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Abstract

CThe well-known investment irreversibility effect states that investment is optimally delayed if future
benefits are uncertain, the investment decision is irreversible, and there is no possibility of learning

about future benefits. An unresolved question is whether this effect holds if the benefit function is

nonlinear and investment is a continuous choice variable. Contrary to some earlier results which

suggest that the effect does not hold widely under these conditions, we show that it does. We show,

first, that necessary and sufficient conditions in the literature are only sufficient and not necessary;

second, that the irreversibility effect holds for a case in which it is apparently violated; and third,

that two cases in which the effect is violated are somewhat special and probably not empirically

important.
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1. INTRODUCTION

Arrow and Fisher (1974) and Henry (1974) have established that faced with a linear benefit func-

tion or with an all-or-nothing investment choice, a decisionmaker will optimally delay investment

if the future benefits are uncertain, investment decisions are irreversible, and there is a possibility

of learning about future benefits, even when there is a cost to waiting. The question is whether the

decision to delay investment to maintain flexibility in the face of uncertainty, irreversibility, and

learning, which we will refer to as the irreversibility effect, still holds if investment is a continuous

choice variable and the benefit function is nonlinear.

The existing literature suggests that the effect does not hold widely under these conditions. The

seminal paper is by Epstein (1980), who provides a sufficient condition for the irreversibility effect

to hold and uses the condition to argue that the effect is violated whenever the benefit function is

intertemporally nonseparable. Similarly, Freixas and Laffont (1984) develop a sufficient condition

for the irreversibility effect and use it, along with a numerical example, to argue that the sufficient

condition is, in fact, necessary. Finally, Collier, Jullien and Treich (2000) develop a different

necessary and sufficient condition for the irreversibility effect.

In this paper we come to a somewhat different conclusion, namely that the irreversibility effect

holds widely with nonlinear benefits and continuous choices. First, using one of Epstein's examples

and his sufficient condition, we show that the irreversibility effect holds even when the benefit func-

tion is intertemporally nonseparable. Second, we show that the necessary and sufficient conditions

developed by Freixas and Laffont and by Gollier et al. are only sufficient and not necessary. Conse-

quently, we establish that the irreversibility effect is not necessarily violated when their conditions

fail to hold. Third, we argue that two cases in which the effect is legitimately violated are somewhat

special and probbaly not empirically important.

In the process of defending the irreversibility effect we also distinguish the concept of flexibility

from that of irreversibility, and develop new, less restrictive definitions for each. We further show

that the irreversibility effect is separate from risk aversion.

The rest of the paper is organized as follows. The irreversibility effect is defined in section 2.

Section 3 reviews the existing necessary and sufficient conditions that lead to the conclusion that

the effect does not hold widely. Section 4 shows that the necessary and sufficient conditions are

only sufficient and section 5 establishes that the irreversibility effect holds for a case in which it

appears to be violated. Section 6 discusses the two cases where the effect is in fact violated and

also establishes that risk aversion can be distinguished from the irreversibility effect.
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2. IRREVERSIBILITY EFFECT: A DEFINITION

Consider the following dynamic optimization problem:

(1) max (B1 (x1) + Eqj max [E rijB2(si , x2, zi)]
xiEci x2Ec2(xi) .

where xi is the choice variable in the first period, x2 is the choice variable in the second period,

and zi, for i = 1...M, is a discrete random variable that reflects the underlying uncertainty about

the nature of net benefits. A decisionmaker chooses xi and x2 to maximize expected net benefits.

Net benefits in the first period, denoted by Bi(xi), are deterministic and depend only on xi, but

net benefits in the second period, denoted by B2(x1, x2, zi), are stochastic and are a function of xl,

x2, and zi. We assume that Bi is concave and twice continuously differentiable in xi, and B2 is

concave and twice continuously differentiable in xi and x2. Note that since B2 is a function of xi,

the benefit function is nonseparable. If, on the other hand, B2 were only a function of x2 and z

and not of xi, then the benefit function would be separable. Before the second period decision is

made, the decision maker receives a signal, denoted by yj, that reveals some information about z.

