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Abstract 
 
 
This paper presents a model and framework for pricing degree-day weather derivatives when the 

weather variable is a non-traded asset.  Using daily weather data from 1840-1996 it is shown that 

a degree-day weather index exhibits stable volatility and satisfies the random walk hypothesis.  

The paper compares the options prices from the recommended model and compares it to a 

typical insurance-type model.  The results show that the insurance model overprices the option 

value at-the-money and this may explain why the bid-ask spreads in the weather derivatives 

market is sometimes very large. 
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Insuring Heat Related Risks in Agriculture with Degree-Day Weather 
Derivatives 

 
 The role of weather as a source of business risk has resulted in an emerging market for 

weather based insurance and derivative products.  Applications are wide spread among the 

natural gas, oil, and electricity sectors, and more and more such products are being used for 

agricultural and other weather sensitive industries such as ski resorts and snow mobile 

manufacturing. The main attraction of weather derivatives is that it insures volume rather than 

price.  Too cool or too hot, too dry or too wet affects energy demand in utilities, production of 

crops and processing inventory in agriculture.   

 With weather being one of the most significant risks facing agricultural producers, 

marketers, and processor, there is an increased interest in examining ways in which specific 

weather events can be insured (Turvey 2001). A general form of rainfall insurance applied to 

agricultural risks has been presented in Turvey (2001) and Martin et al (2001) have examined 

rainfall insurance in terms of actuarial pricing methods.The types of contracts used to insure 

weather events are varied and include both swaps and options.  In terms of heat-based options 

there are two different types.  First, there are multiple event contracts.  A utility company may 

want to insure against a specific event such as daily high temperatures being below 5oF for 3 

days straight, and the contract might stipulate that up to 4 events would be insured over a 90 day 

period, or an agribusiness firm may want to insure against multiple events of the daily high 

temperature exceeding 90oF for 4 days straight in order to compensate for yield and/or quality 

loss. 

 Second, are straight forward derivative products based upon such notions as cooling 

degree-days above 65oF (an indication of electricity demand for air conditioning), heating 

degree-days below 65oF (an indication of electricity, oil, and gas demand required for heating), 

and growing degree-days or crop heat units above 50 degrees Fahrenheit (an indication of 

maximum crop yield potential in agriculture).   

One of the problems facing the weather derivatives markets, and ultimately how they are 

priced to agricultural firms,  is how these derivatives should be priced in the market. In the 

absence of a tradeable contract in weather an equilibrium price cannot be established using 

conventional means (Dischel 1998). At one end of the pricing spectrum, Cao and Wei (2000) 

develop a pricing model based on expected utility maximization with an equilibrium developed 
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from   Lucas’s (1978) model.  Davis (2001) also concludes that a Black-Scholes type framework 

is not appropriate for pricing weather derivatives as a matter of course, but under the 

assumptions of  Brownian motion, expected utility maximization, a drift rate that includes the 

natural growth rate of the degree day measure, the natural growth rate in the spot price of a 

commodity (e.g. fuel price) and the natural growth rate in firm profits, then degree day options 

can be priced by a Black-Scholes analogue.  Considine (undated) provides some simpler 

formulas based on the historical probability distribution of weather outcomes as well as a 

gaussian (normality) model that he claims can be sufficient at times. Turvey (2001) presents a 

number of flexible rainfall and heat related option contracts based upon historical probabilities.  

There has been little published on how to price weather insurance, because there is virtually no 

agreement on how the derivatives should be priced in the first place. 

There are empirical issues related to weather derivatives and a large part of this paper is 

dedicated toward resolving these issues in general, and the pricing of degree-day options in 

particular.  First, until the CME started trading weather futures there was no forward market for 

weather.  Individuals speculate on what a heat index might be 90 days hence, but unlike stock 

market indexes there is no mechanism for transparent price discovery on which to base such a 

prediction, and nature is under no obligation to comply with subjective market assessments.  

Second, rain or heat or any other insurable condition does not have a tangible form that is easily 

described (in contrast with common stock or a commodity futures contract).  Third, for cities in 

the U.S.A. and elsewhere that are not listed on the CME, there does not exist a forward market 

weather index that would allow brokers, traders, and insurers to price such derivatives on an 

ongoing and transparent basis.  This can impact liquidity in the OTC and insurance markets and 

can also have an impact on the appropriate market price of risk with which to price the contract.  

Fourth, the mechanics of brokering weather contracts depends specifically on the nature of the 

contract.  A common approach is to use historical data and from this use traditional insurance 

‘burn-rate’ methods to determine actuarial probabilities of outcomes.  This convention limits 

trade.  For the most part counterparties must agree on a price prior to the opening contract date 

and are in general restricted by lack of data to efficiently price and trade the contract during the 

period in which it is active.   

