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Abstract

cDifferences in estimates of the impact of climate change on U.S. agriculture can be explainedthe failure to adequately allow for differences between rain-fed and irrigated agriculture
as well as urban influences. We derive feasible GLS weights to obtain an efficient estimator
and unbiased test statistics. A 1ayesian outlier analysis shows that irrigated and urban
counties can not be pooled with dryland counties. When we limit the analysis to dryland
and non-urban counties, the different damage estimators from previous studies overlap and
the confidence intervals are cut by up to half. Dryland agriculture is unambiguously dam-
aged under the CO2 doubling scenario. JEL Ql, Q2, C5)
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1 Introduction

The debate on global climate change began about thirty years ago when climate scientists

first speculated that there may be a relationship between increased greenhouse gas con-

centrations and global warming. In 1990, the Intergovernmental Panel on Climate Change

corroborated this finding, stating that it is "certain [that] ... there is a natural greenhouse

effect which already keeps the Earth warmer than it would otherwise be ... [and that the]

emissions resulting from human activities are substantially increasing the atmospheric con-

centrations of greenhouse gasses" (IPCC, (1990)). In response to such assertions, more than

150 governments attending the Rio Earth Summit in 1992 signed the Framework Convention

on Global Climate change. Article 2 of this Convention states that the "ultimate objective

of this Convention ... is to achieve ... stabilization of greenhouse gas concentrations that

would prevent dangerous anthropogenic interference with the climate system." However, ten

years later, the questions remain: how "dangerous" are the consequences of anthropogenic

interference, and how much "stabilization" is justified? This has been the subject of an

active debate in the economics literature on the potential impacts of climate change on the

U.S. economy.1 Two features of this debate are noteworthy. First, agriculture has been the

single largest component of most previous climate change assessments for the U.S. economy.

Second, there is more disagreement about the impact on agriculture than any other sector.

The first comprehensive studies of the impacts of climate change on the U.S. economy

found agriculture to have a large potential for damages. However, more recent studies have

contended that the earlier work was methodologically flawed and that a correct analysis

shows a much smaller economic loss, or even a gain. For example, Cline (1992) estimated

the annual damage to U.S. agriculture (both producers and consumers) froth a doubling of

greenhouse gas concentrations, based on 1990 conditions, at $17.5 billion in 1990 dollars

and Fankhauser (1995) estimated it at $8.4 billion. The recent U.S. National Assessment

estimates that climate change will cost producers from about $0.1 up to $4.2 billion in 1990
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dollars, depending on the climate change scenario and the time period considered (Reilly,

ed 2002), and Mendelsohn and Neumann (1999) estimate that a doubling of greenhouse gas

concentrations will result in an annual net gain to producers amounting to $24.3 billion.2

Agriculture has thus emerged as the most crucial and perhaps controversial sector for the

assessment of climate change impacts on the market economy in the U.S.

Besides differences in assumptions, the differences in agricultural impact estimates reflect

differences in economic methodology which are of some general interest. The approaches. in

the literature can be divided into three broad categories. One is the agronomic approach,

based on the use of agronomic models of crop growth to simulate the effect of changed climate

conditions on crop yield and input requirements. Some of the early studies (Adams 1989,

Rosenzweig and Parry 1994) focused on analysis of a single crop and derived an estimate

of economic impact directly from the agronomic production function. Subsequent studies

(Kaiser et al. 1993, Adams et al. 1995) allowed for crop substitution and combined agronomic

analysis of climate change impacts on yield and input requirements with a profit-maximizing

choice of cropping pattern using linear or non-linear programming. The analysis, however,

usually considers variable but not fixed costs of production. It often turns out to be necessary

to add artificial constraints to make the programming model solution replicate actual farmer

behavior in the baseline period. Moreover, the analysis is focused on the agricultural sector,

and ignores the linkages with the remainder of the economy which would make the input

prices and input allocations to agriculture 'endogenous.

This is remedied in the computable general equilibrium (CGE) approach, which models

agriculture in relation to the other major sectors of the economy and allows resources to move

between sectors in response to economic incentives. An example is the Darwin et al. (1995)

eight-region CGE model of the world agricultural economy. However, while a CGE model

has the advantages of making prices endogenous and accounting for inter-sectoral linkages,

this comes at the cost of quite drastic aggregation whereby spatially and economically diverse

sectors are characterized by a representative farm or firm.
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In summary, on the one hand the agronomic models do not fully capture the adaptation

and mitigation strategies of farmers in the face of climate change, while on the other the

CGE models are appropriate to highly aggregated sectors of the economy. Mendelsohn,

Nordhaus and Shaw (1994), hereafter MNS, provide an interesting middle ground. MNS

propose what they call a Ricardian approach, based on the notion that the value of a tract

of land will equal the discounted value all future rents that can be derived from the land.

If the price were lower, rational speculators would buy up the land because the entitlement

to the discounted future rents exceeds their cost. If the price were higher, a rational farmer

would immediately sell the land and use the proceeds to obtain a larger annuity.

We can represent this approach formally as follows. Let 7ri,j,k denote the profit associated

with the kth potential use of a piece of land of farm i in county j, k = 1...Nk, let C4i,j,k be the

vector of input prices, Ci,j,k the fixed cost, and Pk the output price associated with that use of

land. Let 114 j denote the average rainfall and Ti j the average temperature during different

seasons on that land and let Si Li be a vector of soil quality. Then the profit associated with

the eh use of land can be represented by a profit function

= 7rk(Pk Ciji,j,k1 Fti,j7 Ti,j) Sij)

Given a capitalization ratio 0, the corresponding value of land in farm i in county j in use k

becomes Oti JA. In the context of econometric investigation we allow for an additive random

error associated with the kth use of land, denoted eid,k, and write

Vi,j,k Ei,j,k = Ofrk(Pk, — eCi,j,k Eij,k

For purposes of the analysis here we focus on the value of land in a given location and suppress

,j and the subscripts i,j. However, when we get to the weighting section (Section 3) and

examine the aggregation issues within a county, we reintroduce the i,j subscripts.

The Ricardian approach is based on the observation that land is put to its most profitable
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use and hence

V(p,co,C,R,T,E) mfi.x {17417(0)17C1., R, T) + El, • • • ,17-Nk (pNk coNk, CNk R T) + ENk (1)

In the particular case where f k are i.i.d. extreme value with mean zero, there is a closed

form expression for the expected value of land

Nk

k=1

1E{V(p,co,C,R,T,€)} = In (13k 7Cok ,Ck ,R,T)+ 0.57722 (2)

where 0.57722 is Euler's constant (McFadden 1978, Page 82). If one had data on (p, w, C, R, T),

the Vk could in principle be estimated from observed land value data. In the general case,

there is not a closed form expression for E[V(.)}; while we have data only on (R, T) but not

(p, w, C), we can approximate the outer envelope E [V(.)) by some polynomial in (R, T).

This relation between farmland value and climate variables, the hedonic farmland value

function, is in essence what MNS estimate using cross-section variation across the differ-

ent counties in the US. The estimated hedonic equation incorporates the actual responses

of farmers to differences in precipitation and temperature, instead of the hypothetical re-

sponses as modelled by programming models. Moreover, it accounts for all of the production

costs that affect farm profit. Adams et al. (1998) acknowledge that "the strength of [the

hedonic approach] is that structural changes and farm responses are implicit in the analysis,

freeing the analyst from the burden of estimating the effects of climate change on particular

region-specific crops and farmer responses." Further, the hedonic function also allows one n

to calculate the direct impact on each farmer, county or state, in contrast to the highly

aggregated structural CGE models.

MNS have received considerable attention not only because they employ a different

methodological approach but also because they reach a conclusion that differs quite suh-

stantially from other results in the literature. They evaluate the impact of a climate change

associated with the benchmark doubling of atmospheric concentrations of greenhouse gas(..



consisting of a five degree Fahrenheit increase in temperature and an eight percent increase

in precipitation (IPCC (1990); NAS (1992)). Their preferred model implies that this change

will benefit U.S. agriculture overall, increasing aggregate farmland profitability by almost $2

billion per year. One criticism in the literature concerns the ability of the Ricardian approach

to handle dynamic adjustment costs. It has been suggested that the approach relies on the

fact that farmers in the past have chosen the highest value use for their land, but might

not now respond fully to a change in input availability due to existing crop-specific capita1.3

However, climate change will occur over an extended period of time, and most agricultural

capital has a limited life and will have to be replaced during this period. Water projects

may present a complication: in areas where irrigation is used, farmers often pay less than

the full cost for their irrigation water, and this cost may not be fully capitalized in the value

of the land.

Other criticisms have focused on two specific aspects of implementation of the Ricardian

approach: (i) the failure to control adequately for irrigation, and (ii) the selection of weights

to correct for heteroscedasticity in the farmland value data (MNS employ two different set

of weights, and results are not robust with respect to which is selected).4 In fact, both

points are potentially connected with heteroscedasticity since, as Zietz (2001) has recently

noted, parameter heterogeneity and/or omission of relevant explanatory variables can gen-

erate heteroscedastic errors. Although heteroscedasticity per se is often viewed as relatively

benign - it will not bias estimated coefficients. and will only affect their estimated standard

error - to the extent that the heteroscedasticity arises from model misspecification, it can be

associated with significant biases in estimated coefficients.

In this paper we analyze how the selection of weights and the failure to control for

irrigation could influence the estimate of climate change impacts on US agriculture. The

paper is organized as follows. Section 2 explains the conceptual issues raised by irrigation for

the Ricardian approach. Section 3 discusses the econometric issues associated with weighting;

it shows why the weights preferred by MNS are statistically inappropriate and are likely to



produce biased coefficients, and proposes alternative weights that account for the spatial

correlation as well as the heteroscedasticty that is present in the data. Section 4 presents

our own econometric analysis of the Ricardian model. Section 5 uses the results to generate

an estimate of climate change impacts on agriculture. Section 6 summarizes our conclusions.

2 Why Irrigation Makes a Difference

About 150 million acre feet of irrigation water is used annually in the U.S.; 17 western states

account for 132 million acre feet of this (88%).5 The counties where more than 5% of the

county is irrigated are indicated in Figure 1.6 Why should irrigation make a difference? The

key reason is that irrigation breaks the direct linkage between current climate in the growing

area, such as temperature and precipitation, and farm-level economic outcomes. In the case

of irrigation using groundwater, agricultural production depends on precipitation during the

geologic past either in that area or in some other area that recharges the aquifer. In the case

of surface water, it depends on rainfall or snowmelt typically at some distant location where

streamflow is stored and from which it is conveyed to the farming area.

