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International Tradeand Biological Invasions: A Queuing Theoretic Analysisof thePrevention
Problem
Abstract

We propose and develop anew framework for studying the problem of preventing biological
invasionscaused by shipstransporting internationally traded goods between countriesand continents.
In particular, we apply the methods of queuing theory to analyze the problem of preventing a
biological invasion fromalong run perspective. First, we characterize two simple regulatory regimes
as two different kinds of queues. Second, we show how to pose a publically owned port manager’s
decision problem as an optimization problem using queuing theoretic techniques. Third, we compare
and contrast the optimality conditions emanating from our analysis of the M/M/1/U and the M/M/I/]

inspection regimes. We conclude by discussing possible extensions to our basic models.
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International Tradeand Biological Invasions: A Queuing Theoretic Analysisof thePrevention
Problem
1. Introduction

In this age of globalization, there is increasing mobility of both humans and goods between
countries and continents. Ships are routinely used to transport a variety of internationally traded
goods between different countries. There is no gainsaying the fact that this international trade in
goods is generally beneficial to the countries involved. Indeed, there are several results in modern
trade theory which show that voluntary goods trade between nations is welfare improving for all the
nations involved.

Thisnotwithstanding, asHeywood (1995), Parker et al. (1999), and others have pointed out,
in addition to transporting goods between countries, by means of their ballast water, ships have also
unwittingly transported all kinds of non-native plant and animal speciesfrom one geographical region
to another.* These non-native or alien species have often been very successful in invading their new
habitats and the resulting biological invasions have proved to be very costly to the countriesin which
these new habitats are located. For the United States alone, the magnitude of these costs is
astounding. For instance, according to the Office of Technology Assessment (OTA (1993)), the
Russian wheat aphid caused an estimated $600 million worth of crop damage between 1987 and

1989. More generally, Pimentel et al. (2000) have estimated the total costs of al non-native species

1

The principal method of marine non-native speciesintroduction is by means of the dumping of ballast water. Cargo shipstypically
carry ballast water in order to enhance maneuverability and stability when they are not carrying full loads. When these ships come
into port, this ballast water must be discharged before cargo can be loaded. It is estimated that over 4000 species of invertebrates,
algae, and fishes are being moved around the world in ship ballast tanks every day. Focusing on just one country, it has been
estimated that as much as 13 billion gallons or 50 million metric tonnes of overseas ballast water enters Canadian coastal ports
every year. A recent study by the Smithsonian Environmental Research Center (SERC) in Edgewater, Maryland cal culated that a
liter of ballast water typically contains several billion organisms similar to viruses and up to 800 million bacteria. For more details
on these issues, go to http://www.fundyforum.com/profile archives and to the SERC web site www.serc.si.edu
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to be around $137 billion per year.

It isimportant to understand that in addition to economic costs, invasive species also cause
significant ecological damage. As Vitousek et al. (1996) have noted, non-native species can alter
ecosystem processes, act as vectors of diseases, and diminish biological diversity. Inthisregard, the
work of Cox (1993) tellsusthat out of 256 vertebrate extinctions with a known cause, 109 are the
result of biological invasions. Even asingle invasive species can cause tremendous damage. Savidge
(1987) tells usthat following an invasion of Guam by the brown tree snake, all twelve of thisisland’s
bird species became extinct.

The point of this discussion is clear. Biological invasions can be and frequently have been a
huge menaceto society. Given this state of affairs, one can ask what economists have contributed to
increasing our understanding of the regulation of biological invasions. Unfortunately, the answer is
not much. Although very recently economists have begun to address this question, it is still the case
that “the economics of the problem has...attracted little attention” (Perrings et al. (2000, p. 11)).

From aregulatory perspective, there are a number of actions that one can take to deal with
the problem of biological invasions. It ishelpful to separate these actionsinto pre-invasion and post-
invasion actions. Pre-invasion actionsrelate to the so called prevention problem. Theidea hereisto
take actions that will effectively prevent a potentially damaging non-native species from invading a
new habitat. In contrast, post-invasion actionsinvolve the optimal control of one or more non-native
species, given that the species has aready invaded a new habitat.