The amount of information contained in y depends on how closely related z and y are. Let y,and

denote two potential signals where the correlation between y and z is greater than the correlation

between y' and z. y is said to be more informative about z and leads to greater learning about

the true nature of z than y'. After the signal is received, the decision maker updates her prior

expectations about z by formulating a posterior distribution denoted by rij = p(z = zi/y = yi)

and then chooses x2 for each signal to maximize the expected benefit over the different states.

Let qj denote the probability distribution for y, Ci the constraint function for xi, and C2(x1) the

constraint function for x2. Because xi constrains the choice of x2, its choice in turn implies a

certain loss of flexibility, and is thus the source of irreversibility. For example, C2(x1) = Si > x2

implies that x2 is constrained to be less than xi. If, on the other hand, xi did not constrain the

choice of x2, then there would be no irreversibility.

Finally, assume that a unique solution exists, and lies in the interior of C1. Let xl` denote the

maximum corresponding to the more informative signal y, and xr the maximum corresponding to

the less informative signal y'. Define as the value of xi that gives maximum decision making

flexibility in the future. For example, if x2 is constrained to be greater than (less than) xi, xi E [0, 1]

and x2 E [0, 1], then thi = 0 (thi = 1). This is because with xi = 0 (xi = 1) there is no constraint
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on the choice of x2, and so there is maximum decision making flexibility. An irreversibility effect

exists if

.%

(2) — 14* —

that is if the optimum corresponding to the more informative signal is at least as close to the point

of maximum flexibility as the optimum corresponding to the less informative signal. Note that if

x2 is constrained to be less than xi, xi E [0,1] and x2 E [0,1], then since 11 is 0, equation (2) is

equivalent to xI < xr. In other words, the irreversibility effect holds if xic < xr. Alternatively, if

x2 is constrained to be greater than xi, xi E [0,1] and x2 E [0,1], then since 11 is 1, equation (2)

implies that the irreversibility effect holds if Ix T — 11 < ler — 11. Since xi lies between 0 and 1, this

simplifies to el > xr. Our definition for the irreversibility effect allows for both these possibilities

and is thus more general than the simple inequality between xl` and xr. We do, however, sometimes

use, rather than our definition, the simple inequality to define the irreversibility effect.

In some economic models 11 may be a constant, while in others it may be a function of the model

parameters. We explore this further in section 5. Moreover, equation (2) is not equivalent to, and

in fact is more general than, the condition that is usually used to define the irreversibility effect

as well as flexibility in decision making—namely, C2(4) D C2(xr) (Freixas and Laffont 1984).

We show in section 5 that this definition for both flexibility and the irreversibility effect is too

restrictive, and in some economic problems it leads to the conclusion that the irreversibility effect

is violated when in fact it is not.

3. NECESSARY AND SUFFICIENT CONDITIONS: A LITERATURE REVIEW

We now turn to a review of the relevant literature on necessary and sufficient conditions for

the irreversibility effect to hold with nonlinear benefit functions and continuous choices. Epstein

(1980) establishes a sufficient condition under which the initial decision with uncertainty and the

possibility of future learning (xT) is greater or less than the initial decision with uncertainty and less

learning (xr ).1 Irreversibility per se does not affect the sufficient condition because the constraint

that defines the irreversibility effect does not enter the sufficient condition.

Using the model described in section 2, we can state Epstein's sufficient condition. Let J(11,0

denote the value function, which is defined as

1The literature often refers to this as the precautionary effect.
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(3)

(4)

J(xi,)EE max EriiB2(x17 x2, zi)
x2Ec2(xi)

E. max [iB2(xi, x2, zi)]
x2Ec2(xl)

where = ire,,e2,..k..4N1 and = 723, ..r 3.., rmji and is a vector of the posterior probability

distribution corresponding to the signal yj. Assume that J(xi, is concave and differentiable with

respect to x1.2 The sufficient condition relating xl` to xr is given in theorem 1.