For example, in California's San Joaquin Valley, the major crop is cotton and the evap-

otranspiration (ET) for cotton in that area is about 31.5 inches. Without irrigation, the

available soil moisture in the San Joaquin Valley at the time of planting in April is less than

1 inch, and the effective precipitation during the growing season of May through September

is also less than 1 inch. Together, less than two inches of the 31.5 inches of crop ET can be

supplied by local rainfall; about 30 inches (95%) has to be supplied by irrigation water ob-

tained from local groundwater or from surface water diverted from the Sacramento River and

transported to the San Joaquin Valley. (California Department of Water Resources 1986).7

With irrigation from surface water, therefore, the water supply depends on precipitation

in areas other than the growing area, and it depends not just on current precipitation but

rather on previous years' precipitation that has been impounded and stored. This, in turn,

-,
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depends on the physical capacity of reservoirs and canals and their operating rules, as well

as on surface evaporation and leakage. Consequently, the effect of climate change on the

agricultural economy in an irrigated area depends hardly at all on local precipitation during

the growing season; instead it is mediated through the functioning of a water storage and

conveyance system.

Figure 1: Irrigated Counties in Data Set

Figure lb: Classification of Counties

Not only does irrigation break the hydrological link between local precipitation and crop

yield, but it also has some important economic implications for the assessment of climate

change impacts, particularly in the case of surface water irrigation. The storage and c()n-

veyance of surface water is extremely capital intensive and the capital is very long-lived.

Because of the fixity of capital, the economics of water storage and conveyance systems ;ire

sensitive not only to changes in total annual precipitation but also to changes in the dis-

tribution of precipitation within the year, assuming the system is capacity-constrained (;(
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it true of many of those in the western states). In California, for example, during the next
century the summers will become warmer, and the winters will become warmer and wetter.
In consequence, more of California's precipitation is likely to fall as rain and less as snow,
a change that is likely to lead to increased winter runoff and reduced summer streamflow.9
Lettenmaier and Sheer (1991) conclude that, even under climate scenarios involving an in-
crease in total annual runoff, it will not be possible to retain the increased winter runoff
with California's existing reservoir system and there will be a decreased water supply during,
the summer. The result is a reduction in the effective annual total supply of stored surface-
water, unless new storage capacity can be added to the system. This is a distinctly different
consequence than would occur with a similar pattern of climate change in a dryland farming
region. With irrigated agriculture, the costs imposed by climate change can take the form
of increased expenditures on surface water supply facilities instead of, or as well as, reduced
crop yield.

Although the costs associated with reduced crop yield are likely to be captured in a hedo-
nic regression, those associated with changes in surface water supply for irrigated areas are
not. There are two reasons for this. The U.S. Bureau of Reclamation (BOR) supplies about
19% of the irrigation supply in the 17 western states, and this supply is heavily subsidized
in several ways. When the Bureau builds a water supply project, some of the construction
costs*are allocated to irrigation, municipal and industrial water supply, and hydroelectric
power generation, and are reimbursable by these beneficiaries. Critics have argued that the -
cost allocation is manipulated to reduce both the overall reimbursable component of costs
and the portion allocated to irrigation. While the Bureau requires municipal and industrial
users and power purchasers to pay interest on their share of construction costs from the
start of construction through the completion of repayment, it charges no interest at all to
irrigators. Since OR projects can take a couple of decades or more for construction to be
completed and the repayment period is usually 40 or 50 years from the date of completion,
waiving interest is a massive subsidy to irrigation. Furthermore, if the charge for irrigation



water is deemed to exceed the irrigators' ability to pay, their payment is reduced from the

beginning and, in many other cases, Congress has granted additional relief to irrigators for

part or all of their cost allocation. The consequence is that recipients of irrigation water

from federal water projects pay, on average, little more than about 10 cents on the dollar for

the construction cost to supply this water.10

The pricing of BOR irrigation water has two implications for the hedonic analysis of

the effects of climate change. First, there is substantial variation in the BOR irrigation

charges across different projects, reflecting differences in the date of construction, the length

of repayment period, whether or not repayment has been waived, etc. If BOR subsidies are

capitalized in farmland values as Huffaker and Gardner (1986) and others have concluded,

it would seem desirable to include water price as a variable in a hedonic regression covering

irrigated areas served by BOR in order to control for the price variation; the failure to do

so could bias the other regression coefficients. Second, because of the BOR subsidies, the

change in farmland values predicted to follow from a change in precipitation by a hedonic

regression based on irrigated areas served by BOR would fail to reflect most of the capital

cost of irrigation supply. While this cost is not currently borne by the recipients of BOR

irrigation water, it is a real economic cost that needs to be accounted for in any assessment

of climate change impacts.

Aside from the BOR, the remainder of the irrigation supply in the western states comes

from groundwater or from non-federal surface water storage projects. Neither of those sources

of water is subsidized to any significant degree. Nevertheless, in the case of irrigation with

non-BOR surface water it still would be misleading to predict the economic cost of a change

in precipitation on the basis of a hedonic regression of current farmland values. This is

because, although non-BOR surface water is generally not subsidized, it is still priced at

a level far below the current replacement cost. The general practice of water districts in

the western states is to charge farmers for irrigation water so as to recover current O&M

costs plus historical construction costs, albeit with interest (Gardner et al. 1982).h1 Because



surface water storage and conveyance construction costs have increased substantially over

time, and because this capital is long-lived, historical construction cost is generally far be-

low current replacement cost.12 By way of illustration, the California State Water Project

(SWP), constructed between 1961 and 1973, supplies (unsubsidized) water to irrigation dis-

tricts in Kern County at a wholesale cost of about $70/AF. But, the SWP has only about

60% of the supply capacity that was originally planned in 1960 - completion of the remain-

der has been blocked since 1982, when voters rejected Proposition 9 to build the Peripheral

Canal. If the system were now to be built out, current estimates are that the new water

storage facilities would cost on the order of $500-1,000/AF (California Department of Water

Resources 1998, Frederick and Schwarz 2000). The price that farmers in Kern County pay for

SWP water reflects what it cost to construct the SWP in the 1960s, not what it would cost

to complete the SWP now; it is the historical cost that is capitalized in current land values

there, not the future cost of expansion. Hence, the change in farmland values predicted from

a hedonic regression involving areas served by the SWP, or other non-federal projects, would

probably not account for the full cost of the new surface water supply capacity that might

be needed in the event of a reduction in annual runoff due to climate change. The extra

capital cost would need to be factored into the assessment separately.13

Thus, for both hydrological and economic reasons, we believe that the economic effects of

climate change on agriculture need to be assessed differently in dryland and irrigated areas.

In dryland areas, climate change is equivalent to an exogenous shift in the fixed supply of an

unpriced input. In irrigated areas, local climate is not directly connected to water supply;

moreover, if there is a reduction in water supply, there would be a substantial price increase

associated with any new supply compared to that of the existing supply because of escalation

in reservoir construction costs and the tendency to price existing surface water supplies on

the basis of historical cost.14 Estimating the economic impact of climate change on U.S.

agriculture on the basis of a single hedonic model fitted to a data set that combines both

dryland and irrigated farming areas is thus likely to be questionable on econometric grounds,
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since it combines what we expect to be two heterogeneous equations in a single regression,

as well as on economic grounds, since we expect it to understate potential capital costs in

areas needing increased surface water irrigation.

3 The Role of Weighting

In using a hedonic regression to measure the effect of a change in climate on farmland value

one is seeking to estimate what statisticians call a treatment effect (Moffitt 1999). The ideal

way to measure this effect would be to run a controlled experiment, assigning counties at

random to alternative climate conditions independently of all county characteristics (input

prices, urbanization, soil characteristics, etc) and then measuring the resultant change in

farmland values. Since this is impractical, one uses instead observational data on climate

and farmland value in what Mendelsohn et at (1996) characterize as a "natural experiment."

In place of random assignment of climatic conditions, one attempts to control for non-climate

county characteristics by including covariates. However, this may be an imperfect solution.

Observational data are vulnerable to selection bias, missing variables, measurement error,

and function mis-specification; therefore, the analysis needs to be conducted with some

caution."

A statistical issue that turns out to play a crucial role in the hedonic analysis is weight-

ing of the data. As noted earlier, MNS use two alternative weights: cropland, whereby the

observations are weighted by the percentage of each county in cropland', and crop revenue,

whereby the observations are weighted by the aggregate value of crop revenue in each county.

The two weights produce different coefficient estimates and different estimates of the eco-

nomic impact of climate change on U.S. agriculture. Table 1 presents the MNS estimate

of the change in aggregate U.S. farmland value associated with a climate change scenario

consisting of a five degree Fahrenheit uniform increase in temperature and an eight percent

increase in precipitation, using each set of weights.' For comparison, in the last row we also
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show estimates obtained by repeating the MNS regression with no weighting of the obser-

vations. Depending upon whether one weights and how one weights, U.S. agriculture could

gain or lose from climate change. The estimate preferred by MNS is that associated with crop

revenue weights, a net gain to U.S. agriculture of $21.3 billion in farmland value.18 It is also

instructive to examine the uncertainty inherent in these estimates. We used the bootstrap

method to develop a probability distribution of regression coefficient estimates, from which

we derived a probability distribution of aggregate impact on U.S. farmland value for each

of the three weighting schemes.19 The smoothed, distributions of farmland value impact are -

Figure 2: Distribution of the Change in Farmland Value from Global Warming, All Counties.
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shown in Figure 2 and the 95% confidence intervals are summarized in the second column

of Table 120. The results show that the crop revenue weights yield the least precise estimate

of climate change impact, ranging from a possible loss of $256.7 billion to a possible gain

of $320.5 billion. With such a wide confidence interval, a point-estimate can be somewhat

misleading.