Most economic analyses of the regulation of biological invasions have focused on the
desirability of alternate actions in the post-invasion scenario. We now briefly discuss four

representative studies. Barbier (2001) shows that the economic impact of a biological invasion can



be determined by studying the nature of theinteraction between the non-native and the native species.
He notes that the economic impact depends on whether this interaction involves interspecific
competition or dispersion. Eiswerth and Johnson (2002) analyze an optimal control model of the
management of a non-native species stock. They show that given presently available scientific
information, the optimal level of management effort is sengitive to ecological factorsthat are species
and site specific and stochastic. Olson and Roy (2002) have used a model of a stochastic biological
invasion to examine conditions under which it is optimal to eradicate the non-native species and
conditions under which it is not optimal to do so. Finaly, Eiswerth and van Kooten (2002) have
shown that even when hard data about the spread of an invasive species are unavailable, it ispossible
to use information provided by expertsto formulate a model in which it is optimal to not eradicate
but instead control the spread of an invasive species.

The above studies have certainly increased our understanding of regulatory issuesin the post-
invasion scenario. This notwithstanding, to the best of our knowledge, the only paper that has
formally analyzed the prevention problem, i.e., the regulation of a potentially damaging non-native
species beforeinvasion is Horan et al. (2002). These researchers model non-native invasive species
as a form of “biological pollution.” They then compare the properties of preventive management
strategies under full information and under uncertainty. Our paper isdifferent fromthis paper inthree
important ways. First, we are not interested in comparing the properties of management strategies
under full information and under uncertainty. In this regard, we suppose from the start that
uncertainty is an integral component of the prevention problem confronting aregulator. Second, we
use queuing theory—to the best of our knowledge for the first time—to provide a long run

perspective on the stochastic setting in which our regulator operates. Finally, we use aspects of this



stochastic setting to set up objective functions that our regulator optimizes.

The rest of this paper is organized as follows. Section 2 first provides a brief primer on
gueuing theory and then it focuses on the two queuing models that we use to study the prevention
problem confronting our regulator. Section 3 uses the first of these two queuing models to provide
adetailed analysis of the regulator’s prevention problem. Section 4 does the same using the second
of our two queuing models. Section 5 compares and contrasts the optimality conditions emanating
from our analysis of two specific queuing inspection regimes. Section 6 concludes and offers
suggestions for future research.

2. Queuing Theory and the Prevention Problem
2.1. A primer on queuing theory

Queuing theory is concerned with the mathematical analysis of waiting lines or queues.? At
avery basic level, al queuing models have three characteristics. In particular, they can be described
by (i) astochastic arrival process, (ii) arandom service time or times distribution function, and (iii)
the deterministic number of available servers. The arrival process is often but not always described
by the Poisson process. When thisisthe case, the times between successive arrivals are exponentially
distributed and, asiswell known, the exponential distributionis memorylessor Markovianin nature.
Consequently, the Poisson arrival process is commonly denoted by the letter M.

The service times are clearly stochastic and hence these times can, in principle, be arbitrarily
distributed. However, these services times are frequently modeled with the exponential distribution

function which is memoryless or Markovian in nature. Hence, in this case, the letter M is also used

2
Excellent textbook accounts of queuing theory can be found in Gross and Harris (1974), Wolff (1989), and Ross (2003).
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to represent the service time distribution function. Finally, the deterministic number of serversis
typically denoted by some positive integer.

So, for instance, the notation M/M/1 refersto a queuing model in which the arrival process
is Poisson, the service time is exponentialy distributed, and there is a single server. Similarly, the
notation M/G/5 refersto aqueuing model in which the arrival process is Poisson, the service times
are generally distributed, and there are five servers. It is possible to complicate this basic three part
construct in several ways and in this paper we shall do so by adapting this basic three part construct
to our biological invasion prevention problem.

2.2. Thebiological invasion prevention problem

Consider astylized, publically owned port in aspecific coastal region of some country. Ships
with ballast water arrive at this port typically to load cargo and to then transport this cargo to some
other port. Occasionaly, it may also be the case that some shipsthat come into our port with ballast
water will first unload cargo and then load new cargo for shipment to some other port in the world.
In either case, the arrival of these ships coincides with the arrival of a whole host of (potentially
deleterious) biological organisms. It isreasonable to suppose that the arrival rate of these biological
organismsis proportional to the arrival rate of the aforementioned ships. Consequently, we shall not
model these biological organismsdirectly. Instead we shall focus on the ships that bring—by means
of their ballast water—these organismsto our port. Given thisinterpretation, the arrival process of
the ships in our port constitutes the arrival process for the queuing models that we employ in this
paper. Now, consistent with awide variety of queuing models, we suppose that the shipsin question
arrive at our port in accordance with a Poisson process with rate o.