Theorem 1. If ./x1(xi,e) is a concave (convex) function of e, then xl <

where Jx, (xi, is the slope of the value function with respect to its first argument. In words,

the sufficient condition states that if the slope of the value function with respect to xi is concave

(convex) in the posterior probability distribution, then the optimal choice of xi associated with

the more informative signal is no greater (no less) than the optimal choice associated with the

less informative signal, or that xt < (>)xr. Consequently, even though irreversibility per se does

not affect the sufficient condition, the sufficient condition can nonetheless be used to establish the

irreversibility effect. Furthermore, Epstein uses this condition to establish that the irreversibility

effect is violated whenever the benefit function is nonlinear and intertemporally nonseparable.

He does so by developing a series of five models, three with intertemporally separable, and two

with intertemporally nonseparable, benefit functions, and establishing that the irreversibility effect

holds whenever the benefit function is separable and is violated whenever the benefit function is

nonseparable.

Similarly, Freixas and Laffont (1984) develop a sufficient condition under which the initial decision

with the possibility of learning is greater or less than the initial decision with no possibility of

learning. Specifically, the irreversibility effect is said to hold if the value function is strictly quasi-.

. concave. After establishing sufficiency analytically, Freixas and Laffont develop a numerical example

to show that their sufficient condition is also necessary. The implication is that the irreversibility

effect is violated whenever the value function is not strictly quasi-concave.

More recently, Gollier et al. (2000) have developed necessary and sufficient conditions for two

classes of economic models to sign the second derivative of the slope of the value function in the

random variable and have used Epstein's theorem to argue that these conditions are necessary and

2This assumption holds if B2(xi,x2,z) is concave in xi and x2 and if for C2(xl) = {x21/(xi,x2) > 0}, the function

f is concave.
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sufficient for the irreversibility effect. Firstly, within the class of models characterized by hyperbolic

absolute risk aversion preferences—that is, with utility functions

B (x) = — 
1 

[77+
— 7

where x is a function of xi and x2 and the coefficient of absolute risk aversion is ri + 71--they

show that the slope of the value function is concave (convex) in the random variable if and only if

< 1 (7 > 1 or 7 < 0). And secondly, in models with small risks or models in which the random

variable has a two-atom support, they establish that the slope of the value function is concave

(convex) if and only if absolute prudence is larger (smaller) than twice the absolute aversion to

risk. Furthermore, they argue that xi* < (>)xr if and only if the slope of the value function is

concave (convex) in the random variable. These conditions imply that the irreversibility effect is

violated whenever they fail to hold. Consider, for example, a model where the choice variable in the

first period, xi, and that in the second period, x2, are constrained to lie between 0 and 1 and x2 is

constrained to be less than xi. Note that these conditions imply that "Xi = 0. Further, assume that

the agent's preferences are characterized by constant relative risk aversion where the coefficient of

risk aversion is greater than one. Since preferences characterized by constant relative risk aversion

are equivalent to those characterized by hyperbolic absolute risk aversion with the coefficient 77 = 0,

according to Gollier et al, the slope of the value function for this example is convex in the random

variable and xl` > xr. Since 'Xi = 0, x — I Ixr — cAci I, and the irreversibility effect is violated.

4. NECESSARY VERSUS SUFFICIENT CONDITIONS

We want to suggest that the irreversibility effect in fact holds more widely than one might

conclude on the basis of this literature. We first establish that the two necessary and sufficient

conditions, due to Gollier et al. (2000) and Freixas and Laffont (1984), are only sufficient and

not necessary for the irreversibility effect to hold. While a violation of a necessary condition

leads to certain rejection of the irreversibility effect, a violation of a sufficient condition does not.

Consequently, by weakening the conditions, we expand the scope of the irreversibility effect.

4.1. Gollier et al. To see that the conditions developed by Gollier et al are not necessary, note

that their conditions establish the irreversibility effect indirectly. Their conditions sign the second

derivative of the slope of the value function (defined by equation 3), but say nothing directly about

the relationship between the initial decision with greater learning and that with less learning, that

is, whether el` xr (as these are defined in section 2). Once they establish the sign of the third

derivative of the value function, Gollier et al state that the sign of the third derivative is necessary

•i
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and sufficient to determine whether xt Sr. Since the sign of the third derivative is, however,

only a sufficient condition for whether or not the initial decision with more learning is greater or

less than the initial decision with less learning (see theorem 1), their conditions, in turn, are only

sufficient for the irreversibility effect.