These results focus attention on whether one should weight, and if so how. It is per-

haps noteworthy that, while there have been other studies involving hedonic regressions

of farmland value, many of those studies did not weight the data and those that did em-

ployed weights which were different from those used by NINS.21 MNS motivate their cropland

12
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Table 1: Change in Farmland Value from Global Warming, using All U.S. Counties in the
Estimation. Damages Evaluated for Subsets of Counties Described in Figure 1 ($ billion,
1982)

Model Point Estimate 95% Confidence Interval
Cropland Weights
Dryland, Non-urban Counties
Irrigated and Urban Counties
All Counties Combined

Crop Revenue Weights
Dryland, Non-urban Counties
Irrigated and Urban Counties
All Counties Combined

No Weights
Dryland, Non-urban Counties
Irrigated and Urban Counties
All Counties Combined •

-175.6
-97.4

-273.0

34.4
-13.2
21.3

25.3
6.8
32.2

(-227.3 • -111.9)
(-124.3 ; -63.7)
(-350.5 • -177.0)

(-162.3 229.2)
(-95.7 93.4)

(-256.7 320.5)

(-67.8 ; 116.2)
(-46.9; 58.7)

(-114.0 ; 172.7)

weights with the argument that "counties with a large fraction of cropland should provide

a better reading on price determination because other influences, such as cities or forests,

are minimized." We will suggest below an alternative approach to dealing with the influence

of urbanization on farmland values.22 MNS motivate their crop revenue weights with the

argument that this "emphasizes those counties which are most important to total agricul-

tural production even though some of the counties might have their land values affected by

large neighboring cities; it also places greater weight on counties where more valuable crops

are grown." In addition to dealing differently with urban impacts on farmland value, the

approach we describe below explicitly takes account of the fact that unmeasured factors in

one county may influence land values in a neighboring county. Moreover, their argument

points to what could be a serious flaw in crop revenue weights. The counties with the highest

crop revenue per acre in the U.S. are irrigated counties. We argued above that irrigation is

likely to be an omitted variable in the MNS regression. Using crop revenue to weight the

observations therefore runs the risk that the regression weights are correlated with the error

term, which can induce bias in the coefficient estimates. The data support this contention:

13



the correlation coefficient between the percentage of farmland in the county irrigated and

the county crop revenue is 0.389.23

When other researchers have employed weights in regressions of farmland value using

county data, they have done so mainly for two reasons.' First, counties vary in size, and

this affects the estimate of land value per acre. The average county in California had about

554,429 acres of farmland in 1982, while the average county in Georgia had 77,307 acres

of farmland. This difference obviously affects the variances of farmland value per acre,

and it can be corrected by weighting each observation by the number of farmland acres in

the county.25 More recently, researchers have paid attention to the possibility of spatial

correlation across geographical areas. If there is an unusual shock to farmland value in

one county because of some unmeasured locational characteristic, for example because it is

close to an urban area or far from rail transportation, the chances are that the adjoining

counties will also experience a shock to farmland value because they share similar locational

characteristics. This can be captured by allowing for spatial correlation among the error

terms in neighboring counties.26 We now describe a model that incorporates both of these

considerations in the specification of the error term for a hedonic regression.

We start with the issue of spatial correlation among counties. Suppose that the true

value per acre of farmland yi in county j is a linear function of climatic, soil, locational: and

socioeconomic variables Z3.27

Ilj Z;f3 (3)

However, the recorded value per acre of farmland in county j is measured with error: the

county-specific error is denoted

14



Following the approach of Anselin (1988) and Griffith (1988), the spatial correlation of the

error terms across counties can be modeled (in matrix notation) as

= pWri + u (5)

Here, u is the vector of error terms that are independently normally distributed with E[u3] =

0 and VAR[u3] = a, p is the parameter of spatial correlation, and W is the spatial weighting

or "contiguity" matrix which influences the form of the spatial dependence. The (i,j) element

of W is positive if counties i and j have a common boundary, and zero otherwise. W

is generally normalized so that the elements in each row sum to unit, which implies an

equal value for the non-zero elements in each row. To weight the relative influence of each

county, the non-zero elements for each pair of contiguous counties were multiplied by the

inverse of the distance between the county centroids and then row-normalized.28 The product

Wri is a vector with weighted averages of errors in continguous counties, and p indicates

the correlation between a county's error and the composite of the errors of its immediate

neighbors. In the standard applications of spatial correlation o = o-,2, for all j, but in our

case Vj is a county-wide average of the value of farmland and therefore the error terms uj

are heteroscedastic and can be represented as

V.IN) *

:11.1 (6)

where Ai is the acreage of the ith farm in county j and v is white-noise error term

associated with the value of the farmland owned by the ith farm in county j (note that

the farmland value data is collected on a farm-hy-farm basis). The v are iid normal

variates with E[vi ] = 0 and VAR[vij] = a. Define the farmland shares as si =  N
E

then VAR[u] =0.2 EN' 2 I our case, therefore. the variance-covariance matrix of uv n 

is a diagonal matrix av2Q where the elements on the diagonal of Ci are the sum of squared
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farmland shares. The inverse cri can be factored into the product of P and its transpose P'

such that The model in equation (3) can then be transformed into a standard

linear regression model with iid error terms,

where

y = X0 + E

y = (I pW)PV

(I — pW)PZ

- pW)Pri

(7)

Here, 3, p and av2 are to be estimated from the data. We will refer to our weights incor-

porating both the spatial correlation of the error terms n and the heteroscedasticity of the

error terms u as the feasible GLS model in order to contrast it with the MNS cropland and

crop revenue models.29 By the Gauss Markov Theorem, the feasible GLS estimate of /3 will

generate an estimate of the change in farmland value AV induced by a change in climate,

AZ, that has a minimum mean square error.

The most difficult problem in using the feasible GLS weights is the estimation of p and o-,2.

Researchers originally approached this via maximum likelihood (ML) estimation, However,

in a data set with our dimensionality, this is an exceptionally cumbersome computation.

Recently, researchers have adopted Generalized Method of Moments (GMM) estimation

(Kelejian and Prucha 1999). The GMM procedure relies on the following three moment
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conditions to estimate p and a-,2:

E [1
—
N
n'Pv pW — pW )1 7.11

E [1
—
N
n'Pv pWYWW(I pW )13 ri]

1
E pWYWV — pW)Pri]

2

CT
2

T r (W'W)

=

(12)

(13)

Using Monte Carlo simulations, Kelejian and Prucha show that the GMM procedure yields

results that are similar to ML but requires considerably less computer time and is far more

stable than the ML procedure." The next section presents the results we have obtained

using the feasible GLS weights and GMM estimation.

4 Model Estimation

We have argued that, for both hydrological and economic reasons, the economic impact of

climate change on U.S. agriculture needs to be assessed differently in dryland and irrigated

areas. In dryland areas, a hedonic regression relating farmland value to local climate con-

ditions in the farming area appropriately captures the link between climate and the farm

economy. In irrigated areas, however, local precipitation and temperature do not provide an

accurate measure of the water supply available to farmers. Therefore, a hedonic regression

is likely to be meaningless unless one uses a different set of variables to measure the avail-

able water supply. Because the water supply in irrigated areas depends on groundwater or

imported surface water, the availability of water needs to be measured on a case by Case

basis for each farming region using specific information about the supply arrangements in

that region. Unfortunately, there exists no national data base on stored water availability

in irrigated areas analogous to the precipitation and temperature data available through the

National Climatic Data Center. In these circumstances, we believe that the appropriate

course of action is to restrict the application of the hedonic model to dryland farming itre;t.,
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in the U.S., thereby providing a partial rather than a complete national assessment of the

economic impact of climate change on U.S. agriculture.

In their discussion of weights, MNS emphasize the importance of insulating the farm-

land value regression equation from the influence of cities. There can be farmland acreage

in counties that are almost entirely urban, such as Nassau County on Long Island in New

York.31 Farmland in these urban counties has an inflated value compared to farmland else-

where because of the option value of the land for urban development (and also, perhaps,

because of superior access to urban consumers). Plantinga et al. (2002) examine the effects

of potential land development on farmland prices and find that a large share of farmland

values, e.g., 82% in New Jersey, is attributable to the option value to develop the land for

urban uses. MNS propose to insulate their hedonic regression from these unusual urban

effects by using cropland or crop revenue weights. We prefer instead to drop these counties

from the regression analysis because the land value equation that applies to these counties

is likely to have a different specification from that in normal farming counties.32 Ideally

one would analyze these urban counties in a separate regression but, as with the irrigated

counties, the present data set does not contain the variables necessary to characterize the

determination of farmland values in those counties.

Of the 2938 counties in the MNS data, 525 are irrigated (i.e., more than 5% of their

farmland acreage is irrigated), and 156 are urban (i.e, they have a residential density of more

than 400 people per square mile;33 in addition, 32 counties are both urban and have irrigated

farming. Accordingly we will omit these counties from the estimation of the farmland value

regression equation, leaving a sample of 2186 dryland, non-urban counties.'

With regard to weighting, we have argued that the nature of the dependent variable -

the average value per acre of farmland in each county - calls for a feasible GLS model which

allows for both spatial correlation and heteroscedasticity in the error term of the hedonic

regression. In this section, we report the results of estimating the hedonic regression model

for the 2186 dryland, non-urban counties using the feasible GLS weights. We then compare
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these results to those obtained using feasible GLS weights, as well as the MNS weights,

applied to the full set of 2938 counties.

We use the same variables as MNS.35 The feasible GLS weights are based on the sum of

squared farm acreage shares for each county, Ei 4j. Due to privacy restrictions, the Census

does not provide data on farm acreage shares in each county, but it does provide data on

the size distribution of farms in each county from which we were able to approximate these

shares. The details of this calculation are described in Appendix 2.

The regression coefficients obtained using the feasible GLS weights are shown in the first

column of Table 2; the other columns show the coefficients associated with cropland weights,

crop revenue weights, or no weights. Several features of these results should be noted. First,

the signs of some of the coefficients in Table 2 make better sense agronomically than the

MNS coefficients, especially July precipitation and slope length. It was noted earlier that

crop ET is greater in July than in any other month. Therefore, one would expect that, ceteris

paribus, having more precipitation in July is beneficial to farmland value. However, the MNS

regressions regression results imply otherwise: at current precipitation levels, their results

imply that an increase in July precipitation lowers farmland value.36 A possible explanation

for this counterintuitive result is their failure to control adequately for irrigation. The most

valuable farmland in the U.S. is found in California, where there is almost no precipitation

in July; this land is valuable despite, not because of, the absence of summer precipitation.