Because we are interested in preventing invasions by the potentially deleterious biological



organisms, arriving ships must be inspected before they can either load or unload cargo. We assume
that our port has | inspectors, where | is any positive integer. Put differently, at any point in time,
our port will be able to simultaneously inspect a maximum of | arriving ships. Further, ships are
inspected on afirst comefirst served basis. If morethan | shipsarrive at our port during aparticular
time interval then the ships that are not already being inspected must wait in queue. An aternate
interpretation of this state of affairsisthat our port has | docks and that one inspector is assigned
to each of these | docks. Therefore, at any specific moment in time, amaximum of | ships can be
docked and inspected. Finally, since no port is physically able to accommodate an arbitrarily large
number of ships, we supposethat thereisan upper limit U on the maximum number of shipsthat can
be allowed to queuein our port. The port system consists of shipsthat are being inspected, shipsthat
are waiting in queue, the | inspectors, and the port manager.

Note that because we are studying the prevention of biological invasionsin this paper, all |
inspectorswill have azero tolerance policy. Asaresult, inspection is necessarily alaborious and time
consuming activity. Before a ship can be cleared for loading or unloading cargo, an inspector must
guarantee that this ship’s ballast water contains no potentialy harmful organisms. To provide this
assurance, a specificinspector cantake anumber of actions. Theseinclude (i) the shipboard filtration
of ballast water, (ii) thetreatment of ballast water with heat, chemicals, and ultraviolet radiation, and
(iii) the shore based treatment of ballast water.

Asindicated in the previous paragraph, inspections will typically require varying amounts of
time. For instance, if an inspector knows that a particular ship has taken on ballast water in an area
wherethere are no known biological invadersthen (s)he may be ableto clear aship relatively quickly.

In contrast, if it isthe case that a particular ship has taken on ballast water during a phytoplankton



bloom, then the chance of this ship’s ballast water containing potentially detrimental organisms is
much higher, and hence a lot more time will be required to clear this ship. This discussion should
convince the reader that the time taken to complete an inspection is necessarily a random variable.
As such, we suppose that this random variable is exponentially distributed with mean 1/p.

We now have al the essential components of our queuing models. We shall analyze two
specific inspection regimes. In both regimes the arrival process of ships is Poisson with rate o, and
the inspection times are exponentially distributed with mean 1/B. Inthefirst inspection regime, there
are | inspectorsand the upper limit on the maximum number of shipsinour port is U. Inthe second
inspection regime, the number of inspectors and the upper limit on the maximum number of shipsin
our port coincide and they are both denoted by the positiveinteger |. Using the language of queuing
theory, our first inspection regime is a M/M/I/U model and our second inspection regime is a
M/M/1/1 model. In this notation, the meaning of the first two M s has already been explained in the
last paragraph of section 2.1. In addition, from the above explanation, it should be clear that the |
refers to the number of inspectors and the U refers to the finite capacity of our port. We now
proceed to a forma discussion of our queuing theoretic approach to the biological invasion
prevention problem.

3. The M/M/I/U Inspection Regime
3.1. The probabilistic essentials

Recall that our analysis of the prevention problem is being conducted from a long run
perspective. As such, our first task is to determine the long run or stationary probabilities for our
M/M/1/U inspection regime. To this end, let X(t) denote the number of shipsin our port at an

arbitrary time t. Further, let



P =lim.__Prob{ X(t)=k} (1)
denote the stationary probability that there are exactly k shipsin our port. We are interested in
determining the {P,}. However, before we do this, it is important to note two things. First, in the
queuing models of this paper, P, can also be interpreted as the proportion of time that the port
system contains exactly k ships. Second, because the finite capacity of our port is U, the state space
of thisinspection regime can be indexed by k where k=0,...,U. Inwords, thismeansthat when there
are U shipsin the port no additional ships will be permitted to enter this port.

