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Abstract 
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1 Introduction  

This paper presents a semi-parametric Bayesian approach for generating parameter estimates and 

conducting statistical inference within a system of simultaneous equations. The approach extends 

the recent Bayesian Bootstrap Multivariate Regression (BBMR, Heckelei and Mittelhammer 

2002) methodology to account for endogenous regressors and over-identifying restrictions on 

structural parameters. The method is a completely computer-driven, simulation-based method for 

conducting Bayesian estimation and inference that fully avoids the oftentimes very difficult and 

even intractable derivations attendant to more complex Bayesian problems involving flexible 

combinations of prior distributions and likelihood functions. Moreover, the approach obviates 

the need for any specific functional specification of the likelihood function, thus eliminating the 

possibility of misspecification of the model in this regard and imparting a degree of model 

specification robustness to the analysis.  

The "Simultaneous Equations Bayesian Bootstrap" (SEBB) replaces the usual explicit 

specification of a functional form for the likelihood function with a bootstrapped representation 

of the likelihood of the parameters. The representation is based on functional mappings from the 

error distribution to the model parameters. These mappings automatically incorporate the 

standard scale invariant ignorance prior on the covariance matrix of the errors. Extending the 

results of Zellner, Bauwens, and van Dijk (1988) and Heckelei and Mittelhammer (2002), the 

simulated posterior distributions incorporate any available exact and stochastic prior information 

identifying the structural parameters and can be used in the usual way to conduct posterior 

statistical analyses of the simultaneous equations model with Monte Carlo integration methods 

(e.g. Kloek and van Dijk 1978, Heckelei 1995 or Mittelhammer, Judge and Miller 2000 for a 

current textbook treatment). The approach allows for a very flexible choice of prior distributions 

and can be implemented as a generic computer-driven algorithm in standardized statistical 

software independently of the actual choice of prior distribution. It is distinguished from other 
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approaches such as the "Bayesian Methods of Moments" (BMOM, Zellner 1996), in the way that 

a full representation of the posterior distributions is given together with the fact that no analytical 

derivations of posterior moments are necessary.  

The paper is structured in the following way: First, the concept of a Bayesian Data 

Information Mapping (BDIM) is presented, which identifies semiparametric analogs to the 

mapping of error distributions to parameters that occurs in standard parametric Bayesian 

contexts.  Then a brief review of the relation between reduced form and structural parameter 

distributions within the Bayesian paradigm is given. Third, the theory underlying the algorithm 

for obtaining posterior distributions of structural parameters using outcomes from an ignorance 

based posterior distribution of reduced form parameters is described. Fourth, the full 

computational algorithm is presented which allows for generating outcomes from the posterior 

distributions of structural parameters based on sample data. Finally, the functionality of the 

approach under a normal error distributions is illustrated with Monte Carlo simulation exercises 

based on Klein's Model I (Theil,1973). 

2 Bayesian Data Information Mappings (BDIMs) For Linear Regression Models 

In this section we explore semi-parametric analogues to standard parametric Bayesian mappings 

of data information to parameters in linear models, both of which lead to posterior density 

weightings on the parameters. We begin by considering single and multivariate regression 

settings in which the regressor matrices are orthogonal to model noise. The BDIM arguments 

presented here provide alternative motivation for the Bayesian Bootstrap computational 

algorithms presented in Heckelei and Mittelhammer (1996 and 2002).  Moreover, the BDIM 

concept provides more fundamental motivation for posterior distribution simulations that does 

not begin with classical estimators of the parameters of the model as in Heckelei and 

Mittelhammer (1996 and 2002) but instead maps directly the probability distribution 

characteristics of the data sampling process into information on model parameters. Extensions of 
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this BDIM subsequently form the basis for the semi-parametric Bayesian analysis of 

simultaneous equations.  

Single Equation Model – Parametric Case 

In order to identify what is meant by a Bayesian Data Information Mapping (BDIM) from a data 

sampling process to parameters in linear model contexts, begin with the parametric context and a 

single equation linear model,   

(1) ,  where= +y Xβ ε ( )2~ N ,σε 0 Ι  

where we use, without loss of generality, the multivariate normal data sampling process as our 

benchmark parametric case. The semi-parametric case will be based on moment assumptions 

only, and will be developed ahead. Begin with the probability distribution of the error vector and 

consider moving to the likelihood function for the parameters, as is standard in Bayesian 

analyses of the linear model. Given the linear model structure (1) underlying the data sampling 

process, the probability distribution of the random vector ε  can be thought as being transferred 

to the random vector −y Xβ , and the Jacobian of this type of transformation is always the 

identity matrix. Thus, in this transformation process, the argument ε  in the distribution of the 

noise term is simply replaced by the new argument −y Xβ . Thus, functionally, we move from 

the PDF of the error vector, 

(2) ( ) n
2f | exp

2
− ′ σ ∝ σ − σ 

ε εε  

to the PDF of the y vector, as  

(3) ( ) ( ) ( )n
2f | , , exp

2
−

 ′− − σ ∝ σ −
 σ
 

y Xβ y Xβ
y X β  

 

 



 4

effectively by direct substitution of −y Xβ  for ε . This step in the process of defining the 

likelihood function is a dimension preserving transformation from  to R .  nR n

In making the final transition to the likelihood function, one engages in a subsequent 

dimension-reducing transformation whereby the function ( )f | , ,σy X β of the n arguments 

contained in y is changed to a function of the k 1+  arguments and σβ , leading to the likelihood 

function 

(4) ( ) ( ) ( )n
2L , | , exp

2
−

 ′− − σ ∝ σ −
 σ
 

y Xβ y Xβ
β X y . 