In Table 2 where we restrict the hedonic regression to dryland, non-urban counties, the

anomaly disappears and farmland value is increasing in July precipitation at the current

mean precipitation level. Similarly, one would expect farmland value to be lower on land

that is more prone to the loss of fertile top soil. The MNS regression includes two of the

variables that enter the universal soil loss equation: soil erodibility (measured by a variable

called the K-factor) and slope length (a measure of distance to the nearest river).37 Since soil

loss is increasing in both these variables, one would expect farmland value to be decreasing

in them. However, in the MNS regressions, farmland value is increasing in slope length.
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Table 2: Regression Results Using Only Drylan.d, Non-urban Counties
Variable FGLS Cropland Crop Revenue Unweighted
Constant

January temperature

January temperature squared

April temperature

April temperature squared

July temperature

July temperature squared

October temperature

1312
(44.41)
-75.4

1385
(44.25)
-74.0

1431
(45.14)
-89.4

1287
(48.96)
-51.4

( 7.15) ( 6.88) ( 8.23) ( 5.84)
-0.463 -0.733 -1.42 -0.59
( 1.87) ( 3.10) ( 6.13) ( 2.95)
-17.3 -12.3 27.6 -8.24
( 1.09) ( 0.83) ( 1.86) ( 0.62)
-1.41 -2.98 -1.50 -0.480
( 1.90) ( 157) ( 2.07) ( 0.84)
-153

(10.79) (11.23)
-174

(10.81)
-166

(11.33)
-141

-4.07 -4.77 -5.34 -5.20
( 4.27) (5.13) (5.45) (6.96)

171 184 152 164
( 8.91) (8.57) (7.13) (9.02)

October temperature squared -6.63e-02 2.43 2.17 0.468
( 0.06) ( 2.09) ( 1.92) ( 0.52)

January precipitation -34.2 -24.0 -4.54 -23.2
( 1.39) ( 0.90) ( 0.16) ( 0.98)

January precipitation squared -8.31 -8.89 -8.41 2.72
( 1.10) ( 1.18) ( 1.05) ( 0.42)

April precipitation 89.7 88.0 25.5 93.4
( 3.25) ( 3.58) ( 1.01) ( 4.78)

April precipitation squared -12.2 7.25 19.2 -5.79
( 0.99) ( 0.65) ( 1.64) ( 0.69)

July precipitation 37.0 20.6 64.4 32.3
( 2.04) ( 1.15) ( 3.50) ( 2.13)

July precipitation squared 21.2 22.6 21.3 9.15
( 2.51) ( 3.05) ( 3.17) ( 1.78)

October precipitation -81.5 -125 -76.2 15.0
( 2.88) ( 4.54) ( 2.67) ( 0.60)

October precipitation squared -3.21 -28.2 -62.6 8.25
( 0.14) ( 1.10) ( 2.42) ( 0.41)

Per capita income 7.92e-02
(17.31)

Population density 1.55
(13.03)

Population density squared -2.45e-03
( 3.45)

9.28e-02
(18.94)
1.80

(12.19)
-4.63e-03
( 4.65)

8.89e-02
(16.76)
1.56

(10.81)
-3.31e-03
( 3.79)

7.90e-02
(16.57)
2.02

(14.33)
-3.60e-03
( 3.94)

Latitude -127 -111 -99.3 -39.7
( 6.89) ( 5.58) ( 5.13) ( 2.56)

Altitude -0.163 -0.252 -0.246 -0.127
( 4.92) ( 6.40) ( 6.12) ( 4.06)

Soil salinity -143 -614 -6.51 -304
( 0.61) ( 2.61) ( 0.03) ( 1.61)

Flood prone -209 -248 -282 -161
( 5.17) ( 5.21) ( 5.21) ( 4.37)

Wetland -203 -147 -343 -35.5
( 1.88) ( 1.27) ( 3.06) ( 0.38)

K factor -861 -1403 -1854 -415
( 4.78) ( 6.87) ( 8.65) ( 2.36)

Slope length -1.19 -22.3 -30.9 -6.14
( 0.19) ( 3.26) ( 4.50) ( 0.83)

Sand -17.7 -166 -98.9 -111
( 0.39) ( 3.14) ( 2.27) ( 2.90)

Clay 75.1 89.8 132 93.7
( 4.05) ( 4.55) ( 6.63) ( 4.28)

Moisture capacity 0.257 0.426 0.352 0.378
( 7.30) (10.28) (10.02) ( 7.89)

Permeability -2.87e-03 -6.49e-03 -9.67e-03 1.21e-03
( 1.01) ( 1.92) ( 3.36) ( 0.35)
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Again, we suspect this is an artifact resulting from their pooling of irrigated and dryland

counties in a single regression. Arid areas in the west and southwest are characterized by few

natural waterways and, therefore, a greater distance to the nearest river. These areas also

have some of the most valuable farmland - but this is despite, not because of, the absence of

rivers. In Table 2 where we restrict the hedonic regression to dryland, non-urban counties,

the anomaly disappears and farmland value is decreasing in slope length.

Second, further evidence that dryland counties should not be pooled with irrigated coun-

ties comes from a Chow test to examine whether the coefficients in Table 2 for the subset of

2186 dryland, non-urban counties are significantly different from the regression coefficients

for 752 other counties included by MNS in their regressions. The F(31, 2876) statistic using

the feasible GLS weights is 27.6, leading to rejection of the hypothesis that the subsets have

identical regression coefficients. Mendelsohn and Nordhaus (1999) counter earlier criticisms

of their treatment of irrigation by including the predicted percent of farmland irrigated in

the county, derived from an auxiliary regression, as an additional right-hand-side variable in

the hedonic farmland value regression. This is equivalent to allowing the percent of farm-

land irrigated to shift the constant term in the hedonic regression, while leaving the slope

coefficients unchanged. In our view, however, this does not go far enough; for the reasons

presented in Section 2, we believe that irrigation is likely to change not only the constant

term but also the slope coefficients in the farmland value regression. To test this, we es-

timated a regression for the full set of 2938 counties allowing the constant term to vary

according to the predicted percent of farmland irrigated and then performed Chow tests

of the hypotheses that the slope coefficients on the climatic variables are different for the

dryland and non-urban counties versus the irrigated counties (i) using the original MNS

model and (ii) including the predicted irrigation percentage from Table 7 which will shift the

intercept. Both hypotheses were rejected; using the feasible GLS weights, the F(16,2876)

statistic for the first hypothesis is 27.1, and the F(16,2876) under the second hypothesis is

26.8.38 We also tested each coefficient individually to see whether it is different for dryland

21



versus irrigated counties. We found that the climatic variables, the water-related variables

(slope length, flood prone, wetland, salinity and clay), population density, and income per

capita, are all significantly different at the 95% level. These test results clearly demonstrate

that pooling dryland and irrigated counties is not valid and will result in a misspecification.

Third, the assumptions underlying the feasible GLS weights are supported by several

tests based on the residuals from an OLS regression under the null hypothesis of spatial

independence. One test is the Moran-I statistic (Anselin 1988). However, since this does

not have a clear alternative hypothesis, we supplemented it with two Lagrange-Multiplier

tests involving an alternative of spatial dependence, the LM-ERR test of Burridge (1980)

and LM-EL test of Anselin et al. (1996)." The results are shown in the first three rows

of Table 3. We find strong statistical evidence that spatial correlation is indeed present'

for both the entire set of counties and the subsample of dryland, non-urban counties. In

each case, the data were premultiplied with the squared farmland shares in order to account

for the heteroscedasticity of the county error terms.'" Given the strong evidence of spatial

correlation, p was calculated using the GIVIIVI estimator of Kelejian and Prucha (1999) and

is listed in the last row of Table 3. The value of p is quite high: in the dyland, non-urban

subsample the error term in county j is equal to the innovation ui plus 43.8% of the weighted

average of the error terms in all. adjacent counties. The estimate of p is larger for the full

sample than for the dryland, non-urban subsample, reflecting the fact that irrigated and

Table 3: Test for Spatial Correlation
Model Using all counties Dryland, Non-urban Counties

(Figure 1 on page 7)
Tests
Moran-I N(0,1)
LM-ERR X2(1)
LM-EL x2(1)
Parameter

43.5 40.9
1794 1562
979 735

0.447 0.438
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urban counties tend to be highly clustered. Hence, a hedonic regression applied to the full

sample leads to error terms that are both larger and more highly spatially autocorrelated

than if one removes the irrigated and urban counties.

Furthermore, regression of the residuals after correcting for spatial correlation shows that

the proposed squared farmland shares perform best at explaining the heteroscedasticity of

the error terms. The squared error terms were regressed on a constant term plus the in-

verse of each of the weights in order to determine which set of weights best accounts for the

heteroscedasticity of the error terms u. The results are presented in Table 4. We first pre-

multiplied the data by (I — 75VV)42 to get a consistent estimate of the error terms u. Irrigated

counties occur predominantly in the western states where counties tend to be larger, and

hence a higher variance due to the inadequate treatment of irrigation might be confounded

with a lower variance due to a larger county area. The regression in Table 4 therefore only

utilizes dryland, non-urban counties in the estimation to avoid such confounding. The re-

gression results further validate our proposed weighting structure as the squared farmland

shares are the only weights which significantly explain the heteroscedasticity.' In sharp

contrast, the crop revenue weights place the greatest weight on counties with the largest

variance, a procedure that will result in an inefficient and imprecise estimator.

Finally, a Bayesian analysis of the residuals associated with the feasible GLS regression

in Table 2 also suggests that this is performing well (Zellner (1975) and Chaloner and Brant

(1988)). There are now only 10 outliers out of the 2186 observations, and there is no

particular pattern to them as there is with the residuals from the hedonic regression for the

Table 4: Regression of Squared Error Terms on a Constant and the Inverse of the Weighting
Variables for 1982 

Model Constant t-value Inverse of Weights t-value
Crop Revenue Weights
Cropland Weights
Farmland Shares

57,583 (19.98)
57,262 (20.21)
52,569 (17.40)

-39 (0.90)
75 (0.65)

1979 (4.28)
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full sample of 2938 counties.