To compute the {P,}, note that because of the upper limit U on the maximum number of

ships that may enter our port, the relevant arrival rate of shipsisnot o but

{a if O<k<U
0, =

0 if k>U. 2

Similarly, because of the presence of this finite capacity, the pertinent inspection rate is also not 3

but

[ KB if O<ksl
Bk‘{ IB if 1<k<U. 3)

Now, the correct expression for P, will depend on whether the actual number of shipsin our
port (indexed by k) satisfiesthe condition (O<k<I) or the condition (I <k<U). Thefirst condition says
that the actual number of shipsis less than the total number of inspectors | and hence at any given
point intime someinspectors areidle. The second condition saysthat the actual number of shipslies

somewherein between the total number of inspectors and thefinite capacity of the port U. Now, the
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threat of a biological invasion is greatest in ports where there isalot of ballast water that needs to
be inspected. In turn, there will be alot of ballast water when a number of ships with ballast water
arrive at our port. Inthis case, the actual number of shipswill, most likely, exceed the total number
of inspectors and hence inspectors are unlikely to beidle. The upshot of this discussion isthat given
the subject matter of this paper, the more interesting and the more realistic of the two conditionsis
the condition (I <k<U). Therefore, intherest of thissection, we supposethat the condition (I <k<U)
holds. Using thiscondition, equations (2)-(3), and equations 3.24 and 3.25 in Grossand Harris (1974,
p. 105), we can tell that the required stationary probability P, satisfies

k=1-1

Ok 1 0(k (a/B) (1-p" "1 _
[kz; ¥ ) | ( 15 )] -, k=l,...,U, 4

where p=a/IB.® This completes our first main task.

Thereader should notethat the arrival of shipsinto our port doesnot result only inthe arrival
of potentially damaging biological invasions. Specifically, the loading and the unloading of cargo in
our port constitutes economic activity driven by international trade between our port and portsin
other nations. Thistrade driven economic activity clearly resultsin benefits to society and hence any
reasonable analysis of the biological invasion prevention problem must account for this positive
impact of economic activity on society. If we suppose that the volume of trade driven economic
activity is proportional to the number of ships S in our port then the expected number of ships E[Y

can serve as a useful proxy for the magnitude of this trade driven economic activity. Consequently,

3

Weare assuming herethat p= 1. If thiscondition doesnot hold then the expression for P, inequation (4) would be alittledifferent.
For additional details, see Gross and Harris (1974, p. 105).
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our next task isto determine E[S for our M/M/I/U inspection regime.

The reader should note that the expectation E[Y is actually the sum of two parts. Thefirst
part is the expected number of shipsthat are in queue, waiting to be inspected, and the second part
is the expected inspection time. Using this fact and equations 3.26 and 3.27 in Gross and Harris
(1974, pp. 106-107), we can infer that in our model E[Y is given by

[1-pY 7 =(1-p)(U-1+1)pY ] +1-P 3 ) ()

E[S =
S 11(1-p)? o K

where Po=[kk2|:1 (UK (o/B)<+{ (/B) NH (1-p" " H/(L-p)}] ™
=0

Thiscompletes our discourse on the probabilistic essentials. We now follow Batabyal (1996)
and first formulate and then discuss an optimization problem that describes the prevention problem
confronting the manager of our publically owned port.
3.2. The optimization problem

Our port manager understandsthat theinternational trade driven economic activity inthisport
coupled with the need for inspections to keep out potentially deleterious biological organisms
generates benefits and costs to society. Therefore, our port manager is interested in optimizing the
net benefit to society and this net benefit is given by the benefit resulting from international trade
driven economic activity less the cost of biological invasions.

Let usconsider the benefitsfrom economic activity first. Shipsarrivein our port at therate a.
However, a certain proportion of these ships, i.e., those that arrive when there are U ships aready
in the port do not enter this port. Now, P isthe proportion of time that our port is full. From this

it follows that in a particular time period, say a month, entering ships in effect arrive at our port at
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therate of a(1-P).* Let the per month benefit to society from the trade driven economic activity
resulting fromthe arrival of the kth ship be B, =B, (E[S],1/B,t,) where E[] isthe expected number
of shipsintheport, 1/ isthe average time taken by an inspector to inspect aship, and t, isthetotal
tonnage of the goods being loaded and/or unloaded from the kth ship. Given this specification of the
individual ship benefit function, we can see that the total benefit facing our port manager per month

k=a(1-Py)

equals a(1-P,) kX; B(E[S],1/B.t).