4.2. Freixas and Laffont. To see that the condition developed by Freixas and Laffont is only

sufficient, consider the following dynamic optimization problem, with an additively separable benefit

function, as proposed in their paper:

max (Bi (xi + E qi max 7 riiB2(X2, Zi))
xi x2<xi

where xi is the choice variable in the first period, x2 is the choice variable in the second period, z

is a random variable, qi is the prior probability on the signal, and rij is the posterior probability

distribution. As in section 2, let el be the optimal choice of xi under the more informative signal,

x r the optimal choice under the less informative signal, and J(xi, be the value function. Theorem

2 specifies the condition for the irreversibility effect to hold given that a unique solution exists.

Theorem 2. xl` > xr if Bi(xi) + 1,0 is strictly quasi-concave.

Freixas and Laffont provide a numerical example to show that strict quasi-concavity is also

necessary for the irreversibility effect to hold. They do so by establishing that if strict quasi-

concavity is violated then, in fact, the irreversibility effect is violated. The irreversibility effect

(that is, xT > xt* given that x2 < xi) is also shown to be equivalent to J(xi, — J(51,) being

locally increasing in xr where is the more informative signal, is the less informative signal,

and J(51, C) - J(3,1,-) is the value of information.
A slight modification of the numerical example however re-establishes the irreversibility effect

even when strict quasi-concavity is violated. It is also worth noting that strict quasi-concavity is

not very restrictive. Most pausible benefit functions would pass this test. In the original example

the random variable z is assumed to take two possible values, zi and z2, each with probability 0.5.

Furthermore, there are two levels of learning, perfect or none at all. The functional forms of the

benefit functions are:
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Value inkmation for IN Freass-Uknonl 1964 Example

o.

.t
0.8

_ 0.4

0.2

-03
2 pi 4 5 2.0 7-1 8 3p10

FIGURE 1. Value of Information for the Example in Freixas-Laffont 1984

Bi (xi, 0 < Si < 2.57r) = 7r

Bi(xi, xi > 2.57r) = —1.25(xi — 2.57r) + 7r

B2(52, zi) = 252

B2(x2, z2) = — cos X2 +

With these benefit functions strict quasi-concavity is violated, and contrary to expectations,

< xr• J(xi, J(xl, e), the value of information, is not increasing in xi. This is shown in

figure 1 where the choice variable in the first period, xi, is drawn on the x-axis and the value of

information on the y-axis. Note that in the range [27r, 37r] the value of information decreases in

So long as the optima lie in this range the irreversibility effect is violated.

Now consider a slight modification where B1 (x1) and B2 (X2, .Z1) remain unchanged and B2 (X2, Z2)

is given by

B2(x2, z2, 0 < x2 < 27r) = — cos x2 + 1

B2(X2, Z2, X2 > 27r) = X2 — 27r

The original and modified benefit functions are illustrated in figure 2. Both functions are identical

in the range [0, 27r] and thereafter the original function is represented by the dotted line and the

modified function by the broken line.
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Orignimi and Modified Utility Function
7

5

4

3
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2
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FIGURE 2. Original and Modified Utility Functions
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0.8

0.8

0.4

0.2

Value of information for modified F-1. exam*

-0.20 
2 5 2p7 8 304 10 0

x

FIGURE 3. Value of Information for the Modified Example in Freixas-Laffont 1984

With the modified value function strict quasi-concavity is still violated, but now el > er (strictly

greater if the optimum lies between 7r and 27r and equal otherwise) and the value of information is

a monotonically increasing function of xl. These results are shown in figure 3. Note that with the

modified benefit function the value of information no longer decreases in the range [27r, 37rj. The

irreversibility effect holds though strict quasi-concavity is violated.

5. INTERTEMPORAL SEPARABILITY AND THE IRREVERSIBILITY EFFECT

In this section we show that the irreversibility effect holds for a class of benefit functions discussed

in Epstein's analysis of a firm's demand for capital, namely for intertemporally non separable as
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well as separable benefit functions. In the process, we separate the definition of flexibility from

that of the irreversibility effect, and develop a new, less restrictive, definition for the latter.