5 Climate Chan e Impacts

We now turn to estimating the impact of global warming on farmland value using the regres-

sion coefficients in Table 2. The regression coefficients are estimated from the subsample of

dryland, non-urban counties, and the change in aggregate farmland value is predicted for this

same subset of counties using the 2XCO2 scenario of a five degree increase in temperature

and an eight percent increase in precipitation. Point estimates of the change in farmland

value and 95% confidence intervals based on bootstrapping for each of the different weight-

ing schemes are given in Table 5. The corresponding probability distributions of impact

on farmland value in the dryland, non-urban counties are shown in the upper left panel in

Figure 3. There are several striking features of these results. Restricting the analysis to

the subsample of 2186 dryland, non-urban counties produces relatively tight distributions of

the change in farmland values compared to the very diffuse distributions resulting from the

MNS coefficient estimates, which are shown in the lower left panel." Moreover, the different

weighting schemes now lead to very similar results with respect to both the point-estimates

and the confidence intervals, shown in the upper left panel, unlike those based on coefficient

estimates from the full sample of counties, shown in the lower left panel, which are extremely

heterogeneous.' The diffuseness of the MNS estimates of climate change impact, and their

sensitivity to the choice of weighting scheme, are attributable primarily to the observations

on the 752 irrigated and urban counties included in the MNS regressions. This is shown hy

the results of fitting a hedonic farmland regression to the 752 counties and then predicting

the impact of global warming on aggregate farmland value in those counties; the regression

and predictions of climate change impact are far more diffuse and heterogeneous than tin

corresponding results for dryland, non-urban counties.46 The imprecision of the hedoitir

regression for irrigated and urban counties is consistent with our argument that the liedon i(
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•

regression equation for those counties is misspecified because local climate plays a different

and far smaller role in the determination of farmland values than in dryland, non-urban

counties.

In the upper left panel in Figure 3, the distributions for the feasible GLS and cropland

weights virtually lie on top of one another, and the distribution for the crop revenue weights

is quite similar to them. The consensus finding is that global warming will have an adverse

effect on the farm sector in the dryland, non-irrigated counties, with a point-estimate of the

reduction in aggregate farmland value in these counties amounting to $208-219 billion, in

1982 prices. This would represent a roughly 40% reduction in the value of these farmland

assets. Converted into annual basis'', the implied aggregate loss in farmland profitability in

dryland, non-urban counties amounts to about $6 billion per year, in 1982 dollars; converted

to 1990 dollars for comparability with other estimates in the literature, this comes to about

$7.9 billion.48

Since any single climate change scenario is likely to be unduly precise, it is also informative

to consider the farmland value response surface for a range of climate change scenarios, and

to compare our results for dryland, non-urban counties with the MNS results for all counties

combined. The right-hand panels of Figure 3 show the point-estimate of the response of

aggregate farmland value in the dryland, non-urban counties to a uniform percentage increase

in year-round precipitation and a uniform increase in year-round temperature. The upper

right panel is based on the feasible GLS .coefficients estimated from the subset of dryland

and non-urban counties only.49 While farmland value in these counties benefits from an

Table 5: Change in Farmland Value in Dryland. Non-urban Counties from Global Warming,

Using  Only Dryland, Non-urban Counties in the Estimation ($ billion, 1982) 

Model Point Estimate 95% Confidence Interval

Feasible GLS Model
Cropland Weights
Crop Revenue Weights
No Weights

-217.1
-219.1
-207.9
-134.5

(-260.5 ;
(-263.2 ;
(-260.1 ;
(-179.2 ;

-166.0)
-169.0)
-147.7)
-88.4)
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Figure 3: Change in Farmland Value from Global Warming. Impacts are Evaluated for
Dryland and Non-urban Counties.
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The two panels on the left depict the distribution of climate impacts for one climate scenario, a 5 degree Fahrenheit increase
in temperature and an 8% increase in precipitation. The two panels on the right show the point-estimate for varying climate
scenarios.
The upper two panels use only dryland and non-urban counties in the estimation of the hedonic coefficients, while the lower
two panels use all observations in the estimation of the hedonic coefficients.
The upper right panel uses the feasible GLS weights, while the lower right panel uses MNS preferred crop revenue weights.

increase in year-round precipitation, the response surface in this dimension is relatively flat.

By contrast, the response surface is very steep with respect to an increase in temperature,

and the adverse effects of a temperature increase strongly outweigh the beneficial effects of

an increase in precipitation within the ranges considered.5° The lower right panel of Figure 3

is based on the MNS preferred crop revenue coefficients estimated from all counties in the

data set. The two response surfaces differ drastically not only in location (the MNS response

surface implies that climate change raises rather than lowers farmland value in dryland, non-
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urban counties throughout the ranges considered) but also in slope, especially with respect

to temperature. The MNS response surface suggests that an increase in temperature has

only a small effect on farmland value and this (beneficial) effect actually increases with the

increase in temperature.'

These empirical results provide strong support for our hypothesis that the farmland

hedonic regression equation for dryland, non-urban farming areas is likely to be different

than those for irrigated or urban areas, and that pooling all these areas without adequately

controlling for the effects of irrigation and urbanization can produce biased and seriously

misleading results.

For a complete national impact assessment, the estimates in Table 5 need to be modified

in two ways. We need to take account of the impact of climate change on farming in irrigated

and urban counties, and we need to allow for the fact that some counties may switch from

dryland to irrigated farming (or vice versa) because of the effects of climate change. Our

analysis of the factors determining the percent of farmland that is irrigated in each county

in Appendix 1 provides some information that can be used for the latter adjustment. Based

on the probit model in Appendix 1 Table 7, we estimate that global warming will lead to

a net increase in irrigation. However, the increase is predicted to be quite small in the

existing dryland, non-urban counties: overall, only 1.2% of the farmland in those counties is

predicted to become irrigated as a result of the climate change scenario.52 Given the small

size of this change, the estimated $210 billion loss of farmland value is likely to be adequate

for the dryland, non-urban counties without further adjustment.

With respect to estimating the impact of climate change in irrigated and urban counties,

one way to proceed would be to use the regression coefficients that are the counterpart

to those in Table 2, based on a regression using only the irrigated and urban counties.

The resulting point estimates and confidence intervals are shown in Table 6. None of t lie

estimates is significantly different from zero. The wide confidence intervals are likely due t

specification error in the regression equation - as we noted earlier, in irrigated areas local
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precipitation is not a reliable measure of water supply.

Table 6: Change in Farmland Value in Irrigated and Urban Counties from Global Warming,
Using  Only Irrigated and Urban Counties in the Estimation; ($ billion, 1982) 

Model 'oint Estimate 95% Confidence hAterval.
Feasible GLS Model
Cropland Weights
Crop Revenue Weights
No Weights

56.4
-28.8
47.4
30.8

(-92.1 ;
000.9 ;
(-89.6 ;
(-75.9 ;

225.2)
60.3)
232.2)
139.3)

Moreover, for the reasons indicated above, these estimates are likely to understate the

true impact on irrigated agriculture because water supply in these areas is often subsidized

and is generally priced well below replacement cost. Consequently, we believe that a different

approach should be employed for assessing the economic impact of climate change in these

areas that focuses explicitly on water demand and supply. Firstly, global warming is likely to

cause some increase in the demand for irrigation water in the irrigated and urban counties.

Based on the probit model in Appendix 1 Table 7, we predict that there will be an overall

demand for an additional 7.5 million acres in these counties to become irrigated as a result

of the MNS climate change scenario.' Moreover, the existing irrigated acreage in these

counties is likely to require more water. Based on a lognormal regression of irrigation water

use in these counties on climate variables, shown in Appendix 1 Table 8, we estimate that

the climate change scenario will lead to an increased irrigation usage amounting to about 5.5

million acre feet on the acreage currently irrigated. The increased demand for irrigation due

to higher ambient air temperature is likely to outweigh the effects of increased precipitation.

54 55

Secondly, global warming may lead to a net reduction in effective surface water supply

in the irrigated counties unless there is significant additional investment in storage and

conveyance facilities. The adverse effects of increased temperature on the timing of snowmelt,

combined with the increased ET of watershed vegetation and increased evaporation from
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stored surface water, are likely to outweigh the benefits of increased precipitation in several

major watersheds, including the Columbia River Basin and the Sacramento-San Joaquin

River Basin.' In these regions, even with an increase in total annual streamflow, the timing

of streamflow will change and, while there may be more winter streamflow, there will be less

summer streamflow and therefore, absent additional investment in surface water storage,

less water available to meet peak summer demands from agricultural and urban users.57 In

irrigated areas dependent upon surface water supply, given the combination of increased ET

demand and reduced surface water supply, the most likely consequence of climate change is

increased water shortage.58

In the event of a water shortage in irrigated counties, some of the shortfall would be

met by increased conservation, crop switching, or land retirement, while some might be met

by increased groundwater pumping, groundwater banking, water market purchases, and the

development of new surface water supply. Whatever the response, there would be some

economic cost.59 A detailed assessment of the economic impact on irrigated agriculture

lies beyond the scope of the present paper. Because the water resource systems are highly

location-specific, this requires a case-by-case analysis. We are currently working on such an

analysis for California, which alone accounts for about 22% of all irrigation water use in the

U.S. An important factor in the cost of climate change there is how the legal and political

system re-allocates water among the competing demands of agriculture (which currently

uses about 80% of the developed water supply in California), urban uses, and environmental

(instream) uses. The competition for scarce water resources makes it difficult to assess the

economic impact on agriculture in isolation without also considering the impacts on other

water using sectors. As a general conclusion, however, we believe it is likely that climate

change will impose a net economic cost on agriculture in irrigated counties, whether in the

form of higher costs for replacement water supply or lower profits due to reduced water

supply.

As an alternative to the region-specific modeling and estimation which we believe is
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needed for irrigated areas, we can make a very rough preliminary calculation based on the

estimate of 5.5 million AF in additional irrigation for the existing irrigated acreage. If

this additional demand for irrigation is met by new surface water supplies, a conservative

estimate of the cost is about $500/AF. If the demand is met by conservation or long-term

water market purchases, a conservative estimate of the cost is about $175/AF. And, if it

is met by land retirement, a conservative estimate of the value of lost farm production on.

marginal irrigated land is about $50/AF. This suggests that climate change in irrigated

areas could impose a cost ranging from about $275 million to about $2.75 billion, depending

upon how water is re-allocated in the face of increased scarcity. A more complete estimate,

accounting for the cost of irrigating the additional 7.5 million acres in these areas, would of

course be still higher.

Before closing, we should note that some recent implementations of the MNS model, by

Mendelsohn et al. (1996) and Mendelsohn and Neumann (1999), have modified it in a couple

of ways. First, the explanatory variables now include the diurnal and interannual variation

in January, April, July and October average temperature and precipitation. Second, the

dependent variable is now the total farm value in county divided by the total area of the

county, as opposed to the acreage of farmland. The models are still applied to the pooled

sample of 2938 counties across the U.S.