 For pricing put and call options on cumulative weather outcomes a limiting factor is in 

the transparency of a forward weather index. A forward weather index such as the HDD and 
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CDD futures at the CME would operate like any other index and would be used to provide a 

current estimate of what the final weather index settlement would be.  In so doing it would 

provide a mechanism  for counterparties to trade on a continuous basis, and would also provide a 

mechanism for the continual pricing of the options’ intrinsic values. 

This paper develops an option pricing model based on such an index even if it is not 

traded.  The model is based on the notion of equilibrium pricing and under the assumption of 

Brownian motion a formula similar to a classical Black model is used. However, unless the index 

is formally traded, deriving option values from it will require consideration of the natural 

diffusion rate and the market price of risk as per lemma 4 in Cox, Ingersoll and Ross (1988).  

This paper discusses the properties of such an index, shows the evolution of the index in a 

dynamic context, and develops an options pricing model. The theoretical model is then applied to 

the pricing of  degree-day derivatives for Toronto, using daily mean temperatures from 1840 to 

1996. The equilibrium pricing model is compared to the Guassian insurance-type model. 

However,  as stated above, the mere presentation of a Black-Scholes type equilibrium model 

does not imply that it represents the status quo in pricing weather derivatives. 

  

The ‘Burn Rate’  Method for  Pricing Weather Derivatives 

In the absence of a forward weather index the pricing of weather derivatives is relatively 

straightforward.  Using historical data cumulative degree-days (heating days, cooling days or 

crop heat units) are calculated for the time period in question and the options are priced as 

(1)   ]}0,[{ ∗− −= T
pT

p WZMaxEeV

for a put option, and  

(2)   ]}0,[{ ZWMaxEeV T
pT

c −= ∗−

for a call option where p is the appropriate risk adjusted discounted rate, T is time or duration of 

contract in years, Z is the strike level in degree-days, and W*
T is the value of the index at 

expiration also measured in degree-days. Since V measures the expected value of  in-the-money 

degree-days, the actual price of the option is calculated by multiplying  V by a  dollar value with 

units $/degree-day.  In equations (1) and (2)  it is assumed that the payoff is $1/ degree-day. The 

probabilities that establish V are assumed to be stationary priors drawn from historical weather 

patterns and can be defined as either discrete or continuous.   
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Weather Indices, Futures Hedging, and Options Pricing 

 The burn-rate models will typically be purchased prior to the insured period, and will be 

traded infrequently, if at all.  The reason that such contracts will not be traded results from the 

fact that there is no transparent mechanism to update or revise the probabilities during the 

insured period and hence no opportunity to arbitrage risk. The opportunity to arbitrage requires 

liquidity and liquidity requires observable volatility in an expected weather index W*
T.  IF WT is 

the value of a degree-day weather index at expiration then for any t<T there must exist an 

expectation about WT, that is W*
T = E[WT|t], conditional on weather information up to and 

including time t.  Observable volatility in W*
t requires  first the existence of a forward weather 

index, and secondly that it be defined by an inter-temporal stochastic process. 

 The continuous time stochastic differential equation for the weather index can be 

described by Brownian motion and the Ito process 

 (3)  tttt dZWdtWdW ∗∗∗ += σµ

The stochastic process described by (3) describes a random walk and is fundamental to the 

design of new derivative products for entities that follow a Markov process.  As shown by 

Merton (1993), Black and Scholes (1973), Black (1976) and others, if the underlying 

assumptions in (3) hold then it can be used to price options.  In Equation (3) µ is the mean 

change in cumulative degree-days and σ is the variance of the daily change in degree-days.  The 

assumptions, which are empirically tested in Turvey (2002), are that the diffusion rate µ is 

constant over time and σ2 increases linearly in time. 

   

Equilibrium Pricing Formulas for Degree-Day Derivatives 

 With the introduction of the CME degree-day future contracts there will be, at least for 

specific locations, a spanning asset for which a classical options pricing formula can be derived.  