Consider the following problem faced by a profit maximizing firm:
•%

max (—cK + E, max (E L) — wL))
K>0 L>0

where K is capital, L is labor, c is the cost of capital, w is the wage rate, F is a strictly concave

production function, and pi is the unknown output price. The firm determines its demand for

capital in the first period and its demand for labor in the second period, after it receives some

information about output prices. Capital is thus quasi fixed while labor is variable. In the second

period the firm can neither invest nor disinvest in capita1.3 The question is how does the possibility

of future learning affect the firm's demand for capital in the first period, specifically, is there an

irreversibility effect?

From Epstein's sufficient condition the answer to whether the irreversibility effect holds depends

on the second derivative of the slope of the value function in the random variable. For the following

constant elasticity of substitution production function

F(K, L) = [aK-I3 bL-Ort

where a > 0, b > 0, 3 > —1, 0, 0 < 1a < 1 (where i is a measure of returns to scale) and

the elasticity of substitution, a, is equal to  1 Hartman (1976) has established that the third
(1+13)

derivative of the value function depends on the relationship between the elasticity of substitution

and returns to scale. Specifically, Hartman has shown that if a > (<) (1 1 p) then JK(K, pi) is

concave (convex) in pi. This combined with theorem 1 implies that if a > (<) then the

3Note that if the firm was allowed to invest or disinvest in capital in the second period then the problem faced by the
firm would become intertemporally separable and the irreversibility effect would hold (see Narain, Hanemann and
Fisher (2002) for proof that intertemporal separability is sufficient for the irreversibility effect). Consider the case
where the firm is allowed to disinvest in the capital stock, at a cost, in the second period. The problem described by
equation (5) would change to

(5) L>o,K2<KI
max (—ci + qi max (E riipiF(K2, L) — tvL + c2(Ki — K2))
Ki>o

where K1 denotes capital in the first period, K2 denotes capital in the second period, Cl is the cost of capital in the
first period and c2 is the cost of capital in the second period. Since there is a cost associated with disinvestment
C2 > Cl. Equation (5) can be re-written as

max (c2 — )K1 + E q; max 
<K1 

(EriipiF(K2,L) — L — c2K2)Ki>o L>o,R-2 

Since K1 does not affect the benefit function in the second period, the problem is intertemporally separable. A similar
case can be made for when the firm is allowed to invest in the second period.
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demand for capital is lower (higher) when there is a possibility of learning than when there is no

possibility of learning. Since the demand for capital does not unambiguously increase or decrease

with learning Epstein concludes that this is evidence that the irreversibility effect is violated and

furthermore, that the irreversibility effect does not hold for intertemporally nonseparable benefit

functions.

We shall argue instead that even if the slope of the value function is concave for some parameter

values and convex for other values there may still be an irreversibility effect, because the flexible

value of capital, defined below, also changes with the parameters. Note that the firm can neither

increase nor decrease its capital stock in the second period. Consequently, a priori one cannot tell

whether a high or a low demand for capital in the first period constitutes a flexibility-enhancing

decision. When a is high so that capital and labor can be easily substituted then a lower capital

stock today may very well give the firm greater flexibility tomorrow. If it turns out that the firm

has underestimated production needs, it can compensate for the low stock of capital by hiring more

labor. On the other hand if a is low so that capital and labor cannot be substituted then a higher

capital stock today may maintain greater flexibility tomorrow. If this is so then when a> (<) (1 11)

a decrease (increase) in the demand for capital when there is a possibility of learning constitutes an

irreversibility effect. We show that this is in fact the case and that the model does give rise to an

irreversibility effect. We first define what is meant by flexibility in this context and then show that

the level of capital that gives the greatest amount of flexibility is lower (higher) when a > (<)

5.1. Definition of Flexibility. There are two definitions of flexibility in the literature. One is

expressed in terms of the set of choice variables and the other, made precise by Jones and Ostroy

(1984), is in terms of the set of second period positions that can be attained from the first period

position at a given cost and for a particular state of the world. By the first definition xi' is said to

be more flexible than xr if C2(x) D C2(xr), that is, if the choice set associated with xl` is larger

than the choice set associated with xr. For the second definition, let c(xi, x2, zi) denote the cost

of moving from x1 to x2 given that the state of the world is zi. Then G(xi,zi, a), where

G(xi,zi,a) {x2 : c(xi,x2,zi) < a},

is the set of second period positions attainable from x1 at a cost that does not exceed a in state s.