When the variation terms are included in the model, Mendelsohn et al. (1996) find that

"crop sensitivity to warming decreased." While we have been able to replicate this result..

in a supplementary appendix available upon request, we believe that several caveats should.

be noted. First, including the twelve variation terms substantially increases multicolinearity

among the regressors - the condition number increases by a factor of 2.5. A consequence

is that the confidence intervals for the estimated impact of climate change on aggregate

farmland value are now 33-50% wider than when the variation terms are omitted. It still is the

case that a Chow test rejects the hypothesis that the coefficients of the hedonic value equation

are the same for dryland and irrigated counties. If one focuses on dryland counties, regardless
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of the weights chosen, the climate change scenario lowers the aggregate value of farmland,

but the loss is smaller than when the variation terms are omitted; with the feasible GLS

weights, the estimated loss is now $145 billion compared to $217 billion when the variation

terms are omitted. However, this calculation follows Mendelsohn et al. (1996) in assuming

that climate change affects only average temperature and precipitation but not the variation

in temperature and precipitation. We believe this is questionable for two reasons. The

diurnal temperature variations turn out to be positively correlated with the monthly average

temperatures during the growing season, and the interannual variations in precipitation are

positively correlated with the monthly average precipitations. Therefore, the postulated

increases in monthly temperature and precipitation should be expected, ceteris paribus, to

cause an increase in climate variation, which Mendelsohn et al. (1996) neglect. However,

other things are not likely to be equal; the recent IPCC assessment indicates that there is a

more than 90% chance of an increase in the frequency of extreme climate events, including

intense precipitation (Intergovernmental Panel on Climate Change 2001). If the effects of

increased variation were considered, the adverse impact of climate change on dryland farming

would be greater.

When Mendelsohn and Neumann (1999) switch the dependent variable from farmland

value per acre of farmland to farmland value per acre of all land in the county, the result

is 'a reduction in the predicted benefit to agriculture, or an increase in the damage. But as

before, we find a Chow test rejects the hypothesis that the coefficients of the hedonic value

equation are the same for dryland and irrigated counties. If one focuses on dryland counties,

the loss to agriculture from climate change almost doubles with the switch in dependent

variable. However, this dependent variable implicitly assigns a value of zero to all land in

the county that is not used as farmland. We consider this implausible. Some of the land is

employed for urban uses, and is likely to have a higher value than some of the farmland in

the county. In this case, while land conversion from agricultural to urban use produces an

economic loss to farming, it presumably generates some gain to the overall economy. Hence,

31



we do not consider it advisable to use this dependent variable.

6 Summary and Conclusions

The MNS hedonic approach "models irrigation in a reduced-form manner in which it is

assumed that the availability of water in a region is a function of its climate and geography,

including factors such as mean and seasonal precipitation and temperature" (Mendelsohn

et al. 1996). We believe this holds reasonably well for dryland farming areas in the U.S.,

but not for irrigated areas; in irrigated areas the water supply is likely to be independent of

precipitation and temperature in the growing area. Therefore, we believe it is incorrect to

pool dryland and irrigated counties in a single hedonic regression equation and our empirical

results bear out this contention.

In this paper we have illustrated how weighting with an inappropriate weighting matrix

may not only lead to an inefficient estimator but can also severely bias the results if the

weights turn out to be correlated with an omitted variable. We show that the crop revenue

weights are highly correlated with the percent of the county that is irrigated and, when

applied to the full sample of dryland and irrigated counties combined, they bias the estimated

impact of climate change upwards. However, when the analysis is limited to dryland, non-

urban counties, the weights are no longer correlated with an omitted variable and we find

that different weights affect only the variability of the estimator but not the mean.

We estimate that climate change could cause an economic loss to agriculture ranging

from $5.0 billion annually under the unweiglitcd model to $8.1 billion per annum under the

feasible GLS model in the dryland, non-urhan farming counties, in 1990 dollars, plus some

additional quantum of loss in the irrigated count les. Our estimates have the same sign as the

latest National Assessment, but are of opposite sign to the MNS estimate of an annual net

gain amounting to about $2 billion, or the more recent estimate of Mendelsohn and Neumann'

(1999) of an annual gain of $24.3 billion, in 1990 dollars, both based on a Ricardian model
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of farmland value applied to all farming counties combined. We believe that the difference

from our estimate, similarly based on a Ricardian model, is due to the pooling of dryland

and irrigated counties. Interestingly, the original MNS estimate associated with the cropland

weights is in closer agreement with some of the others in the literature, including ours, in both

sign and magnitude. This is perhaps not surprising since the cropland weights appropriately

in our opinion de-emphasize irrigated areas. Also worth noting, in assessing the estimates, is

a recent report by the National Research Council (2002) which suggests that climate change

might occur very abruptly when certain thresholds are crossed. In this case farmers could

not adapt immediately and the Ricardian approach would then understate the impact.

Several caveats apply to our analysis, along with much of the rest of the literature here.

Our impact estimates depend upon the specific hypothesized scenario of climate change,

which may well turn out to be oversimplified both spatially and temporally. We consider

the impact on U.S. producers but not consumers of agricultural commodities. Further we

do not allow for changes in input and output prices beyond what is reflected in the existing

cross-section equilibrium of land values nor for changes in technology or market structure.

Our analysis focuses on the impact of changes in temperature and precipitation, and not

other things that might be affected by climate change, in particular CO2 fertilization. As

we noted earlier, CO2 fertilization is still controversial. Existing results are based mainly

on controlled agronomic experiments; other factors may be limiting in the field, and weeds

• may also be fertilized. Moreover, it now appears there may be a tradeoff between quantity

and quality, as the projected increase in crop growth is offset by a decline in nutritional

value (Jablonski et al. 2002). Finally, it appears that fertilization exhibits strong decreasing

marginal productivity, with little to no benefit above twice the pre-industrial level (2XCO2).

For these reasons, we are not particularly concerned by a failure, in the present paper, to

account for a possible fertilization effect. Existing estimates, including ours, can of course

be modified when and as better and more reliable information about CO2 fertilization and

its effects becomes available.
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tes
'Contributions to this literature include Smith and Tirpak (1989), Nordhaus (1991), Cline (1992),

Fankhauser (1995), Tol (1995), Mendelsohn and Neumann (1999), and National Assessment Synthesis Team
(U.S.) (2000).
'We transformed the estimate from 1982 dollars to 1990 dollars to make it comparable.
3Quiggin and Horowitz (1999)
4 Cline (1996), Darwin (1999), Kaufmann (1998)
60verall, about 63% of the irrigation water is from surface water and 37% from groundwater (Solley et

al. 1998).
6In Figure lb and in the statistical analysis in Section 4 we use 5% of the farmland irrigated as the

cutoff for defining dryland counties. We chose a low cutoff percentage in order to identify those counties
where irrigation plays essentially no role in farming - since irrigated and non-irrigated farming are likely to
require different specifications of a farmland value equation, for the reasons to be explained below, we want
to isolate a relatively "pure" set of dryland counties. We also conducted a sensitivity analysis and found
that the results are robust for different subsets of counties in the East as long as we exclude the irrigated
states in the West.

'Because there are efficiency losses, the actual amount of irrigation water applied is larger than this. The
typical irrigation efficiency in the area is about 70%, and the total irrigation application is about 43 inches
(California Department of Water Resources 1986).

8The effective life of dams and canals in many cases is 50-100 years, and the capital costs of a reservoir
can account for over 80% of the total annual cost (California Department of Water Resources 1998).

9Gleick (1987). A similar outcome is predicted for the Columbia River Basin: the increased tempera-
ture offsets the effects of increased precipitation, and leads to a reduced summer streamflow (Hamlet and
Lettenmaier 1999).

10Wahl's (1989) estimate is 14 cents on the dollar, but this is based on what he considers an optimistic
assumption about the length of repayment periods. He estimates that the subsidy amounts to an average of
about $1,900 per acre served by the Bureau.
"Local irrigation agencies in these states are mainly public districts or non-profit mutual water companies

rather than for-profit commercial companies. Because they usually have a limited supply of water and sell at
cost, there is often excess demand for irrigation water which leads to quantity rationing (Kanazawa 1993).

12Frederick and Schwarz (2000) mention several reasons why reservoir construction costs have risen in real
terms. There are diminishing returns in safe yield produced by successive increments in reservoir capacity
as evaporation losses begin to offset gains in yield from additional surface storage. As the best sites are
developed, subsequent increases in storage require ever larger investments; in the 1920s a cubic yard of dam
produced an average of 10.4 AF of storage capacity; this declined to 0.29 AF by the 1960s (U.S. Geological
Survey 1984). In addition, there are increasing environmental constraints on new reservoir development.

13This is not the case when irrigation is supplied from groundwater. In the U.S., groundwater is typically
self-supplied by individual farmers rather than collectively supplied through irrigation districts. Since energy
for pumping is a large component of the cost and the capital involved is not unusually long lived, the cost of
groundwater supply is likely to be fully capitalized in farmland prices. However, since pumping depths (and
energy prices) vary by an order of magnitude across farming areas, it would still be necessary to include ri
a hedonic regression a measure of pumping cost or depth to groundwater in order to avoid possible omitted
variable bias.
"The discussion above focused on precipitation; temperature change is also likely to have a differential

effect on dryland versus irrigated areas. In dryland areas, the main effect of temperature change is on water
demand, rather than supply, because crop ET is highly sensitive to ambient air temperature. In irrigated
areas, a change in temperature in the catchment areas also affects water supply through changes in both the
timing of snowmelt and evaporation from stored surface water.