Thus, beginning with the probability distribution of the noise term, a sequence of functional 

transformations is implemented in which the dimensionality of the domain elements evolves as 

, leading to the likelihood function of the parameters of the model.  n nR R R +→ → k 1

 Regarding the domain of the latter function and how it relates to the PDF of ε  that 

characterized the noise term at the outset of the likelihood derivation process, first note 

that σ∈ , and thus in the absence of prior information to the contrary,  resides on the 

positive part of the real line but is otherwise unconstrained. The parameter σ can be interpreted as 

a scaling factor applied to the unit-variance linear model relationship  

R+ σ

(5)  ( ), Ν ,+y Xβ ε ε I= 0∼

that forms the basis for an alternative characterization of the original linear model relationship as 

(6) , ( )σ = σ + σ σy y X X= β ε = β + ε

whereβ β . 1−≡ σ
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 Regarding the β  parameter vector, note that in the absence of prior information to the 

contrary, this parameter vector is unconstrained so that . Regarding its relationship to the 

PDF of the noise term, the value of β  is clearly coincident with the value of ε  that satisfies the 

relationship

kR∈β

=ε y Xβ− , given y and X. Then for any value of σ , one can think of the likelihood 

weighting on  to be coincident with the PDF weighting on the value ofε , say( ,σβ ) ( )ε β , that 

corresponds to β . That is, 

(7) , ( ) ( )( )L , | , f |σ ≡β X y ε β σ

where we maintain the conditional density notation in this Bayesian context, but we emphasize 

that both the right and left sides of the identity in (7) can be interpreted as functions of 

bothβ . Moreover, the joint posterior density of and σ ( ),σβ  can then be represented in the form 

(8) ( ) ( ) ( ) ( )( ) ( )p , L , | , p f | pσ = σ σ ≡ ε σ σβ β X y β  

which relates the joint posterior density function to the PDF of the noise term, where we are 

considering the case where an improper prior is used to convey ignorance regarding the values of 

the unknown parameters of the model, as 

(9) ,  where( ) 1p , −σ ∝ σβ ( ) 1p −σ ∝ σ .  

 Now note that the space of ( )βε values that are referenced through values of  and 

evaluated via 

β

( )(f | )σβε , lies in the subspace of spanned by the k column vectors of –X, 

translated by y. In effect, the relevant domain of 

nR

( )f | σε , in so far as the representation of the 

posterior density is concerned, is restricted to linear functions of the columns of X. A 

given value of ε  is a member of this relevant domain iff  it satisfies

(p ,σβ )

= −Xβ y ε , which in turn 

holds iff    
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(10)  or ( )( )( )1−′ ′− =I X X X X y ε− 0 ( )( )1 ˆ−′ ′− =I X X X X ε ε , 

where ε  denotes the least squares residual vector (Graybill, 1983, p.113). The solution space is a 

nonempty set of (  vectors residing in a k dimensional subset of  that can be 

characterized by 

ˆ

)n 1× nR

(11) ( ){ }1 nˆ: , R−′ ′∈ ϒ = = + ∈ε e e ε X X X X h h    

where h is arbitrary, and we have used the fact that ˆ′ =X ε 0 (Graybill, 1983, p. 114).   

 The posterior density weightings assigned to the pair ( ),σβ  by (8) as β  varies in Rk, for any 

given value of , is completely determined by the density of the noise term on the domainσ ϒ , 

i.e., by a properly normalized version of ( )f | σε  for ∈ ϒε ,  

(12) ,  ( ) ( )* * * *f | f |σ ∝ σε ε ε∼ * ∈ ϒε  . 

Pursuing the relationship between the posterior (8) and the domain-restricted noise density (12) 

further, if , then and only then (or else the equation system is inconsistent) can 

be solved uniquely for β  via a straightforward application of the generalized inverse 

of X, ,  to yield 

* ∈ ϒε

*

( )=X X

= −Xβ y ε

− 1−′X ′X

*(13) ( ) ( ) ( )1 1
* *

ˆ− −′ ′ ′ ′= − ⇔ = − = −Xβ y ε β X X X y ε β X X X ε , 

which depicts a functional mapping relationship between β  and *ε , together with the stochastic 

characteristics that it implies, where β̂  is the LS estimate of β . In effect, the restriction of the 

noise density support, , to the support spacenR ϒ , and the associated normalized density 

weighting on this support provided by (12), characterizes the contribution of the data (  and 

linear model structure y X  to the mapping of information from the noise density to the 

),y X

= +β ε
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likelihood function for the parameters. This mapping from the noise of the data sampling 

process, through the linear model structure and the observed data, to the likelihood function 

defines the BDIM in the current model context. 

Single Equation Model – Semi-parametric Case 

It will be useful, for purposes of constructing the semi-parametric analogue to the BDIM, 

to first characterize how random sampling could proceed from the restricted domain noise 

distribution in (12). Revisit the feasible space constraint ( )( )1
* ˆ−′ ′− =I X X X X ε ε  displayed in 

(10) and note that we can rewrite this constraint in terms of eigenvalues and eigenvectors as 

(14) , * ˆ′ =P P ε εΛ

where P and  are, respectively, the eigenvectors (column-wise) and the associated diagonal 

eigenvalue matrix for the symmetric idempotent matrix

Λ

( )( )1−′ ′−I X X X X

n k

 of rank , so that 

. Note the eigenvalue matrix has 

n k−

( ) 1−′ ′−PΛP I X X X= ( X )′ −  1’s and k  0’s on its diagonal. 