However, there are more jurisdictions without contracts than with, and this implies that not all 

risks can be spanned and risk-neutral valuation techniques cannot readily be used without 

modification. Under such circumstance it is necessary to apply a different set of rules to price 

options on non traded assets. In particular, an options pricing model when the underlying asset 

cannot be spanned by traded assets requires including the market price of risk. This has lead 

some practitioners to declare that modern options theory in the form of Black (1976) or Black-

Scholes  (1973) will not work (Nelken 1999, Dischel 1998) for pricing weather derivatives. 
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 To capture the market price of risk, equation (3) is represented by 

(4) dW*
t = (µ - λσ) W*

t dt + σW*
t dZ 

where λ represents the market value of risk, and λσ the risk premium.   The call option value of 

F(W, X, t) that solves this equation for a strike price X=Wz is 

(5) C(W,t) = F(W,t) = θ [e-pt N (d1) X - e-(P- (µ-λσ))t N(d2) W] 

where t is time remaining until option enquiry, θ is the value per tick, X is the strike price in 

degree-days, p is the discount rate, N( ) is the value of the standard normal cumulative 

distribution function evaluated at d1 or d2, 

d1 = [ln (W/X) + (µ - λσ + .5σ2)t]/σ√t 

and 

d2 = d1 - σ√t 

Since the market price of risk is explicitly included in the solution, the appropriate discount rate 

'p' for a risk-neutral valuation is the risk free rate, r.  However this still leaves unresolved the 

problem of determining the market price of risk λ.  In a more general framework the diffusion  

µ - λσ = r is called the risk neutral growth rate (Cox and Ross, 1976) and is a necessary 

condition for equilibrium pricing.  In contrast µ is viewed as the natural growth rate in the value 

of the underlying.  The value λ = (µ-r)/σ is then the market price of risk. 

 If the market price of risk so defined is applied to freely traded assets then p = r = µ-λσ 

can be substituted into equation (5) and the resulting formula is identical to Black-Scholes.  A 

more general argument is required for assets that are not-traded.  For this we appeal to the 

security market line of the capital asset pricing model. Then we can define the market price of 

risk λ as 

(6) λ = β [rm - r]/σ . 

 As indicated above, equation (5) is a general solution to pricing all assets in equilibrium.  

For the particular case of weather derivatives its form becomes simplified.  If the underlying is a 

futures contract then 

(7) d1 = [ln (W/X) + (r + .5σ2)t]/σ√t 

and (5) becomes the standard Black-Scholes pricing model with p=r.  Using W(t) = e-rt W(T) and 

substituting this into (5) gives Black's model for pricing options on futures. 
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 When the weather index is not a traded variable we rely on the direct relationship 

between the non-traded weather index and the market portfolio.  Since the impact of weather 

events in localized regions will not be correlated with the market portfolio, then it to will have a 

beta of zero. This is consistent with the empirical findings in Cao and Wei (2000). The result and 

conclusion does not imply that the conditional  underlying risks of economic outputs are zero, 

but that in equilibrium the source of the risk can be diversified away.   However, unlike a futures 

contract the non-traded weather variable will not grow at the risk-free rate.  In fact the spot value 

at time t will simply equal the expected value at time T, that is W*
t = E[W*

T].  This implies a 

natural tendency towards mean reversion so E[µ]=0.  By substituting β=0 and µ=0 into equation 

(5) and setting p=r to account for risk neutral valuations, the pricing model for call option on a 

non-traded weather index is given by  

(8) C(W,t) = θe-rt [N(d1)X-N(d2)W] 

where 

d1 = [ln (W/X) + .5σ2t]/σ√t 

 and 

 d2 = d1 - σ√t 

As a reminder the parameter θ is the tick value measured in $/degree and the bracketed term is 

measured in degrees.  The equivalent put option value is 

(9) P(W,t) = θe-rt [N (-d2)W - N(-d1)X] 

The solution value of the option pricing models rests on three assumptions that are 

evaluated in the empirical section.  Assumption 1 is that the natural dynamics of dW originates 

from a random walk and hence unanticipated changes in W are not serially correlated.  If strong 

and predictable autocorrelation is present then asymmetric information between buyers and 

sellers of the option will allow for risk free arbitrage opportunities.  In Turvey (2002) I provide 

strong evidence that W* evolves as a random walk that is consistent with geometric Brownian 

motion. The second assumption is that volatility is non-stochastic.  In Turvey (2002) I show that 

volatility is stable within and between years.  This assumption is consistent with the assumption 

of time dependence in Merton (1993) and Wilmott (1998).  The third assumption is that E[µ]=0 

This assumption simply states that W*
O = E[WT] and investors in weather options will use the 

mean of the historical sampling distribution as an unbiased estimate of the initial condition for 

dW.  This is exactly how the opening prices of the CME exchange traded degree-day future 
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prices are set.  A less naïve condition is that W*
O = E[WT|Ω] where the expectation is now based 

on the conditional mean based on the information set Ω at time t=0.  This is relevant when 

counterparties believe that degree-days will be higher or lower than the historical average.  This 

may or may not come about as a variance preserving shift.  However, in Turvey (2002) I  provide 

evidence that the volatility of the degree-day index, at least for Toronto, is remarkably stable. 