15See, for example, Freedman (1997) on the pitfalls of deducing causation via regression analysis based on
observational data.
"Cropland differs from farmland because it excludes pasture, grazing and also woodland that is part of

the farmer's operation. The dependent variable used by MNS is farmland value, not cropland value. In our
view, using farmland value as the dependent variable, rather than cropland value, is more consistent with
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the logic of the Ricardian model because it allows for farmers to shift land between cropland, pasture, andforest as economic circumstance warrant.
17To compute these estimates, we replicated the MNS hedonic regressions using their data set, which waskindly provided to us by Robert Mendelsohn. We found that we could replicate the regression coefficientsreported in their Table 3, but not their estimates of the impact of global warming reported in their Table5. We believe that these contain an error. The dependent variable in their regression is the per acre marketvalue of farmland in each county. To convert this to an aggregate county value, one should multiply by thenumber of acres of farmland in the county, which is what we do to obtain the estimate in our Table 1. Wecan replicate the MNS estimate in their Table 5 if we multiply by the number of acres of cropland in thecounty. The point-estimates reported by MNS in their Table 5 are $-118.8 billion using cropland weights, and$34.8 billion using crop revenue weights. Both these MNS estimates and our estimates in Table 1 truncatepredicted farmland values at zero to rule out any negative values. This explains the slightly asymmetric shapeof the distributions in our Figure 2. The truncation could be eliminated by adopting a logistic distributionfor the random term in the regression model, as done by Xu et al. (1993); it would be difficult, however, tocombine this with the statistical model of spatial correlation and heteroscedasticity that we present below.18As noted above, the figure given by MNS in their Table 5 is different; it is a gain of $34.8 billion.19We used 100,000 bootstrap simulations to repeatedly estimate the hedonic regression model, and thencalculate the predicted aggregate change in farmland value with the global warming scenario. To smooththe distribution of damages we used the non-parametric Epanechikov Kernel estimator with a bandwidth,h, equal to h = °7;9u.1 , where ad is the standard deviation of the change in county farmland value andn = 100,000 is the number of observations.

20Table 1 presents estimates of changes in farmland value for all counties and separately for dryland andnon-urban counties versus irrigated or urban counties, using the classification of counties shown in Figurelb.
21 Perhaps the earliest of these studies is Haas (1924). Some summaries of the literature are provided byRenshaw (1958), Johnson and Haigh (1970), and Benirschka and Binkley (1994).22We do not entirely understand the MNS argument for cropland weights since, while the dependentvariable is the value per acre of farmland in the county, the weight is not the fraction of farmland in crops,as MNS seem to imply, but the fraction of all county land that is in crops.23By contrast, the correlation coefficient between the percentage of farmland irrigated and the percentageof county in cropland, the weight MNS prefer less, is only 0.052. Thus, the danger of correlation betweenthe cropland weights and the error term is much smaller than with their crop revenue weights.24The other reason for the use of weighting in hedonic regressions is to correct for selection bias in thesample of observations; this use of weighting is discussed by DuMouchel and Duncan (1983) This is not anissue for MNS, however, because their sample covers most of the counties in the U.S. (2938 out of 3069counties). The omitted counties are due to missing data.25See, for example, Neary (1977).

26The major reference is Anselin (1988). An application to farmland value regressions is Benirschka andBinkley (1994).
27We use the same variables as previous papers to figure out the differences that are due to weighting andirrigation. However, we would like to emphasize that the current functional form relies on strong assumption,most notably that the value of farmland is separably additive in temperature and precipitation.28 Kelejian and Prucha (1999) call this a Queen standardized weighting matrix.290ur weights can be compared to the MNS weights as follows. It can be shown that, if p = 0 and thecropland area of every farm were the same in each county. .4 for all i and j, where is the cropland(as opposed to farmland) in farm i in county j, our feasible G LS weights would be proportional to the numberof farms in each county. If all U.S. counties are assumed to be of the same size, the number of farms in acounty in turn might be roughly proportional to the percentage of county land in crops, which is the MNScropland weights. On the other hand, if the revenues generated by each farm were the same for all farms, theMNS crop revenue weights would be proportional to the number of farms in each county, and thus roughlyproportional to our weights. The latter, especially, seems to be a questionable assumption for the entireU.S. The average farm size in 1982 was 390 acres in California and 140 acres in Kentucky. The average salesgenerated by a farm in California ($151,479) was an even larger multiple of the sales in Kentucky ($23,385).
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Similarly, the correlation coefficient between cropland weights and the squared farmland shares is 0.59, while
it is only 0.15 for the crop revenue weights.

30Bell and Bockstael (2000) use both GMM and ML estimation for a hedonic regression of urban home
values and find that the results are very similar.

31The Census of Agriculture lists the entire farming area in Nassau County for the year 1982 as 1,879
acres. The average value per acre was $20,286, significantly higher than the national average of $784. An
even more striking result holds for San Francisco County in California which only had 19 acres of farmland
with an average value of $104,842 per acre.

320ur decision to drop urban and irrigated counties from the dryland farming regression is also supported
by an analysis of the outliers from estimating a farmland value equation to all counties in the U.S. The
analysis, described in Appendix 3, uses a Bayesian procedure developed by Zellner (1975) and Chaloner and
Brant (1988) to detect outliers from the feasible GLS regression applied to the full MNS set of counties. 24
of the 2938 observations exhibit a posterior probability of being outliers; 19 of these are irrigated or urban
counties.

33The average population density in the continental U.S. in 1984 was about 80 people per square mile; our
definition of urban, therefore, is based on a cutoff density of five times the national average and excludes
roughly 5% of the counties. Our results are not very sensitive to the specific definitions of irrigated or urban.

34We also excluded the few dryland and non-urban counties in the west to preserve a spatially connected
set of observations for our estimate of spatial correlation.

35The MNS data is from the 1982 Census of Agriculture. We also replicated our analysis using the data
from the 1987 Census of Agriculture and obtained similar results. We focus here on the 1982 data in order
to highlight the comparison between our analysis and that of MNS. There was a sharp recession in U.S.
agriculture during the 1980s, and farmland values fell by about 23% between 1982 and 1987; we prefer to
avoid confounding our results with the shock caused by the recession.

36When calculating derivatives of the hedonic regressions, one should note that the variables have been
demeaned. The derivative with respect to July precipitation turns positive only at a precipitation level
substantially above the mean. Kaufmann (1998) and Quiggin and Horowitz (1999) have also made the point
that several of the MNS coefficient estimates are agronomically implausible.

37For example, see Novotny and Olem (1994)
38The p-values for all three F statistics are less than 10'. We obtained similar results using the crop

revenue and cropland weights. Moreover, when we replicated the regression in Mendelsohn and Nordhaus
(1999) and bootstrapped the coefficients to generate probability distributions of climate change impacts on
farmland value, the distributions were very similar to those shown in Figure 2. Allowing the intercept in
the farmland value regression to differ between irrigated and non-irrigated counties, while forcing the slope
coefficients to be the same, fails to reduce the diffuseness and heterogeneity in the distributions of climate
change impacts.

39See Anselin and Florax (1995)
40The p-value of a type I error is again less than 10'8
41The sensitivity of our results to the proposed structure of heteroscedasticity is negligible. When the data

was premultiplied with the cropland and crop revenue weights, all test statistics remain high and the estimate
of p for the dryland and non-urban counties was 0.435 compared to 0.438 under the squared farmland shares -
weights.

42The reported results use the estimate of p that was obtained when the data was premultiplied by the
squared farmland shares. As mentioned above, the estimates for p are nearly identical when the data was
premultiplied by the cropland or crop revenue model and the results in Table 4 differ only in the third digit.

43A further refinement might be to model the variance of the error terms u as the composite of a constant
and the squared farmland shares. However, such a weighting structure cannot be estimated with the two-
stage procedure utilized in this paper; given the results in Figure 3 below any improvement should be minor.

44The lower left panel in Figure 3 uses the same MNS coefficient estimate as Figure 2, but restricts the
impact assessment to the 2186 dryland and non-urban counties.

45The linear specification allows us to easily separate the effect of each climatic variable on farmland
values. The impacts attributable to a change in temperature are more than an order of magnitude larger
than the ones attributable to the change in precipitation.

36



"These results are available upon request.
47We use the ratio of net farm income to aggregate farm value in 1982 as the conversion factor to translate

the capitalized value into an annual impact. The ratio was 2.82% in 1982.
48Following USDA (1996), we used the Gross Domestic Product implicit price deflator to adjust farmland

value to 1990 dollars.
49The axes have been reversed to provide a clearer picture of the damage surface; thus, the current climate

conditions are characterized by the point (0,0) in the temperature-precipitation plane.
50This is consistent with the agronomic literature, which shows that crop ET is rather sensitive to ambient

temperature and solar radiation during the growing season. Allen (2002) gives the elasticity of ET with
respect to temperature as 0.2 - 0.5, and the elasticity with respect to solar radiation as 0.5 - 0.9. Based on
a regression analysis of 216 weather stations reporting to the Solar Radiation Resource Information Center
at the National Renewable Energy Laboratory, we find that average solar radiation is positively correlated
with temperature. Hence, an increase in temperature is likely to be accompanied by an increase in solar
radiation, both of which should impact ET.

51For the reasons noted above, this is hardly plausible agronomically.
52 This estimate should be treated with caution. The current extent of irrigated agriculture in the U.S.

reflects a history of development that occurred over more than a century and involved substantial fixed costs
and economies of scale and agglomeration which introduced an important element of path dependence. A
cross-section regression like that in Table 7 represents a snap-shot taken at a moment in time, and it will
not necessarily provide a reliable prediction of how irrigation would expand in the U.S. over the next 50-100
years as global warming unfolds.
53This estimate is subject to the caveat noted in endnote 52 above
54For example, in the San Joaquin Valley, a uniform 5 degree increase in temperature would raise crop

ET by about 0.4 - 1.1 inches, using the elasticity reported by Allen (2002); with 70% irrigation efficiency,
this translates into an increased demand for irrigation water amounting to 0.6 - 1.5 inches. By contrast,
a uniform eight percent increase in precipitation would increase the field water supply during the growing
season by under 0.2 inches. Chen et al. (2000) and McCabe Jr. and Wolock (1992) reach a similar conclusion
that global warming will cause a net increase in irrigation demand. Note that there would still be an increase
in demand for irrigation water in these areas even if some farmland were converted to urban uses because
there is a substantial urban demand for outdoor irrigation. In California, for example, almost half of all
urban water use goes for outdoor irrigation, whether parks and golf courses, greenery surrounding suburban
office buildings, or yards in people's homes (Hanemann and Dale 1988). This accounts for the sensitivity of
urban water use to seasonal climate variation noted by Griffin and Chang (1991) and others.
55It is possible that, over some range, an increase in average temperature will result in higher expected crop

yields. However, the relationship between temperature and yield is likely to be downward sloping beyond
some point. Given concavity in the temperature-yield relationship, if the increase in temperature takes the
form of more frequent occurrence of high-temperature spikes, the change in yield may be overstated by
simply plugging in the change in average temperature. Moreover, there is likely to be substantial variation
among individual crops and growing regions. In California, for example, some recent research suggests that
an increase in temperature will tend to result in increased yields in the northern and coastal regions, but
decreased yields in the San Joaquin Valley and the desert valleys. In addition, higher temperatures may also
stimulate the growth, and extend the range, of weeds and pests.
"See Hamlet and Lettenmaier (1999); Leung and Wigmosta (1999); Gleick and Chalecki (1999); Jetton

et al. (1996); and Lettenmaier and Gan (1990).
'The importance of the timing of precipitation relative to existing storage capacity cannot be overstated.
When one just considers total annual precipitation and ignores the timing of runoff and storage. as in
National Assessment Synthesis Team (U.S.) (2000) and Frederick and Schwarz (1999), this can produce a
misleading impression of the impact on developed water supply.
"Gleick (2000) note that very little research has been done so far on the impact of climate change on

groundwater basins and their recharge characteristics. In irrigated areas dependent upon groundwater, while
climate change may or may not affect the groundwater supply, if it leads to an increase in irrigation demand
there would still be an impact on groundwater in terms of declining aquifer levels and higher pumping lifts.