Moving to the costs, we suppose that the per month cost of biological invasions depends on
the expected number of shipsin our port system E[S and on the number of inspectors | who are
working in this port. As such, this per month total cost can be expressed as C(E[],I). The reader
should note two features of our benefit and cost modeling thusfar. In particular, although the benefit
function depends on a system aggregate, i.e,, on E[S, it also depends on the individua ship
arguments 1/B and t,. In contrast, the cost of biologica invasions depends entirely on the system
aggregates E[Y and |. This modeling strategy reflects our belief that whereas the benefits from
economic activity depend on individual ship features and on system wide characteristics, the cost of
biological invasions depends less on what is happening at the level of each arriving ship and more on
what is happening in our port in the aggregate.

Now using the delineation of benefits and costs from the previous two paragraphs, we can

state our publically owned port manager’ s optimization problem. This manager chooses the number

of inspectors | to solve®

4

Because the arrival rate of ships must be a positive integer, strictly speaking, we should say that ships arrive at the rate of the
integer part of a(1-P,). We suppose the reader understandsthis. Assuch, intherest of this paper, we shall not focus on this detail.

5

The reader will note that we areimplicitly supposing that | can be treated as a continuous choice variable. Put differently, we are
assuming that the optimal integer |1 can be approximated by the optimal continuous I. If this is not the case then integer
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k=a(1-Py)

max, a(1-P) kX; B(E[S,1/.t)-C(E[T,]). (6)

subject to 1>0. Now, suppose that the solution to problem (6) yields an interior maximum. Then,

omitting the complementary slackness condition, the Kuhn-Tucker condition for a maximum is

oB() cE[g

aKl_PU)ZV"ﬁT

(7)

1Py, _acr) oE[S |, ac()
2B0 ]_GE[SJ o al

The optimal number of inspectors | * solves equation (7) and this equation reveals the basic
tradeoff confronting our port manager in astraightforward manner. Specifically, equation (7) tellsus
that in selecting the number of inspectors optimally, the port manager will balance the benefit from
economic activity with the cost from biological invasions. In particular, equation (7) informs us that
in choosing the number of inspectors optimally, our port manager will equate the marginal benefit
from economic activities (the LHS) with the marginal cost of biological invasions (the RHS).

Examining the LHS of equation (7) in greater detail, we see that the marginal benefit from
economic activities is actually the weighted difference of two terms. The weight on the first term
a(1-P)Z (0B, (")/oE[S}{E[T/ol} is a(1-P), the effective arrival rate of ships in our port.
Further, thisfirst term captures the indirect impact that the optimal number of inspectors hasonthe
marginal benefit throughthe E[§ variable, i.e., the expected number of shipsin our port. Theweight
onthe second term o, B, (*){ P /dl} is a, the arrival rate of ships not accounting for the fact that

there is an upper limit on the number of ships that our port can accommodate at a specific point in

programming techniques will have to be used to determine the optimal number of inspectors. For more on integer programming,
see Wolsey (1998).
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time. This second term captures the direct effect that the optimal number of inspectors has on the
margina benefit through the stationary probability P, that there are a maximum of U ships with
ballast water in the port under study.

Unlike the expression for the marginal benefit, the marginal cost of biological invasionsisthe
sum of two terms. The first term {3C(-)/0E[S}{E[F/AI} captures the indirect effect that the
optimal number of inspectors has on the marginal cost through the E[S variable, i.e., the expected
number of shipsin our port. The second term {JC(-)/d1} accounts for the direct impact that the
optimal number of inspectors has on the marginal cost of biological invasions. Since equation (7)
cannot, in general, be solved analytically, one will have to resort to numerical methodsto obtain the
optimal number of inspectors | . We now proceed to discuss the second of our two inspection
regimes.

4. The M/M/I/I Inspection Regime
4.1. The probabilistic essentials

Unlikethe M/M/I/U inspectionregime, intheregime of this section, the number of inspectors
in the port is equal to the maximum number of ships that this port can accommodate. In symbols
I=U. Now giventhat our analysisisbeing conducted fromalong run perspective, our immediate task
isto compute the stationary probabilities { P, } —given by equation (1)—for this M/M/1/1 inspection
regime. Beforewe calculatethe{ P, }, observethat inthis section the condition (O<k<I) applies. This
condition tells us that the actual number of shipsin our port islessthan or equal to the total number
of inspectors | and hence at any given point intimeiit is possible that some inspectors areidle. The
reader will note that because | =U, it makes sense now to work with this condition (O<k<l) and not

the condition (I <k<U) of the previoussection. Now, using equation 3.31 in Gross and Harris (1974,
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p. 109), we infer that the long run probability P, we seek is given by

o (@)K

S (a/B)fj!
-0

, k=0,...,1.
i

This completes our first primary task.