 

Defining a Weather Index 

 In the previous section the existence of a forward weather index was presumed. While 

possibility rather than existence is sufficient to support the development of an option pricing 

model, it is obviously a limitation to implementation and practice. The CME futures contracts 

will satisfy the spanning requirement of a correlated underlying derivative security, but CME 

contracts do not exist for many regions or cities.  Hence the foregoing is a generalized solution 

that can be used to price options even if a formal futures contract does not exist.  In this section a 

general approach to constructing a weather index using historical data is presented. In the next 

section the index model will be applied to a case study of degree-day contracts for Toronto. 

 The challenge for any broker or exchange to accurately price weather options is in the 

construction of an appropriate weather index which can be observed on a daily basis, and provide 

representative measures of volatility. To construct such an index it is useful to draw on the 

unique characteristic that the weather index cannot be influenced by human speculation. In this 

context the index is observable, objective, and representatively transparent.   For example, 

settlement of the CME contracts is based exclusively on the data collected by Earth Satellite 

Corporation.  Furthermore, a consistent characteristic of weather is that it is seasonal and 

systematic; summer, for example, always starts of with low temperatures that rise to a peak, and 

then decreases towards autumn. A naïve hedger planning a hedge in early spring would naturally 

assume that the summer weather pattern would follow the average pattern as dictated by history. 

Critical to this is the additional assumption that temperature is mean reverting: In the absence of 

any contrary information it is not unreasonable to assume that if the average temperature on June 

30th is 70 degrees Fahrenheit, then in the current year the best unbiased estimate is that it will 

also be 70 degrees. The notion of mean reversion is also a natural phenomenon; the tendencies 

for temperature to fall to within a normal range following a heat wave, or to rise to normal 

temperatures following a cold snap is clearly the norm rather than the exception. 
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 The absence of predictability and the assumption of mean reversion suggest that the best 

initial (t=0) unbiased estimate of the forward index is the historical average of the index over the 

specified contract time horizon.  Indeed the opening trade on the CME futures contracts will 

most likely be the long-run average cumulative degree-day with some adjustment for long-term 

forecasts or revised expectations.  The initial index value is given by equation (10): 

(10) = E[W*
0W T] =  E[W

T

0t=
Σ t]  

where W represents the weather index (e.g. cooling degree-days, heating degree-days, growing 

degree-days or cumulative rainfall). After 1 day the observed weather condition at t=0 is 

recorded and the index value is appropriately adjusted to include the actual outcome plus the 

projected outcome; 

(11) W*
 1 = W0  +  E[W

T

1t=
Σ t] . 

and for any time increment k in the sequence 

(12) W*
k = Σk

t=0 Wt  + E[W
T

1kt +=
Σ t]. 

As the index evolves with time the instantaneous percentage change in the weather index can be 

calculated as  

(13) E[µ] = E[(W*
k - W*

k-1)/ W*
k-1] 

and daily volatility is  

(14) σ2 = E[µ - E[µ]]2. 

Finally, the path described by E[W
T

0t=
Σ t] needs to be estimated. This can be done by using 

historical data directly but since this has to be recalculated for each day in the contracts life it is 

computationally intense.  In the alternative,  E[W
T

0t=
Σ t] can be estimated from a simple regression 

equation to get the same result. In this study the estimated equation describing the evolution of 

temperatures during the summer months was quadratic .  

 
 
The Pricing of Cooling Degree-Day Options 
  
 In this section option premia are calculated for Toronto Ontario using Environment 

Canada daily mean temperatures from 1840 to 1996.  The contracts examine summer cooling 
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degree-day call (put) spreads.  With this option the buyer agrees to pay a fixed premium in  

exchange for payment from the seller if the defined Weather Index settles above (below) the 

Index Strike for the Contract Term. The payment equals the number of Weather Units the 

Weather Index falls above (below) the Index Strike times the Unit Price. There may be a payout 

limit but this is not considered in this study. 

 First the temperature history from June 1 through August 31 is described from a 

historical perspective. As history will always be the source of weather patterns it is important to 

understand how more recent trends compare to past trends.  Second, using a cooling degree-day 

measure of heat above 65 degrees Fahrenheit, degree-days are calculated for each day and 

cumulative degree-days are calculated for each year. Third, a quadratic regression equation is 

estimated with mean daily degree-days as the dependent variable and time and time squared 

(within the contract term) as the independent variables. Fourth, using mean cumulative cooling 

degree-days as the initial index value, observed daily degree-days, and the regression equation, 

the forward index value for each day, in each year was calculated. Fifth, using the daily forward 

index values, the empirical volatility of the index is calculated from the variance of the daily 

percentage change in index values. This is done for each year. And, sixth, assuming a discount 

rate of 6.5%, the historical mean volatility, 92 days to expiration, and a strike price (which is 

varied), call and put option premiums are calculated. As a point of comparison premiums using 

the ‘burn rate’ approach are also calculated. 