Assuming that the columns of P and the associated diagonal elements of Λ are ordered so that 

the 1’s are displayed first we obtain 

(15)  n-k 
=  

 

I
Λ

0
0 0

It also follows from the orthogonality of the columns of P that 

(16)  * ˆ′ ′=ΛP ε P ε

and because of the special structure of Λ exhibited in (15), only the first  of these n 

constraints are linearly independent and binding constraints on the  vector. The remaining 

n k−

*ε
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k constraints are immaterial. Let  denote the first (n-k′P ) n k−  rows of ′P . Then the effective set of 

constraints on the feasible space of noise elements is represented by 

*ε

)′

))′ (2 ′σ X X

+ Dη

(17) , ( ) ( )*n-k n k ˆ−′ ′=P ε P ε

which is a set of n  linearly independent constraints on , given the value of ε  determined by 

the data

k− ˆ

( ),y X .  

We can complete a basis for the span of noise vectors that have the original noise 

distribution, and that in addition respect the constraint (17), by first appending an appropriate k-

dimensional random vector to (17) in the space orthogonal to the constraint space. In particular, 

note that , which follows immediately from the fact that 

 given (15). Then we can define the following full-rank 

transformation of ε  that partitions the noise vector into the degenerate and non-degenerate 

subspaces, as 

( )n-k′P X = 0

( )( 1−X X X

*

( ) ( )n-k n-k′ ′= −P P I X

(18) , ( ) ( )n-k n-k
*

ˆ′ ′  
=  

′  

P P ε
ε

X η





where (( 2
* ,′ ′ σX ε X ε X X∼ ∼ 0η = , and )( )N ,η 0∼  if the noise distribution is 

multivariate normally distributed, as in section 2.2.1. Solving (18) for the noise vector yields 

(19) =c( ) ( )
1

n-k n-k ˆ−′ ′  
=   

′  

P P ε
ε

X η
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where c is an appropriate ( vector defined by post-multiplying the first n-k columns of the 

inverse matrix by  , and D denotes the last k columns of the inverse 

matrix . 

)n 1×

 (n-′P( )
1

n-k
−′ 


′ 

P

X )k ε̂

( )
1

n-k
−′ 

 
′ 

P

X

The preceding representation of the noise vector given by (19) depicts an operational 

sampling mechanism for generating outcomes of ε  from the degenerate probability distribution 

depicted in (12). Specifically, one could draw iid from the distribution of the noise vector, 

form the vector

*

'sε

′=η X ε , and then calculate an outcome of ε  by an application of relationship 

(19). As such, the sampling mechanism is conditional on the value of the noise term standard 

deviation .  

*

σ

 Having conceptualized a method for sampling from the degenerate distribution (12), we 

now note that one could sample the 'sε  and insert them directly into (13) while still maintaining 

the appropriate stochastic characteristics implied by (19). To see this, let  and pre-

multiply (19) by  to obtain 

′=η X ε

′X

(20) 

( ) ( ) ( ) ( ) ( )( )

( ) ( )

1 1
n-k n-k n-k n-k

1
n-k n-k

ˆ− −

−

′ ′ ′  ′ ′ ′−     
′ ′=       

′ ′ ′ ′        

′ ′   
′ ′= =   

′ ′   

P P ε P P I X X X X
X X ε

X X ε X X

P P
X ε X ε

X X

 

because P X . Thus, (13) can be used directly to implement the BDIM for the 

conditional posterior distribution of the 

( ) ( )n-k′ ′ ′X X X = 0

β  parameter. 

In order to be able to sample from the unconditional (on σ ) posterior distribution forβ , the 

sampling outcomes in (19), or equivalently the probability distribution in (12), must be mixed 

over the marginal posterior distribution of the σ  parameter. Unfortunately, while the linear 
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model structure in (1) provides a direct mapping from the noise vector to the , there is no direct 

functional counterpart available for mapping the noise distribution to the scale parameter 

β

σ  

without conditioning on β . In effect, for such an unconditional mapping to exist, an additional 

relationship connecting noise, data, and parameters needs to be obtained. In the parametric case, 

this is provided by the likelihood function. In the semi-parametric case, one must look elsewhere 

for linking the data to the noise variance. 

( )

σ

= +β

( )′ ′X

To establish such a mapping, we now assume that the noise distribution is from a group 

family in which  acts strictly as a scale parameter, i.e. does not shift the mean of the error 

distribution. This group includes a large collection of distributions found in empirical 

applications, including the normal, double exponential, Cauchy, logistic, and mean-zero 

exponential, gamma, and uniform distributions. Given this characteristic of the noise 

distribution, it follows that the transformed noise distribution 

σ

(21)  1 g−
ο = σ ∼ε ε w

is free of the parameter and continues to have mean zero. Now consider an alternative 

representation of the data generating process underlying outcomes of the linear model, given by 

(22) ( )( )-1ˆ ˆˆ ο′ ′= + σ −Y Xβ ε X I X X X X ε , 

which implies that  

(23) . ( )-1 ˆο
 − σ
 

I X X X ε ε=

Following an argument analogous to the one used to identify the conditional β  BDIM in the 

previous section, the only solution for σ  in (23) is given by 
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(24) ( )( )( ) ( )( )
( )( )( )

1 ˆˆ
−

ο
ο ο ο

ο ο

′
′ ′′ ′ ′ ′σ = − − =

′ ′ ′−

ε εε I X X X X ε ε I X X X X ε
ε I X X X X ε

−1 −1

−1
 

which implies that 

(25) 
( )( )( )