As in section 3, the loading and the unloading of cargo in our port represents economic
activity driven by international trade between our port and portsin other countries. Thistrade driven
economic activity obviously resultsin benefitsto society and hence we shall account for these benefits
inour analysis. To this end, we assume that the expected number of ships E[§ isauseful proxy for
the magnitude of this trade driven economic activity. As such, our next task isto ascertain E[§] for

the M/M/1/1 inspectionregime. To obtaintherelevant E[Y, let ussubstitute 1 =U inequation (5) and

then simplify the resulting expression. This gives us
k=1-1 _ k
k-0 ki

k=1-1

where Po=[ 3 (UK!)(a/B)<+{ (a/B)N11}] 2.
k=0

This completes our discussion of the probabilistic essentials. We now formulate and then

discuss an optimization problemthat characterizesthe prevention problem facing the manager of our

publically owned port.

4.2. The optimization problem

Our port manager isaware of thefact that the international trade driven economic activity in

16
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this port combined with the need for inspectionsto keep out possibly injurious biological organisms
resultsin benefitsand coststo society. Assuch, thisport manager isinterested in maximizing the net
benefit to society and this net benefit is given by the benefit resulting from international trade driven
economic activity less the cost of biological invasions.

Let us consider the benefits from economic activity first. Following the discussion in section
3.2, the gross benefit facing our port manager per month is a(l—PI)kQS:PI) B(E[S,1/B,t,), where

-1
the arguments of this benefit function are as in section 3.2. The reader will note that this benefit
function isdifferent from the benefit function of the M/M/1/U inspection regime of section 3inthree
ways. First, the effective arrival rate is o(1-P,) and not a(1-P). Second, the upper limit of the
summation now is a(1-P,) and not a(1-P)). Findly, asequations (5) and (9) tell us, the expression
for the E[§ argument in the above benefit function is not the same as the corresponding expression
for the section 3.2 benefit function.

Asfar asthe costs are concerned, we follow the logic of section 3.2 and suppose that the per
month cost of biological invasionsisafunction of the expected number of shipsinour port E[S and
the number of inspectors | who areworking inthisport. Therefore, thisper month cost is C(E[S,1).
Comparing this cost function with the cost function of the M/M/I/U inspection regime we see that
thereis one key difference and this difference arises because the expressions for the E[§ argument
in these two functions are dissimilar (see equations (5) and (9)). Asin section 3.2, we see that the
benefit function depends not only on a system aggregate E[S, but aso on the individua ship
arguments 1/B and t,. In contrast, the cost of biologica invasions is a function of the system
aggregates E[S and |. Thismodeling strategy reflects our contention that whereasthe benefitsfrom

economic activity depend on individual ship attributes and on system wide characteristics, the cost
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of biological invasions depends less on what is occurring at the level of each arriving ship and more
on what is occurring in our port in the aggregate.

Keeping this discussion in mind, we can now state our publically owned port manager’s
maximization problem. This manager chooses the number of inspectors | to solve (also seefootnote
8)

k=a(1-P,)

max,,a(1-P)) kZ; B (E[S,1/B,t)-C(E[S].I). (10)

subject to 1>0. Note that E[S in this maximand is now given not by equation (5) but instead by
equation (9). Supposethat the solution to problem (10) yields an interior maximum. Then, excluding

the complementary slackness condition, the Kuhn-Tucker condition for a maximum is

oB() cE[g

P, _aC() GE[Y , aC()
JE[g al '

a |
kaBk(') ]

ol 9E[§ a  al (1)

af(1-P)Z,

The maximal number of inspectors | * solves equation (11) and this equation demonstrates
the essential tradeoff confronting our port manager in asimple way. Specificaly, equation (11) tells
us that in choosing the number of inspectors optimally, the port manager will compare the benefit
from economic activity with the cost from biological invasions. In particular, equation (11) informs
us that in selecting the number of inspectors optimally, our port manager will equate the marginal
benefit from economic activities (the LHS) with the marginal cost of biological invasions (the RHS).