 

Toronto’s Weather History 

 This section describes the weather history from June 1 to August 31 for the years 1840-

1996 in Toronto. The data used were obtained from Environment Canada and represents one of 

the longest available weather data series in Canada. Figure 1 plots the data. The plot shows an 

overall increase in mean daily temperature over this time period, with temperatures increasing at 

an increasing rate until approximately 1930 and then increasing at a decreasing rate. Since  

Approximately 1950 there does not appear to be a significant rise in mean daily temperatures.  

 Figure 2 shows the cumulative cooling degree-days in Toronto between 1840 and 1996. 

The cooling degree-days increase with the mean temperature as would be expected, but the graph 

also illustrates the variability and unpredictability of the measure. The graph shows that cooling 

degree-days increased at an increasing rate throughout most of the 19th century but appear to be 
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quite stable or decreasing in terms of mean value towards the end of the 20th century.  Table 1 

summarizes the key statistics for the entire 1840-1996 period and the sub period from 1930 to 

1996.  From 1840 the average cooling degree-days ranged from 107 to 787 with a mean of 379 

and a standard deviation of 147. The period since 1930 has cooling degree-days ranging from 

186 to 787 with a higher mean of 489 and a standard deviation of 114.  

Figure 3 illustrates the mean actual and predicted daily degree-days within the 92-day 

period from June 1 to August 31. The pattern is parabolic and the statistical fit (using a quadratic 

equation) of predicted to average was approximately 93% (R-squared)1. Figure 4 illustrates the 

cumulative degree-day effect throughout the time period. The degree-day value used in options 

pricing is the total sum recorded on the 92nd day. 

 

Calculating the Cooling Degree-Day Weather Index 

 This section describes how the CDD weather index was calculated.  The index was 

calculated for each year in order to assess the range of CDDs and to measure volatility.  The 

cooling degree-day weather index was generated from a combination of observed daily data in 

each year, the seasonal regression equation, and the average cumulative degree-day value across 

all years. The initial index value at t=0 is assumed equal to the average cumulative degree-day 

value.  This is identical to the sum of the marginal degree-days illustrated in figure 3.  The 

smooth parabola in figure 3 illustrates how the regression equation smoothes the variability in 

daily degree-day measures and acts as an unbiased predictor of the most likely temperature path 

based on the assumption that weather patterns are mean reverting. To calculate the index the 

degree-day above 65f is calculated from the first observation (day 1). Then the sum of the 

predicted daily degree-days is calculated along the parabola from day 2 through to day 92. 

Assuming that the day one degree-day measure is small this will provide a day 1 index value 

very close to the long run average. On day 2, the actual degree-day measure is taken and is added 

to the day 1 value. The sum of the predicted is then taken from day 3 to day 92 and added to the 

actual day 1 plus day 2 values. The procedure is repeated for each of the 92 days, and is repeated 

for each year in the sample.   

                                                 
1 With daily temperatures about 65oF as the dependent variable the equation is Temp = -.38 + .21T - .002T2 where T 
is day number (e.g. 1-92).  Only the intercept is not statistically significantly different from zero. 
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 Figure 5 illustrates the results for three recent years in Toronto; 1986 was an average year 

with cooling degree-days of 386. The summer started of quite cool and this caused the index to 

fall below the average until about day 55 where a warming trend caused a slight increase in the 

value of the index; 1988 was a hot year and the index was above average throughout the season. 

A short cooling spell from day 31 to about day 40 caused the index to decrease but beyond that 

cooling degree-days were significantly higher than average. The 1988 index peaked at 

approximately 750 on day 80, but a cooling trend caused the index to fall to 725 by day 92; In 

contrast to 1986 and 1988, 1992 was unusually cool with cumulative degree-days of 186 by day 

92. The index was average for the first 3 weeks of June, but after that a long cooling trend caused 

the index to fall to a low of about 180 before ending at 186. 

 

Calculating Volatility 

 Volatility is measured relative to the percentage change in the value of the index on a 

daily basis and then converted to an annualized (365 day) basis for convenience. Table 2 and 

Figure 6 show the estimated average volatility for Toronto cooling degree-days from 1840 to 

1996 and from 1930 to 1996. 