2 ˆ ˆ

ο ο

′
σ =

′ ′ ′−

ε ε

ε I X X X X ε−1
 

based on the definition of  in (21). Thus, outcomes from the BDIM can be generated in 

principle by fixing  at its observed value, sampling 

οε

ε̂ οε  from its distribution in (21), and then 

calculating outcomes of  from (25).  2σ

 To obtain outcomes from the unconditional BDIM for β , the values of  implied by (25) 

can be used to define the probability density function in (12). Then outcomes of  can be 

generated from this density and used in (13) to generate an outcome of β . This is exactly the 

algorithm derived in Heckelei and Mittelhammer (1996), where bootstrapped outcomes from the 

least squares residuals were subjected to this transformation. However, the algorithm in the 

previous work was motivated based on the sampling distributions of the least squares estimators, 

whereas here a more general motivation is used based on direct functional mappings from the 

error distribution to the parameters. It should be noted that the presented mappings automatically 

incorporate the standard ignorance prior 

σ

*ε

1σ − . For a proof refer to Heckelei and Mittelhammer, 

1996.  

Multivariate Regression Extensions 

Heckelei and Mittelhammer 2002 extend the single equation case to the multivariate regression 

case using arguments based on sampling distributions of least squares estimators. A 

straightforward generalization of the preceding BDIM concept leads to the same computational 
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algorithm. In order to conserve space we provide only a brief outline of the generalization here. 

We present additional computational details of this multivariate regression sampling procedure 

in the next section, where the procedure is embedded in the context of the semi-parametric 

analysis of the structural parameters of a simultaneous equation system.  

 Consider the system of regression functions given by 

(26)    Y X V =   +  , Π

where Y is a (n×m) matrix of observations on m endogenous variables, X is a (n×k) matrix of 

observations on k exogenous variables, Π is a (k×m) matrix of regression coefficients, and V is a 

(n×m) matrix representing n iid outcomes of a 1×m disturbance vector having some joint density 

function g(V|0,Σ) with mean vector 0 and covariance matrix Σ, the latter acting as a scale 

parameter matrix for the disturbance vector distribution.  A slightly modified version of (26), 

which is a multiple equation analogue to (6) , can be defined as 

(27)     =  + ,Y X UTΠ

where the rows of the  (n×m) matrix of errors, U, are iid outcomes from g(U| 0,I) having a mean 

vector of  0 and a covariance matrix of I, the density of Vi =V[i,.] = U[i,.]T is g(Vi | 0,T'T) for 

any conformable T with full column rank, and the (m×m) matrix Τ is a matrix for which 

, so that U[i,.]Τ= Vi = V[i,.] ~ g(Vi | 0,Σ) ∀i. ′Τ ΤΣ =

 The multivariate analogue to the β  BDIM in the single equation context of (13) is then 

given by 

(28)   1ˆ ( ' ) '−= − ⇔ −X Y UT X X X UΠ Π = Π Τ

while the analog to the  BDIM in (25) is given by Σ

(29)   1/ 2 1 1/ 2( ' )−= S U MU SΣ

where  , , and ( )-1ˆ ′ ′X X X YΠ = ˆ ˆ′S = V V ˆ ˆV = Y - XΠ .  Heckelei and Mittelhammer (2002) prove 

that the standard ignorance prior on the covariance matrix, p(Σ)∝ |Σ|-(m+1)/2 , as well as the 
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standard constant ignorance prior on the Π  vector, are automatically incorporated into the 

BDIM mappings in (28) and (29). Methods of simulating outcomes from these BDIM mappings 

are presented in the next section. 

]0V

1

3 Single Equation Bayesian Analysis of Structural Parameters 

Notation and the parametric results of this section rely heavily on Zellner, Bauwens, and van 

Dijk (1988) and Heckelei and Mittelhammer (2002), where additional details can be found. Let 

the unrestricted reduced form of a simultaneous equation system be represented as 

(30) [ ] [ ] [1 1 0 1 1= +y Y Y X π Π Π v V1 1 0  

where Y = [ ]1 1 0y Y Y  is an n×m matrix of observations on m endogenous variables with y1, Y1 , 

and Y0 being, respectively, the ‘first’ endogenous variable, the endogenous variables included in 

the first structural equation, and the endogenous variables excluded from the first structural 

equation. The matrix X is an n×k matrix of n observations on k predetermined variables and 

Π=[ ]π Π1 1 Π0  represents reduced form parameters corresponding to y1, Y1 , and Y0, 

respectively. The rows of the n×m disturbance matrix V = [ ]1 1 0v V V  represent n iid random 

outcomes of a 1×m disturbance vector with joint density function Vi ~ g(Vi|0,Σ) having mean 

vector 0 and covariance matrix Σ.  

The first structural equation can be written as 

(31) [ ] [ ] 1
1 1 0 1 1 0

1 
  − = +      

β
y Y Y γ X X u

0
0

, 

where the (m1-1)×1 vector γ1 and the k1×1 vector β1 are the structural parameters, and u1 is an 

n×1 vector of structural disturbance terms. Substituting XΠ1 + V1 for Y1 based on (30) and 

rearranging (31) yields 
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(32) [ ] 1 1
1 1 1 1 0 1 1 1 1 1 1

    
= + + + = + + +    

    

β β
y XΠ 1 1γ X X u V γ X Π γ u V γ

0 0
 

Compatibility with (30) implies the parameter and disturbance restrictions 

(33)  and  v1 = u1 + V1γ1 1
1 1 1

 
= +  

 

β
π Π γ

0

which makes it clear that (32) is a representation of the reduced form for 1y  expressed in terms 

of both the parameters of the first structural equation and the reduced form parameters in Π .  