In general xt is said to be more flexible than xr when for all a > 0 and for all zi, G(x11, z2, a) D

G(xr, zi, a).

•v
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If we attempt to apply the first definition of flexibility to Epstein's model, since capital can

neither be increased nor decreased in the second period, and letting x1 and x2 represent the levels

of capital chosen in the first and the second period respectively, the set C2(xi) is empty. Defining

x2 as the level of labor chosen in the second period does not help to determine the level of capital

that gives more or less flexibility in the second period either as the first period's choice of capital

in no way restricts the choice of labor in the second period. Under this definition, flexibility is

independent of the choice in the first period, a fact that makes the definition too restrictive. Since

the .set C is always either empty (if capital is the choice variable in the second period), or equal to

the entire set of labor choices (if labor is the choice variable in the second period), and thus does

not vary with the level of learning, the set C cannot be used to define the irreversibility effect. Our

definition for the irreversibility effect (see equation 2), on the other hand, with"Xi appropriately

defined, can still be used.

Under the definition of flexibility due to Jones and Ostroy, so long as x1 and x2 are defined in

terms of the choice variables, it similarly appears that the set G(xi, zi, a) is either empty, if the

choice variable in the second period is capital, or equal to the entire set of choices, if the choice

variable in the second period is labor. Note that up to this point we have measured flexibility in

terms of the choice variables, that is, in terms of the choices of capital or labor in the second period

that are feasible given the choice of capital in the first period. One could instead measure flexibility

in terms of the level of output that can be attained in the second period given the choice of capital

in the first. Presumably the firm cares about the level of capital, or any other input, only in so

far as it allows the firm to produce output in the second period. With this alternative measure of

flexibility, if we define x1 as the level of capital chosen in the first period, x2 as the level of output

attained in the second period, zi as the price of output in the second period and a as the wage rate

(which translates into units of labor), then G(xi, zi, a) can be defined as the set of outputs that

can be attained for given levels of capital and labor and for a particular price of output. With this

interpretation the set G is no longer independent of the choice variable in the first period.

The question still remains as to how one compares the set G for. different levels of zi. One

possibility is to define the set in terms of the range of output4 that can be attained for a given

level of capital and to define xl` as being more flexible than xr if the range of output attained by

xsi is greater than the range attained by xr. This seems reasonable as flexibility for the firm-does

4Note that this is consistent with Hirshleifer and Riley (1992) who point out that flexibility is different from the
range of actions which in our example would mean the range of capital or labor. We instead equate flexibility to the
range of outputs.

.%
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manifest itself in terms of the range of output that the firm can produce. If the firm learns that

the price of output is likely to be high tomorrow, it would like to produce a high output and if it

learns that the price is likely to be low, it would prefer a low output.
.t

5.2. Proof of the Irreversibility Effect. With this understanding of flexibility, we now prove

that the most flexible level of capital changes with a change in the parameters and furthermore, that

the level of capital that gives the greatest amount of flexibility is lower (higher) when a>

Proposition 1. If a> (<)-P-T, then k =

where k is the level of capital that implies the greatest amount of flexibility, K is the minimum

capital stock and IC is the maximum capital stock.

Proof. Let y-(K) denote the range of output that can be achieved for a given level of capital and let

7 = ja.. Note that when a> 7 < (>)1 since a = -1+10 > (<)-1.implies that p < (>) - P.

y-(K) = + br-13)7 - (aK-fi + bL-13)7

where L is the minimum labor and Z is the maximum labor. The derivative of the range of output

with respect to the capital stock is given by

= -a7f3K-(13+1)((a1C-13 + br13)7-1 - (aK- + bk.-fir-1)ax
When 7 < (>)1, < (>)0. This in turn implies that when 7 < (>)1 then the level of capital

that gives the maximum range of output, k, is equal to the minimum (maximum) stock of capital.