 The results indicate that the weather has actually been less variable since 1930 than in the 

previous 90 years. From 1840 to 1996 annualized volatility was .2063 or 20% per year, but this 

decreased to .1739 or 17% per year in the mid to latter part of the 20th century. For the entire 

period the minimum volatility was found to be 16.62% with a maximum of 29.61%, while the 

latter part of the century the range was as low as 14.14% but only went as high as 23.5%. 

Combined with the information in Table 1, weather averages in Toronto saw an increase in mean 

summer temperatures and degree-days, but this increase did not come with increased variability. 

In fact, the standard deviation of cumulative degree-days (Table 1) is lower for the 1930-1996 

period than the 1840-1996 period. Importantly, these observations signify that when options on 

weather are being priced it is important to match recent weather trends on index values and 

volatility. In the next section, which calculates option premia, an approach, which mitigates this 

problem, is discussed. 
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Volatility Stability 

 Use of the options pricing model requires stability in the index's volatility within a given 

year and across years.  The first item is important because if daily volatility is a function of time 

or is characterized by discernable jumps the proposed pricing model will be mis-specified.  The 

second is important because stability in volatility across years means that the sample volatility 

can be used as an unbiased estimate of volatility. 

 Volatility stability was measured by calculating the percentage daily change in the 

weather index in each year (91 days), i.e. In [WT/Wt-1].  To determine the stability of volatility 

rolling 30-day standard deviations of the percentage change were calculated and annualized to a 

365 day year.  Thus for 91 days used in this study there were 61 volatility estimates for each 

year.  Table 4 shows the results from this evaluation over the 1840-1996 period and two sub 

periods 1840-1935 and 1936-1996.   

The annualized volatilities have been stable across years, with the average 30 day 

volatility being about 20%.  This compares to the average volatility over the whole 91 days of 

.2063 as shown in Table 2.  The results also show that the standard deviations are low relative to 

the mean.  For example a standard deviation of .023 for 1840-1996 indicates that the average 30 

day volatilities ranged from .178 to .223 approximately 67% of the time.  The within year 

coefficient of variation (mean/standard deviation) reveals that the means are 6.42, 5.98 and 7.13 

times the within-year 30-day standard deviations for each of the periods.  These numbers imply 

that not only is volatility stable across years but they are quite stable within each year as well. 

 

Estimates of Cooling Degree-Day Option Premia 
 
 This section reports actual option premiums calculated for Toronto, Ontario. The 

contracts considered are 92-day put and call options with contract terms from June 1 with an 

expiry on August 31.  Each tick in-the-money (θ) was valued at $5,000 per degree-day. Several 

empirical considerations are illustrated in the results. First, premium estimates are calculated 

using the both the inter-year ‘burn-rate’ method used in the insurance industry (equations 8 and 

9) and the intra-year Black’s option pricing model (equations 22 and 23). Second, in order to 

illustrate the importance of ‘relevant time horizon’, estimates are provided for the 1840-1996 

data period and the 1930 to 1996 sub-period. Third, the options pricing model is sensitive to the 

initial index value, W*
0, and using a simple average in all cases would not be prudent. For the 
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options pricing model only, a range of initial values of W*
0 are examined. This type of sensitivity 

analysis is important because weather agencies such as Environment Canada and the U.S. 

Weather Service cannot generally predict forward temperatures with reasonable accuracy. 

However, they can and do provide three or four-month forecasts that state whether conditions are 

going to be normal, below normal, or above normal. If the prediction is above normal, for 

example, the buyer of a call may want to increase the initial expectation of W*
T to match the 

forecast and reduce the premium. 

Tables 4 for 1840-1996 and 6 for 1930-1996 present results for base case at-the-money 

option pricing calculations as well as a range of strike prices above and below this value. The at-

the-money strike is defined as the average cooling degree-days across the years sampled. This is 

379.39 for 1840-1996 and 489.50 for 1930-1996. The option premiums differ between the 

options model and the burn rate model as well as across the two time periods. When the 

sampling period was represented from 1840 the at-the-money put and call price was $77,073 for 

the 379-CDD strike option model and approximately $297,030 for the burn rate model (Table 5). 

The maximum payoff for the put option under either case would have been $1,361,450 for the 

put option and $2,038,150 for the call option.  As the strike price was increased put options 

would be issued in-the-money and the put option premiums would rise as the call premiums fell. 

For a strike of 600 CDD the option model put premium was $1,085,126 while the burn-rate 

model was $1,136,421. The maximum put payoff increased to $2,464,500. The corresponding 

call option for the option model was $0 and for the burn-rate model it was $33,405. The 

maximum payoff that would have possibly occurred with this strike over this period was 

$935,100.  A lower than average strike implies that put options are issued out-of-the-money, 

while call options are issued in-the-money. At a strike of 250 CDD the put options price is 

negligible, while the call option price is $636,438. Using the burn-rate model the corresponding 

put and call prices were $63,947 and $710,420 with maximum payoffs being $714,500 for the 

puts and $2,685,100 for the calls. 