59In California, for example, recent water market transactions suggest a minimum cost of about $50/ A I:
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for water made available through agricultural land retirement, and about $175/AF for water made available
through water district conservation measures such as canal lining.
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To explain why some counties are irrigated and others are not, we estimate a grouped probit

model where the dependent variable is the percentage of farmland in the county that is

irrigated and the explanatory variables are the suite of variables used by MNS. Since a probit

model is inherently nonlinear and necessarily allows for increasing or decreasing marginal

effects, we use only linear terms in the probit equation, which simplifies the interpretation of

the probit coefficients. The model is estimated by maximum likelihood, and the coefficients

are shown in Table 7.

Observe that higher temperatures in July increase the likelihood that farmland is irrigated

as do lower April and July precipitation (less water is available) and higher January precip-

itation (more water can be stored for the next growing season). Higher April temperatures

decrease the changes of irrigation. This might be due to the fact that higher temperatures in

April allow an earlier planting cycle, decreasing the highest evapotranspiration requirements

in July as the plant is already in a later stage of the planting cycle.

Table 7: Grouped Probit Regression of Percent of Farmland that is Irrigated
Variable Coefficient Standard Deviation
Constant -1.96 1.21E-04
January temperature 1.93E-02 3.50E-05
April temperature -2.80E-02 7.06E-05
July temperature 2.23E-02 5.51E-05
October temperature 2.78E-02 9.70E-05
January precipitation 7.65E-02 1.00E-04
April precipitation -3.50E-02 1.64E-04
July precipitation -6.34E-02 9.94E-05
October precipitation -6.92E-02 1.58E-04
Per capita income 9.94E-06 3.66E-08
Population density 1.47E-04 5.04E-07
Latitude 2.25E-02 7.78E-05
Altitude 1.37E-04 1.55E-07
Soil salinity -1.27 1.19E-03
Flood prone 0.358 3.80E-04
Wetland 1.83 1.20E-03
K factor 1.72 1.92E-03
Slope length 0.147 4.22E-05
Sand 0.301 4.49E-04
Clay 4.02E-02 2.21E-04
Moisture capacity 4.29E-05 3.15E-07
Permeability 1.59E-05 1.43E-08
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The probit model provides an estimate of the percentage of a county that is irrigated.

In a second step we examine the quantity of irrigation water used in each county with a

log-normal regression. The dependent variable in the regression equation is the log of the

quantity used (in feet) obtained from U.S. Geological Survey for each of the 525 irrigated

counties. We use the same set of explanatory variables as MNS.

A five degree Fahrenheit increase in temperature and an eight percent increase in pre-

cipitation translates into an expected additional demand of 5.5 million acre feet of water for

the 525 irrigated counties.

Table 8: Log-normal Regression of Irrigation Quantity used in the 525 Irrigated Counties
Variable Coefficient t-value
Constant 16.8 ( 4.91)
January temperature -6.98E-02 ( 3.15)
January temperature squared 5.58E-04 ( 1.22)
April temperature 0.374 ( 3.29)
April temperature squared -3.80E-03 ( 3.79)
July temperature -0.349 ( 3.30)
July temperature squared 2.36E-03 ( 3.13)
October temperature -0.217 ( 1.36)
October temperature squared 2.34E-03 ( 1.65)
January precipitation 0.197 ( 4.05)
January precipitation squared -1.60E-02 ( 4.82)
April precipitation 0.249 ( 2.32)
April precipitation squared -2.21E-02 ( 1.60)
July precipitation -0.374 ( 5.32)
July precipitation squared 3.73E-02 ( 4.46)
October precipitation 6.74E-02 ( 0.78)
October precipitation squared 2.09E-02 ( 1.69) 
Per capita income 1.50E-05 ( 1.61)
Population density 9.10E-04 ( 7.42)

• Population density squared -1.12E-07 ( 3.05) 
Latitude -4.68E-02 ( 2.18)
Altitude -8.35E-05 ( 2.01)
Soil salinity -0.735 ( 2.59)
Flood prone -0.191 ( 2.11)
Wetland 0.22 ( 0.88)
K factor -0.315 ( 0.66)
Slope length 5.29E-02 ( 4.77)
Sand -5.56E-02 ( 0.62)
Clay 7.81E-02 ( 1.37)
Moisture capacity 2.65E-05 ( 0.24)
Permeability 2.16E-06 ( 0.55)
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The optimal set of weights to correct for the heteroscedasticity of the error terms, the squared

farmland shares, are derived .in equation (6) on page 15. Unfortunately this variable is not

directly available form the Census of Agriculture. Due to privacy restrictions, it is impossible

to obtain the size of each individual farm. This appendix describes the construction of a

proxy for squared farmland shares.

The Bureau of the Census (1995) lists the number of farms that fall within a certain

class size, i.e., the number of farms with an area between 1-9 acres, 10-49 acres, 50-69 acres,

70-99 acres, 100-139 acres, 140-179 acres, 180-219 acres, 220-259 acres, 260-499 acres, 500-

999 acres, 1000-1999 acres and over 2000 acres. We construct a rough proxy variable by

estimating the log-normal distribution of farm size for each county and extrapolating the

farms that fall within a defined class size (i.e., belong to same range of acreage) as published

in the Census of Agriculture.

The 12 categories of farmland sizes can be written as [ak, bk) for k=1...1.2. Let F(h,a)(x)

denote the cumulative log-normal distribution as a function of the mean j and the standard

deviation a of the normal distribution. The probability that a farm in county j falls within

a given class is simply the difference in the cumulative distribution of the two border points

of the class, i.e., F(,i,05)(bk) —

Using the number of farms Nki for each class k=1..12 and county j, we maximize the

log-likelihood function for each county /i ai)

max l(, cri)
A.1(7.1

12

k=1

Nkij log [F(,3,,1)(bk) F(k i o,i)(ak)] (14)

In a second step we approximate the size of the Nk j individual farms in category k in

county j by uniformly extrapolating the Nko farms over the cumulative distribution between

F(,ina,)(ak) and F(1,,)(bk). For example, if there are 5 farms in the 70 to 99 acres interval

representing the 20% and 25% quintile of the log-normal distribution, we spread the number
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of farms uniformly between the 20% and 25% quintile, i.e. the farms represent the 20.5%,
21.5%, 22.5%, 23.5%, and 24.5% quintiles. The only exception to this rule is the open-ended
interval for farms with more than 2000 acres. If a lot of farms fall within this category, the
linear interpolation would result in interpolated farms too close to the 100% quintile (which
implies an infinite acreage). Therefore, if the total acreage of the largest category is available
(it is listed if more than three farms fall within the category) we include a constant spacing
between the 2000-acres quintile and each subsequent farm subject to the constraint that the
sum of the acreages of all interpolated farms equals the actual total farm acreage within the
open-ended category. If three or less farms are in the largest category we use the procedure
of uniform extrapolation. In a third step we calculate the sum of squared farmland shares
si for the Ni extrapolated farms in county j.
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This appendix outlines the Bayesian outlier analysis of Zellner (1975) and Chaloner and

Brant (1988). Given the standard linear regression model in equations (8) - (10), where X

is a (NxK) matrix and xii is the (1x1K) submatrix for observation i,

Y = X13 + E

yi = x/3+ ei

with i.i.d. normal error term € and a diffuse prior, the posterior distribution of the error terms

p(Ely, o-) will be multivariate normal while the marginal posterior distribution of the standard

deviation p(aly) will be an inverted gamma distribution. These posterior probabilities can

then be used to calculate the probability that I Ei I is larger than -ya where 7 is a constant.

The value of 7 can be chosen such that the prior probability of no outlier is large. We follow

Chaloner and Brant and set 7 = 1 
( 

+ -- * 0.95*) to ensure that the prior probability to

observe no outliers is 95%. (4) denotes the cumulative standard normal distribution). Using

the OLS estimate 3 as well as the OLS estimates of the variance s' we can write

p(fily, a) --, N (i; = y, — x, o-2xii(VX)-lxi)

and utilizing the changes of variables technique where 7 = -1?

P(T =
1K , N- _ i _ 1%124___ 7

-I20- - Y) °C T 2 
e
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Hence the probability that the absolute value of the error term of observation i is greater

than yo- conditional on a will be

P(lEil > 7013r, a) = p(Ei > ̂tai3r, a) -I-P(Ei < --7GriY,a)
..

—7a — 
= 1 — (I) ( 7a — fi  ) ± (I) (

aNbc(XiX)-ixi a Vx(X1X)-ixi

(  7 -
1 

ii \FT   )
= - 4:1)

r, Nb<PCX)-lxi Vxii(XiX)-lxi )

* The probability that led is greater than 7a is then

,.,

00 1
P(kii > 7013') = f P(Ifil > 7a1Y, a = -)P(riY)dr

o \Fr

(17)

(18)

A two-stage procedure is used. In the first stage the data are premultiplied by P and

I — loW to obtain a data set with i.i.d. error terms. We then evaluate the integral in (18)

using Simpson's rule with 10,000 grid points. 24 out of the 2938 observations exhibit a

posterior probability kifii > wily) greater than the prior probability 24)(-7).

...
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