As in section 3.2, the margina benefit from economic activities is given by the weighted

difference of two terms. Theweight onthefirst termis a(1-P,) and thisweight isthe effectivearrival
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rate of shipsin our port. Thisfirst term a(1-P)Z_{B,(-)/0E[S}{E[S/I} capturestheindirect
impact that the optimal number of inspectors | “has on the marginal benefit through the expected
number of ships in our port. The weight on the second term is o, the arrival rate of ships not
accounting for the fact that there is an upper limit | on the number of ships that our port can
accommodate at a specific point in time. This second term aX_ B, (-\){ 2P /l} captures the direct
effect that the optimal number of inspectors has on the marginal benefit through the long run
probability P, that there are a maximum of | ships with ballast water in the port under study. We
now compare and contrast the optimality conditionsemanating from our analysisof the M/M/I/U and
the M/M/I/1 inspection regimes.
5. Inspection Regimes: M/M/1/U versus M/M/I/1

Comparing the optimality conditions (equations (7) and (11)) for thetwo inspection regimes
that we are studying inthis paper, we seethat there arethree essential differences. First, because U #1
insection 3.2 and U=I inthissection, equation (7) reflectsthefact that shipsin excess of the number
of inspectorswill be allowed into our port aslong as the number of ships does not exceed the upper
limit U. Incontrast, equation (11) reflectsthe fact that once the number of ships equals the number
of insgpectors, no further shipswill be allowed into the port under study. Put differently, there will be
aqueue of shipswith ballast water inthe M/M/1/U inspection regime but there will be no such queue
in the M/M/I/1 inspection regime.

Second, the existence and the non-existence of aqueuein the two inspection regimesthat we
are studying has an implication for the effective rate at which ships with ballast water arrive at our
port. The effective arrival rate in equation (7) is a(1-P;) and the effective arrival rate in equation

(11) is a(1-P,). A comparison of equations (4) and (8) does not reveal any necessary general result
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about the relative magnitudes of the two long run probabilities P, and P,. Therefore, we cannot say
for sure whether the equation (7) effective arrival rate is bigger or smaller than the equation (11)
effective arrival rate. This notwithstanding, what we can say with some assurance is that because
these two effective arrival rates are dissimilar, the marginal benefit (the LHSSs) in the two optimality
conditions (equations (7) and (11)) will generally be different. Thisin turn means that the marginal
cost (the RHSs) in these two optimality equations will also be different, and hence, the optimal
number of inspectors in the two inspection regimes being studied will be distinct.

Finally, inspection of equations (5) and (9) tells us that the expected number of shipsin our
port in theM/M/1/U inspection regime will generally be greater than the expected number of ships
inour port inthe M/M/I/1 inspectionregime. Thegeneral dissimilarity of thesetwo expectationsleads
to three conclusions. First, the indirect impact that the optimal number of inspectors has on both the
marginal benefit and the marginal cost in the two optimality conditions (equations (7) and (11)) will
bedistinct. Second, thismeansthat the solutionsto thetwo optimality conditionswill also bedistinct.
In other words, consistent with the discussion in the previous paragraph, the optimal number of
inspectors in the two regimes that we are studying will not be the same. Third, the volume of
economic activity and hence the likelihood of a biological invasion will be greater in theM/M/I/U
inspection regime and lesser in theM/M/I1/I inspection regime.

6. Conclusions

In this paper we developed what we believe is anew framework for studying the problem of
preventing biological invasions caused by ships transporting internationally traded goods between
countries and continents. This new framework allowed us to study the problem of preventing a

biological invasion from a long run perspective. Specifically, we first characterized two simple
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regulatory regimes as two different kinds of queues. We then showed how a publically owned port
manager’ s decision problem can be posed and analyzed as an optimization problem using queuing
theoretic techniques. Finally, we compared and contrasted the optimality conditionsarising from our
examination of the M/M/1/U and the M/M/I/I inspection regimes.

The analysis contained in this paper can be extended in a number of directions. In what
follows, we suggest two possible extensions of this paper’ s research. First, the reader will note that
we analyzed Markovian inspection regimes in this paper. As such, it would be useful to investigate
the properties of more general inspection regimes in which either the arrival of ships or the service
times of inspectors are characterized by general distribution functions. Second, on the numerical
front, it would be useful to compare the approach of this paper—in which the optimal number of
inspectors choice problem is viewed as a continuous choice problem—with an alternate approach in
which this choice problemis cast as an integer programming problem. Studies of international trade
driven biological invasionsthat incorporate these aspects of the prevention probleminto the analysis
will provide additional insights into a phenomenon that has frequently proved to be very costly for

the involved parties.
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