are concerned, we follow the logic of section 3.2 and suppose that the per

month cost of biological invasions is a function of the expected number of ships in our port  andE[S]

the number of inspectors  who are working in this port. Therefore, this per month cost is I C(E[S],I).

Comparing this cost function with the cost function of the  inspection regime we see thatM/M/I/U

there is one key difference and this difference arises because the expressions for the  argumentE[S]

in these two functions are dissimilar (see equations (5) and (9)). As in section 3.2, we see that the

benefit function depends not only on a system aggregate  but also on the individual shipE[S],

arguments  and  In contrast, the cost of biological invasions is a function of the system1/β tk.

aggregates  and  This modeling strategy reflects our contention that whereas the benefits fromE[S] I.

economic activity depend on individual ship attributes and on system wide characteristics, the cost
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of biological invasions depends less on what is occurring at the level of each arriving ship and more

on what is occurring in our port in the aggregate.

Keeping this discussion in mind, we can now state our publically owned port manager’s

maximization problem. This manager chooses the number of inspectors  to solve (also see footnoteI

8)

(10)max{I}α(1&PI) j

k'α(1&PI)

k'1
Bk(E[S],1/β,tk)&C(E[S],I).

subject to  Note that  in this maximand is now given not by equation (5) but instead byI$0. E[S]

equation (9). Suppose that the solution to problem (10) yields an interior maximum. Then, excluding

the complementary slackness condition, the Kuhn-Tucker condition for a maximum is

(11)α[(1&PI)Σœk

MBk(@)

ME[S]
ME[S]
MI

&Σ
œkBk(@)

MPI

MI
]'

MC(@)
ME[S]

ME[S]
MI

%

MC(@)
MI

.

The maximal number of inspectors  solves equation (11) and this equation demonstratesI (

the essential tradeoff confronting our port manager in a simple way. Specifically, equation (11) tells

us that in choosing the number of inspectors optimally, the port manager will compare the benefit

from economic activity with the cost from biological invasions. In particular, equation (11) informs

us that in selecting the number of inspectors optimally, our port manager will equate the marginal

benefit from economic activities (the LHS) with the marginal cost of biological invasions (the RHS).

As in section 3.2, the marginal benefit from economic activities is given by the weighted

difference of two terms. The weight on the first term is  and this weight is the effective arrivalα(1&PI)
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rate of ships in our port. This first term  captures the indirectα(1&PI)Σœk{MBk(@)/ME[S]}{ME[S]/MI}

impact that the optimal number of inspectors has on the marginal benefit through the expectedI (

number of ships in our port. The weight on the second term is  the arrival rate of ships notα,

accounting for the fact that there is an upper limit  on the number of ships that our port canI

accommodate at a specific point in time. This second term  captures the directαΣ
œkBk(@){MPI/MI}

effect that the optimal number of inspectors has on the marginal benefit through the long run

probability  that there are a maximum of  ships with ballast water in the port under study. WePI I

now compare and contrast the optimality conditions emanating from our analysis of the  andM/M/I/U

the  inspection regimes.M/M/I/I

5. Inspection Regimes: M/M/I/U versus M/M/I/I

Comparing the optimality conditions (equations (7) and (11)) for the two inspection regimes

that we are studying in this paper, we see that there are three essential differences. First, because U…I

in section 3.2 and  in this section, equation (7) reflects the fact that ships in excess of the numberU'I

of inspectors will be allowed into our port as long as the number of ships does not exceed the upper

limit  In contrast, equation (11) reflects the fact that once the number of ships equals the numberU.

of inspectors, no further ships will be allowed into the port under study. Put differently, there will be

a queue of ships with ballast water in the  inspection regime but there will be no such queueM/M/I/U

in the  inspection regime.M/M/I/I

Second, the existence and the non-existence of a queue in the two inspection regimes that we

are studying has an implication for the effective rate at which ships with ballast water arrive at our

port. The effective arrival rate in equation (7) is  and the effective arrival rate in equationα(1&PU)

(11) is  A comparison of equations (4) and (8) does not reveal any necessary general resultα(1&PI).
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about the relative magnitudes of the two long run probabilities  and  Therefore, we cannot sayPU PI.

for sure whether the equation (7) effective arrival rate is bigger or smaller than the equation (11)

effective arrival rate. This notwithstanding, what we can say with some assurance is that because

these two effective arrival rates are dissimilar, the marginal benefit (the LHSs) in the two optimality

conditions (equations (7) and (11)) will generally be different. This in turn means that the marginal

cost (the RHSs) in these two optimality equations will also be different, and hence, the optimal

number of inspectors in the two inspection regimes being studied will be distinct.

Finally, inspection of equations (5) and (9) tells us that the expected number of ships in our

port in the  inspection regime will generally be greater than the expected number of shipsM/M/I/U

in our port in the  inspection regime. The general dissimilarity of these two expectations leadsM/M/I/I

to three conclusions. First, the indirect impact that the optimal number of inspectors has on both the

marginal benefit and the marginal cost in the two optimality conditions (equations (7) and (11)) will

be distinct. Second, this means that the solutions to the two optimality conditions will also be distinct.

In other words, consistent with the discussion in the previous paragraph, the optimal number of

inspectors in the two regimes that we are studying will not be the same. Third, the volume of

economic activity and hence the likelihood of a biological invasion will be greater in theM/M/I/U

inspection regime and lesser in the  inspection regime. M/M/I/I

6. Conclusions

In this paper we developed what we believe is a new framework for studying the problem of

preventing biological invasions caused by ships transporting internationally traded goods between

countries and continents. This new framework allowed us to study the problem of preventing a

biological invasion from a long run perspective. Specifically, we first characterized two simple
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regulatory regimes as two different kinds of queues. We then showed how a publically owned port

manager’s decision problem can be posed and analyzed as an optimization problem using queuing

theoretic techniques. Finally, we compared and contrasted the optimality conditions arising from our

examination of the  and the  inspection regimes.M/M/I/U M/M/I/I

The analysis contained in this paper can be extended in a number of directions. In what

follows, we suggest two possible extensions of this paper’s research. First, the reader will note that

we analyzed Markovian inspection regimes in this paper. As such, it would be useful to investigate

the properties of more general inspection regimes in which either the arrival of ships or the service

times of inspectors are characterized by general distribution functions. Second, on the numerical

front, it would be useful to compare the approach of this paper—in which the optimal number of

inspectors choice problem is viewed as a continuous choice problem—with an alternate approach in

which this choice problem is cast as an integer programming problem. Studies of international trade

driven biological invasions that incorporate these aspects of the prevention problem into the analysis

will provide additional insights into a phenomenon that has frequently proved to be very costly for

the involved parties.
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