 A similar pattern was observed for the 1930-1996 period (Table 5). The at-the-money 

option price (489.5 CDD) for the put and call was $83,835 and using the burn-rate model the 

put-call price was approximately $220,358. The maximum put and call payoffs would have been 

$1,516,900 and $1,487,600 respectively.  For in-the-money calls with a strike of 250 CDD the 

call option was  $1,178,041 and the corresponding put was $0. The burn-rate put and call prices 
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were $4,767 and $1,202,279 respectively, with maximum payoffs of $319,400 and $2,685,100. 

For in-the-money puts at 600 CDD the put option price was $544,298 and the call price was only 

$776. The burn-rate premiums were $624,900 and $72,412 for the put and call respectively. 

 These results illustrate some important and critical details regarding the pricing of 

degree-day derivatives and the selection of a time period over which to analyze heat. The 

difference between options pricing and burn-rate models is striking, especially when priced at-

the-money. Using the 1840-1996 period the burn-rate model prices the insurance at 3.85 times 

the option pricing model whereas the 1930-1996 period the pricing multiple is 2.63. The ratio 

converges to 1 for policies that are in-the-money and infinite for options out-of-the-money.  The 

results illustrate why different approaches to pricing weather options can result in large bid-ask 

spreads. 

 The explanation for these differences lies in how risk is measured and what risks are 

actually being traded. The burn rate model assumes that history will repeat itself and the 

variability and probability distribution of the past will be replicated in the future. It rests upon an 

actuarial structure, which is seemingly predictable, but one, which also carries with it some 

significant variability. In contrast the options pricing model is not backward looking in the sense 

of a memorized historical probability distribution. It assumes an infinite of random weather 

patterns, which can occur in any season. The role of history is vague only in its use to establish 

seasonal norms and a range of volatility measures, but once these are established history’s role is 

done.  Another key difference is the assumption of a starting point. The options pricing model 

assumes a numerical starting position from which variability in a weather index is measured, and 

the price of the option is sensitive to this initial position. In Turvey (2002) I provide tables that 

illustrate how differences in initial expectations can affect option values. 

 

Conclusions 

 This paper addressed the pricing issue of degree-day weather derivatives. The market for 

weather insurance products has increased dramatically in past years for several reasons. First 

weather derivatives are directed at hedging production or volume versus price risk. In the natural 

gas and energy sectors, utilities will often fix prices to the consumer or face regulated prices to 

consumers. Electrical utilities must of ten pay peak-load prices when energy demand exceeds 

contracted supplies, and natural gas and oil companies must pay higher spot prices when extreme 
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cold causes excess demand in those markets. Agriculture is also an industry that faces weather 

related production risk. A crop insurer might have to pay increased indemnities if weather is 

either too hot or too cool, and might use weather derivatives as a reinsurance product, or a food 

processor might require a hedge against undeliverable forward contracts resulting from weather 

conditions. 

 The approach used in this paper differs markedly from an insurance approach to pricing 

weather derivatives. The ‘burn-rate’ approach, prices premiums based upon what would have 

occurred over a recent time period. It was pointed out that the key difference between the burn-

rate model and the options pricing model is in how risk is defined. Under the burn-rate model it 

is assumed that history will repeat itself with the same likelihood, but not necessarily the same 

order, as the time horizon selected for pricing. In other words, the approach assumes that the 

relevant measure of risk is the inter-year variability in weather. The options pricing model 

developed in this study makes no such assumption and is in fact based on intra-year risks. As 

with conventional options pricing, volatility and the initial value of the weather index are the key 

drivers of risk. History is used only to measure volatility and determine a range of index values, 

but once a measure of volatility is selected and the initial condition determined, history has no 

further role to play in the pricing process. For example the 1840 to 1996 period had mean 

cooling degree-days (above 65f) of 379 CDD and an annualized volatility of 20.63% for the 

period June 1 to August 31. Using the 1930-1996 period the average cooling degree-days was 

489 CDD with a volatility of 17.39%. Under no year was volatility found to exceed 29.6%, yet 

the implied volatility that would equate the options pricing model to the burn rate model was 

80% for the 1840-1996 period and 45.8% for the 1933 to 1996 period.  