Eliminating parameters that are restricted to zero in (32) obtains the following representation of 

the reduced form equations for y1 and Y1 (see also equations 2.13a and b in Zellner, Bauwens, 

and van Dijk,1988): 

1

(34) 1 1 1 1 1= + +y XΠ 1γ X β v  

(35)  1 1= +Y XΠ V1

We call this system the unrestricted error (UE) representation of the system. It can be shown 

that applying a BDIM to (34) and (35), which maps from the unrestricted reduced form error 

distributions to the parameters given the data, results in the “two-stage least squares (2SLS) 

mapping” presented in Zellner, Bauwens, and van Dijk (1988) in their equation (2.36), and 

provides alternative motivation for the Bayesian bootstrap 2SLS mapping of Heckelei and 

Mittelhammer (2002). The 2SLS mapping does not assume that the identifying restrictions of the 

model must hold, and can thus be used to test hypotheses about the validity of these restrictions.  

Utilizing the restrictions among error terms identified in (33), a representation of the first 

structural equation in terms of reduced form errors, together with the reduced form equations for 

the other endogenous variables appearing in the structural equation, is given by 
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(36)   1 1 1 1 1 1 1= + + −y Y 1γ X β v V γ  

(37)  . 1 1= +Y XΠ V1

)

We call this system the restricted error (RE) representation of the system. In this representation 

of the system of equations, the identifying restrictions on the parameters of the first structural 

equation are clearly in force. From the RE we first consider, as a benchmark reference point, the 

analytical posterior distribution of the structural parameters assuming a multivariate normal 

distribution for the reduced form errors in the system. We then identify a transformation of the 

system to which a BDIM can be applied in order to simulate the posterior distribution of the 

parameters of the system in a semi-parametric context.  

Analytical Posterior  

 The joint posterior distribution,  h(γ1,β1,Π1|y1,Y1),  of the structural parameters and reduced 

form parameters in the RE system can be defined by first noting the fact that the joint posterior 

distribution of the coefficients in (34) and (35) can be represented as the posterior distribution of 

(γ1, β1) given Π1,  h1(γ1,β1| Π1,y1,Y1), times the marginal posterior distribution of Π1, 

, that is (2
1 1h |Π Y

(38) ( ) ( ) ( )1 2
1 1 1 1 1 1 1 1 1 1 1 1h , , | , h , | , , h |=γ β Π y Y γ β Π y Y Π Y . 

If the error density g(V1|0,Σ1) is of the multivariate normal type by virtue of the rows of V1 being 

independent and identically distributed multivariate normal random vectors, and if the standard 

ignorance prior p(Π1,Σ) = p(Π1)p(Σ) ∝ (m 1) / 2− +1

1Σ is employed, the marginal posterior 

distribution of the reduced form parameters Π1, h2(Π1|Y1), is a matrix student-t distribution 

denoted by T(n-k, ,S1) and defined by 1Π̂

(39) ( ) ( ) ( ) n / 2
2

1 1 1 1 1 1 1
ˆ ˆh | '

−
= + − −Π Y S Π Π X X Π Π   
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where  and . Analogously, if the 

reduced form errors associated with the first endogenous variable, v1, follow a normal density 

g(v1|0,σ1) and the ignorance prior p(γ1,β1,σ1) = p(γ1,β1) p(σ1) = σ-1 is employed, then the 

conditional marginal posterior distribution of the parameters of the first structural equation, 

h1(γ1,β1| Π1,y1,Y1), is a multivariate student-t distribution denoted by t(n-k1-m1, 

( ) ( )1 1 1 1 1 1
ˆ ˆ' '= − − =S Y XΠ Y XΠ V V1

ˆ ˆ
1'

1

( ) 1
1 1 1 1

ˆ ' −=Π X X X Y

1
ˆˆ ,γ β ,β1 ,s1) and 

defined by 

(40) ( ) [ ] [ ]
n / 2

1 11 11 2
1 1 1 1 1 1 1 1 1 1

1 11 1

ˆ ˆ
h , | , , s ˆ ˆ

−
         ′= + − −                     

1V

γ γγ γ
γ β Π y Y Y X M Y X

β ββ β
  

where 

(41) [ ] [ ]( ) [ ]
1

1
1 1 1 1 1 1

1

ˆ
ˆ

−  ′ ′= 
 

1 1V V

γ
Y X M Y X Y X M 1y

β
,  

[ ] [ ]
'

1 12
1 1 1 1 1 1 1 1

1 1

s '
      

= − − =      
      

1 1V V

γ γ
1y Y X M y Y X v M v

β β
, and M I . ( )-1

1 1 1 1' '= −
1V V V V V

Consequently, the joint posterior of reduced form and structural parameters (38) can be written 

as 

(42) ( ) ( ) ( )2
1 1 1 1 1 1 1 1 1 1

ˆ ˆˆh , , | , t n m1 k1, , ,s T n k, ,= − − −γ β Π y Y γ β Π S . 

Monte Carlo integration based on outcomes of (42) or, in the case of informative priors (γ1, β1), 

based on prior-weighted outcomes of (42), provides a flexible approach for evaluating posterior 

expectations of general functions of the parameters of the model.  
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BDIM Mapping of the Projected RE System 

The semi-parametric sampling approach we present now aims to generate outcomes of the joint 

posterior h(γ1,β1,Π1|y1,Y1) in the absence of parametric distributional assumptions. We 

contemplate the use of a BDIM applied to the RE system.  In so doing, it is apparent from the 

outset that the error vector in (36), ( )1 1 1−v V γ , depends explicitly on the structural parameter 

vector, , and because each value of  has its own associated error distribution, a BDIM for a 

parameter vector that also includes the parameter vector  is undefined.  We now show that the 

information contained in (36) can be projected into two component systems, one defining the 

component of the error distribution that can be mapped to the parameters using a BDIM,  and the 

other which cannot be mapped. 