 It was shown that there is a significant and often large difference between the burn-rate 

model and the options pricing model, particularly for products priced at or near-the-money. It 

was shown that the burn rate model prices options as much as 2 to 3 times higher than the 

options pricing model. The two approaches converge only for options that are priced in the 

money or out of the money.  It is consistent with the various theories of pricing non-traded assets 

in equilibrium, and in a risk-neutral economy.  Statistical analyses confirmed that the underlying 

assumptions required for pricing degree-day weather options are empirically valid. 

 The options pricing model presented in this paper is new. On one hand it is an 

improvement over the traditional burn-rate approach in that it places much more emphasis on 
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risk and for a derivatives market which is essentially designed to manage the buying and selling 

of risk there can be efficiency and liquidity gains if the model is implemented in practice. On the 

other hand the traditional approach is easy to implement and even easier to comprehend. 

However, if a formal derivatives market for weather insurance is going to emerge it is very likely 

that the approach developed in this study will provide foundation for pricing weather derivative 

products. 
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Table 1: Historical Summary of Toronto Cooling Degree-Days 

 

 Mean Standard 

Deviation 

Minimum Maximum 

1840-1996 379.39 146.67 107.10 787.02 

1930-1996 489.50 114.69 186.12 787.02 

 

 

Table 2: Historical Summary of Toronto Cooling Degree-Days’ Volatility 

 

 Mean Standard 

Deviation 

Minimum Maximum 

1840-1996 .2063 .0012 .1662 .2961 

1930-1996 .1739 .0009 .1414 .235 

 
 

 

Table 3:  Seasonality and Stability in Volatility 

    

 1840-1996 1840-1936 1936-1996 

Mean (365 days) .201 .207 .193 

Standard Deviation .023 .022 .021 

Coefficient of Variation Mean 6.42 5.98 7.13 

Coefficient of Variation Standard Deviation 3.19 3.03 3.32 
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Table 4: European Options and Burn Rate Premiums: 1840-1996, Tick = $5,000 
 Option Value Burn Rate Maximum Payoff 
 Put Call Put Call Put Call 

200 0 882,374 18,215 915,190 464,500 2,935,100 
250 0 636,438 63,647 710,420 714,500 2,685,100 
300 692 391,264 135,264 533,239 964,500 2,435,100 
350 23,156 167,718 229,910 376,885 1,214,500 2,185,100 

379.39 77,073 77,073 297,054 1,361,450 2,038,150 2,038,150 
400 139,950 38,574 352,121 249,096 1,464,500 1,935,100 
450 351,674 4,361 508,943 155,918 1,714,500 1,685,100 

489.50 542,100 497 657,13 106,788 1,912,000 1,487,600 
500 539,513 263 698,560 95,534 1,964,500 1,435,100 
550 839,198 10 908,806 55,781 2,214,500 1,185,100 
600 1,085,126 0 1,136,421 33,405 2,464,500 935,100 
650 1,331,062 0 1,370,114 17,089 2,714,500 685,100 

 
 

Table 5: European Options and Burn Rate Premiums: 1930-1996, Tick = $5,000 
 Option Burn Rate Maximum Payoff 
 Put Call Put Call Put Call 

200 0 1,423,978 1,035 1,448,548 69,400 2,935,100 
250 0 1,178,041 4,767 1,202,279 319,400 2,685,100 
300 0 932,103 8,498 956,010 569,400 2,435,100 
350 2.52 686,168 20,119 717,631 819,400 2,185,100 

379.39 94 541,697 841,749 39,261 2,319,400 685,100 
400 670 440,897 50,519 498,031 1,069,400 1,935,100 
450 17,974 212,266 121,639 319,150 1,319,400 1,685,100 

489.5 83,835 83,835 220,358 220,370 1,516,900 1,487,600 
500 113,047 61,400 249,622 197,134 1,569,400 1,435,100 
550 306,996 9,411 417,813 115,325 1,819,400 1,185,100 
600 544,298 776 624,900 72,412 2,069,400 935,100 

 650 789,497 37 841,749 39,261 2,319,400 685,100 
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Figure 1:Mean Seasonal Temperature, Toronto, June 1 to August 31 

Cooling Degree Days; Toronto June 1-August 31; 1840-1996
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Figure 2:Mean Actual and Predicted Daily Degree-Days, Toronto, June 1 
to August 31 
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Figure 3:Mean Daily Cooling Degree-days, actual and predicted, Toronto, 
June 1 to August 31 
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Figure 5: Cooling Degree-Day Weather Indexes for 1986 (average), 1988 
(above average) and 1992 (below average), Toronto, June 1 to August 31 
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Figure 6:Mean Annualized (365 day) Volatility, Toronto, June 1 to August 
31, 1840-1996
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