1γ 1γ

1γ

 The structural equation in (36) can be projected in such a way that the error distribution 

associated with the projection is independent of the , which is a necessary condition for 

invoking a BDIM from an error vector distribution to parameters of the system. It is apparent 

that the projector must annihilate the vector V  in (36), and the obvious choice for such a 

projector is the matrix , which forms a basis for the vector space 

orthogonal to V  and is such that 

1γ

1 1γ

1′ = −V I( )1

-1

1 1 1
′= −VM I V V V P

1V

1 1γ ( )
1 1 1 1− =V V

1 1VM v γ M v . Defining the error vector in (36) as 

( )1 1 1 1− =v V ( )
1 1 1 1 1+ −V Vγ M v P v V γ  then identifies a decomposition of the error vector into a 

random disturbance component whose distribution is independent of , namely , plus a 

component whose distribution is dependent on , given by 

1γ
1 1VM v

1γ ( )
1 1 1−VP v 1V γ .  

 The projected version of the RE system for use in constructing the BDIM is then 

(43)  
1 1 11 1 1 1 1= + +V V V VM y M Y

1 1γ M X β M v  

(44)  . 1 1= +Y XΠ V1
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Applying the BDIM approach to map the joint distribution of the error vectors  and V  

into the parameters of the projected RE, the structural parameters in the first equation are given 

by  

1 1VM v 1

(45)  [ ] [ ] [ ]
1

11
1 1 1 1 1 1

1 1

ˆ
ˆ

−    ′ ′= −         
1 1V V

γγ
Y X M Y X Y X M v

β β 1

where 1

1

ˆ
ˆ

 
 
 

γ

β
is defined as it was in (41). Thus, the BDIM mapping implies precisely the same 

posterior distribution for the parameters of the structural equation as in the analytical derivation 

when the distribution of the reduced form errors is multivariate normal, but the BDIM mapping 

also applies more generally and does not rely on normality for its validity. The Bootstrap 

implementation of sampling from the BDIM induced posterior distribution for the structural 

parameters is defined ahead. 

Bayesian Bootstrap Posterior 

The computational algorithm for performing semi-parametric Bayesian posterior inference 

for the structural parameters based on the BDIM is as follows: 

1. Draw a bootstrap sample  from  *
1V 1V̂

2. Apply a transformation to calculate ** 1 2 * 1 1/ 2 *
1 1 1 1 1( )− −= S S S V1

*
1

'

**

                                                

V S  where S V  and 

.3 

* *
1 1 '= XM V

1( ' )−= −XM I X X X X

3. Calculate an outcome from the marginal posterior of Π1 as  * 1
1 1

ˆ ( ' ) '−= −Π Π X X X V

 

3 Here, and henceforth, we use the matrix square root notation Q to denote any matrix square root of Q, such 1/2

=that Q Q  for symmetric matrix square roots, and 1/2 1/2= Q 1/2 1/2′Q Q for non-symmetric matrix square roots. Q
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4. Transform the variables of the structural equation by pre-multiplication with 

 where  to define 
1

* * * * 1
1 1 1 1( ' )−= −VM I V V V V* ' *

1
*

1 1= −V Y XΠ
1

* *
1 1= Vy M y  and 

. 
1

* * * *
1 1 1  = =  VZ Y X M Y1 X1

*
1



5. Calculate δ ( )
*

11* * *
1 1 1*

1

ˆˆ ' 'ˆ
− 

= = 
  

γ
Z Z Z *

1y
β

 and . * * *
1 1 1

ˆˆ '= −v y Z δ*
1

6. Draw a bootstrap sample  from  *
1v *

1v̂

7. Perform a transformation to obtain 
1/ 22

** *1
1 12

1

ŝ
s

 
=  

 
v v , where s v , ŝ , and 

. 

1

*2 * *
1 1 ' v= ZM 1

2 *
1 1ˆ ˆ′= v v*

1

* '
1

* * * * 1
1 1 1 1( ' )−= −ZM I Z Z Z Z

8. Calculate an outcome from the marginal posterior of  1
1

1

 
=  

 

γ
δ as δ δ  

β
* * * * 1 *
1 1 1 1 1

ˆ ( ' ) '−= − Z Z Z v**
1

9. Repeat steps 1 to 9 nb times to obtain nb outcomes of the posterior distribution of 1
1

1

 
=  

 

γ
δ  to 

use in performing posterior inference. 

β

Steps 1 to 3 represent the computational algorithm for the multivariate extension to the 

single equation BDIM mapping presented above. It is fully equivalent to the Bayesian Bootstrap 

Multivariate Regression (BBMR) developed and motivated in detail by Heckelei and 

Mittelhammer (2002) and maps outcomes from a bootstrapped error density to the posterior 

outcomes of Π1. Steps 5 to 8 are exactly the single equation BDIM applied to the transformed 

structural equation that maps outcomes from a transformed bootstrapped error distribution to the 

posterior outcomes of the structural parameters (γ1, β1). Step 4 is the orthogonal projection 

procedure representing the Bootstrap analog to the equation (43) in the projected version of the 

RE system. We refer to the preceding algorithm as the Limited Information Simultaneous 

Equations Bayesian Bootstrap (LI-SEBB). 
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4 Some Monte Carlo Evidence  

In order to evaluate how well the LI-SEBB reproduces posterior distributions of structural 

parameters we performed a Monte Carlo experiment comparing it with the parametric solution 

under normality. The simulations are based on Klein's Model I.  Variable definitions and 

additional information about the model that is not reported here can be found in Theil (1971). 

Interested readers can compare simulated posterior expectations and standard deviations relating 

to simultaneous equations mappings reported in Zellner, Bauwens and Van Dijk (1988) and 

Heckelei and Mittelhammer (2002) with results presented here.  

 The simulation results are generated via the following sequence of steps: 

   Step 1: nrep = 1000 data samples of sample size n = 21 are drawn from Klein's model 

using the 3SLS-estimates reported by Theil as the representation of the "true" values of the 

model parameters. Data on the predetermined variables are the actual historical values for the 

1921-1941 period reported by Klein (1950). Conditional on the predetermined variables, and 

given the preceding values of the model parameters, the data is drawn from a simultaneous 

equation system that contains three behavioral equations (represented by the first three 

equations in the system)  and three identities (the last three equations in the system). 

Specifically, the system takes the following form: 

(46)   t t= +Y X B UΓ t

where { }t
I

tt t t t t =        ,X P DC WIY    { }G
t t t t t 1 t 1 t = 1 t 1931 W T G P K X− − −−X 1

0
0

, 

1 0 0 1 0 0
0 1 0 1 0 1

0.7901 0 1 0 1 0
0 0 0.4005 1 1 0

0.1249 0.0131 0 0 1 0
0 0 0 0 0 1

− 
 − −
 − =  − − 

− 
  

Γ , 

16.44 28.18 1.8 0 0 0
0 0 0.1497 0 0 0

0.7901 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0

0.1631 0.7557 0 0 0 0
0 0.1948 0 0 0 1
0 0 0.1813 0 0 0

 
 
 
 − 
 
 
 
 
  

Β =  . 

 



 21

The structural errors, Ut , are sampled iid from multivariate probability densities having mean 

vector 0 and a covariance submatrix for the three behavioral equations equal to (all other entries 

of the complete covariance matrix are zero) 

  
4.459 2.057 1.968
2.057 10.47 2.015
1.968 2.015 2.600

− 
 Ω =  
 − 

 The elements of the  matrix were chosen to be five times the values of the actual estimated 

contemporaneous covariance matrix elements calculated from 3SLS residuals and the historical 

data.  The additional variation was introduced to insure that any observed accuracy of the BBMR 

was not due primarily to the relatively good historical fit of Klein's model.  However, we also 

show simulation results based on the original smaller contemporaneous covariance matrix 

estimated from the 3SLS residuals for comparison purposes (Table 2). The data sample was 

generated sequentially (because of lagged endogenous variables in Xt) using Yt=XtΒΓ-1+UtΓ-1. 

Having developed a limited information, i.e. single equation procedure above, we restrict the 

analysis to the structural parameters, 

Ω

j
1δ  for j=1,…,4, of the first model equation which is the 

consumption function. 

Step 2: For each data sample k = 1,…,nrep, nsamp=10000 outcomes are calculated from the 

marginal posterior distributions of the structural coefficients based on both the LI-SEBB 

procedure ( ) and the parametric posterior under normality (ji
B 1δ ji

P 1δ ). The parametric sampling 

employs the posterior representation in  (42) and mixes the multivariate t-distribution of δ1 

conditional on Π1 over the matrix T-marginal posterior of Π1. A method for generating matrix T-

random numbers can be found in Zellner, Bauwens and van Dijk (1988).  

Step 3: Several measures are calculated for each nsamp set of outcomes of the k-th data 

sample separately for the LI-SEBB and the parametric outcomes: Bootstrapped means and 

variances, as  
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( )j j
B 1 samp B 1i

1 nδ = δ∑ i , and ( ) ( ) ( )2j j
B 1 samp B 1 B 1i

Var 1/ n jδ = δ∑ − δ . 

Their parametric counterparts are based on equivalent formulas applied to  outcomes. To 

better investigate the approximation of the entire distribution, values of 

ji
P 1δ

j
1δ  corresponding to the 

1st, 5th, 10th, 50th, 90th, 95th, and 99th percentile, denoted as 
thi
B 1

jδ  and , are computed by 

sorting the nsamp× 1 vectors and choosing the element associated with the appropriate quantile of 

the sorted data.  

thi
P δ j

1

Step 4: All measures calculated in step 3 are collected for all nrep data samples to finally 

compute the following measures indicating the approximation accuracy of the LI-SEBB relative 

to the parametric posterior.  

a. Bias of the posterior mean: ( ) ( )j j
rep B 1 P 1k

BiasMean 1 n k jk= δ − δ∑  

b. Relative Bias of the posterior variance: 

( ) ( ) ( )( )j jk
rep B 1 P 1k

BiasVar 1 n Var Var= δ∑ jkδ  

c. Bias of posterior percentiles: ( ) ( )th thj i jk
rep B 1 P 1k

BiasPerc 1 n i jk= δ − δ∑  

We emphasize that the simulations are intended to evaluate the performance of LI-SEBB 

in representing various characteristics of the posterior distribution of the structural parameters. 

They do not evaluate the sampling properties of point estimators as those depend on the desired 

loss function and, in the context of empirical applications, on prior information. However, an 

accurate representation of the entire posterior distribution is certainly the key to an accurate 

representation of all possible point estimators based on the posterior.  

Before proceeding to the simulation results it is important to note what type of 

approximation errors can be expected. First, the samples from the parametric as well as the LI-

SEBB posterior distributions are limited to 10000, leaving a likely small but existent sampling 

noise which can be more pronounced for tail values of the distribution. Second, the empirical 
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distribution function used by the bootstrap procedure will represent the true error distribution 

less than perfectly at the relatively small sample size of n=21. Experiments for a smaller number 

of data samples (nrep = 100) but with a larger number of simulated samples from the posterior 

(nsamp=100,000) indicate that the EDF approximation  error dominates the posterior distribution 

sampling noise with respect to estimated biases because the magnitude of the biases did not 

change significantly. Third, it is not currently known whether the mappings employed in the LI-

SEBB algorithm will generate, in general, distributionally equivalent outcomes of the posterior 

distribution based on the true error distribution underlying the reduced form errors. 

Distributional equivalence will be obtained, however, in all cases where the rows of the reduced 

form matrix V are uncorrelated and the matrix of reduced form errors follows any elliptically 

contoured distribution (Ng, 2001). This includes the normal distribution as a special case, but 

includes a wide variety of other distributions such as Pearson II, Pearson VII, multivariate t, 

LaPlace, Bessel, Uniform (elliptical), and multivariate normal (Johnson, 1987, chapter 6; 

Johnson and Kotz, 1972, p. 297).  

Table 1 shows a very close approximation of the parametric marginal posteriors by the LI-

SEBB approach. Generally, the accuracy for the intercept of the equation is slightly less than for 

the three slope coefficients, but the performance remains more than satisfactory. The posterior 

variance is slightly overestimated for all four coefficients, but again, the degree of inaccuracy is 

minimal. Although the values for the different percentiles are more accurately matched as one 

moves away from the tails of the distribution, all LI-SEBB results are, for all practical purposes, 

equivalent to the parametric values given that the reported variances indicate only very limited 

deviations of the bias measures from one sample to the other. 
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Table 1: LI-SEBB Performance under Normally Distributed Errors Relative 
to Parametric Posterior: Posterior Distribution Characteristics of 
Structural Coefficients under Ignorance Prior  

 Structural Coefficients (True Value)
Distance Measures  1

1δ  (16.44)  2
1δ  (0.1249)  3

1δ (0.7901)  4
1δ (0.1631) 

BiasMean 2.40E-03 -3.77E-05 5.56E-05 -3.50E-05
 (1.44E-03) (9.36E-07) (2.58E-06) (2.27E-06)

BiasVar  1.0057  1.0021 1.0012 1.0014
 (6.68E-03) (7.51E-07) (6.70E-06) (7.25E-06)

BiasPerc 

1% -8.22E-03 -4.25E-04 3.09E-04 1.36E-04
 (2.14E-02) (4.36E-05) (5.12E-05) (8.60E-05)

5% -6.63E-03 -1.98E-04 1.20E-04 1.37E-04
 (5.50E-03) (7.21E-06) (1.15E-05) (1.57E-05)

10% -3.53E-03 -9.08E-05 6.29E-05 8.01E-05
 (3.35E-03) (3.48E-06) (6.83E-06) (8.54E-06)

50% 3.18E-03 4.12E-05 -1.24E-05 -1.75E-04
 (1.62E-03) (1.20E-06) (3.20E-06) (3.46E-06)

90% 7.36E-03 -3.31E-05 6.96E-05 1.65E-05
 (2.33E-03) (2.53E-06) (9.46E-06) (7.12E-06)

95% 7.71E-03 -1.56E-04 3.04E-04 1.97E-04
 (3.87E-03) (4.26E-06) (1.62E-05) (1.49E-05)

99% 6.44E-03 -2.83E-04 2.64E-04 6.12E-04
 (1.40E-02) (1.95E-05) (9.45E-05) (9.22E-05)

NOTE: nrep = 1000; nsamp = 10000.  Values in parenthesis below measures reflect the 
variances of the measures across data samples. The coefficients of government wages (WG) 
and industry wages (WI)  are set equal in model estimation (δ 3). 

 

In order to illustrate the global representation of the full parametric posterior by the LI-

SEBB, we provide a graph of the posterior distributions for structural parameters in Figure 1. It 

is clear that the  representation of the posteriors by the LI-SEBB is global, and is not limited to a 

few moment and quantile measures. For comparison purposes, we also plot the aforementioned 

2SLS-mapping of the unrestricted error representation of the system of equations. It is apparent 

that the absence of enforcing the overidentifying restrictions implies a noticeably different 

posterior distribution on the parameters of the model. 
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Figure 1: Posterior Distributions of the Intercept Parameter in the Structural Equation 
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5 Conclusions and Outlook 

The paper introduces a semi-parametric approach to Bayesian analysis of structural parameters 

in simultaneous equation systems by extending single and multivariate regression approaches of 

Heckelei and Mittelhammer (1996, 2002) to models with endogenous regressors. Moreover, the 

whole underlying idea of mapping the noise distribution to model parameters has been motivated 

in a more general fashion based on the concept of Bayesian data information mapping (BDIM). 

Monte Carlo evidence was provided that demonstrated the considerable accuracy of the LI-

SEBB procedure in approximating posterior distributions under normally distributed errors, even 

for small sample sizes. However, further simulations are needed to evaluate the accuracy of the 

simulated posterior distributions under non-normal model noise. Also, the extension of the 

BDIM and Bayesian Bootstrapping procedures to a full information context is pending. 
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