By our definition of the irreversibility effect (see equation 2), the effect holds for a > (<)i l

if WI - k11 - k11, or 111 5- IKI* -111 - KI IKr - El), or K; 5_ Kr

> Kr), where Kik is the choice with greater learning and Kr is that with less learning.
Since this is in fact the case, we have shown that the irreversibility effect holds for this example.

Moreover, this proves that the irreversibility effect is not violated in models with intertemporally

nOnseparable benefit functions.5

5Note that if the elasticity of substitution is equal to 1, that is, a = 1, so that the production function is a Cobb-
Douglas, then 7 = 0 and a higher level of capital, unambiguously, gives a greater range of output. If a = 0, so that
the production function is a Leontief, then it is difficult to determine what level of capital gives greater flexibility
tomorrow.
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6. TWO CASES OF VIOLATION

We now come to the two cases where the irreversibility effect is violated to argue that these

are somewhat special, or perhaps empirically unimportant. The first case is where the benefit or

utility function is not strictly quasi-concave, as in the numerical example discussed by Freixas and

Laffont (1984). Utility or profit functions are however normally specified as concave, or at least

quasi-concave, in accordance with intuition and some evidence. Further, as we show in section 4,

strict quasi-concavity is not necessary for the irreversibility effect to hold, merely sufficient. That

is, the effect can hold even when strict quasi-concavity is violated.

The second case arises in the consumption and savings problem discussed by Epstein. In this

problem an individual allocates an initial amount of wealth between consumption and savings over

three periods. Investment in the first period yields a fixed return while investment in the second

period yields a random return. Some information is gained about the random rate of return at the

beginning of the second period. In symbols, the problem is:

max Bi (w — x1) + Eq.; max (B2 (rxi — x2) + EriJB3(x2zi))
where x1 and x2 denote savings in periods 1 and 2 respectively, w is the initial wealth, r is the sure

gross rate of return to the first period savings, fi is the discount factor, zi is the random gross return

to second period savings, B1 is the utility function in the first period, B2 is the utility function in

the second period, and B3 is the utility function in the third period.

With the following constant relative risk aversion utility function,

-6-17--Zy i
B(c) = 

f a 1,

log c if a = 1,

where a is the coefficient of relative risk aversion, Epstein shows that the effect of learning on the

optimal level of savings in the first period depends on the elasticity of intertemporal substitution,

that is, on a = When a > 1 the slope of the value function is convex and the possibility of

learning about the future rate of return leads to an increase in savings in the first period. On

the other hand, when a < 1, the slope of the value function is concave and the possibility of

learning leads to a decrease in the level of first period savings. With a> 1 consumption between

periods is highly substitutable and the decisionmaker cares more about the sum of expected utility

across the three periods and less about consumption smoothing between periods. This in turn

implies that faced with uncertainty about the rate of return to second period savings and the
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possibility of learning about the return, the decisionmaker postpones consumption until she has

better information. This in turn helps avoid a situation where the rate of return is revealed to be

higher than expected and savings are too low to exploit the situation. If, on the other hand, gross

return to second period savings is lower than expected then she can simply increase consumption in

the second period without any loss of utility. Consequently, first period savings are increased. With

a < 1 consumption between periods is not highly substitutable and the decisionmaker cares more

about consumption smoothing than about total expected utility. Furthermore, learning enables

her. to better allocate consumption between the second and the third periods thus increasing the

sum of expected utility in those periods. Consequently, first period savings are reduced to balance

consumption between the different periods.

Since savings in the second period are constrained to be no greater than the gross rate of return

times savings in the first period and since the level of savings does not unambiguously increase with

learning, this is evidence that the irreversibility effect is violated in this problem. Specifically, the

irreversibility effect is violated when a < 1 as xl < xr while -±1 = w and thus WI — wi Ixr —

Note that the violation is not due to the fact that the net benefit function is intertemporally

nonseparable but rather due to the fact that the benefits are intertemporally non-substitutable or

the coefficient of relative risk aversion is large. Under these conditions the decisionmaker cares more

about benefits in each period than about total benefits. Note that this is somewhat of a special

case as it rules out what we may call the standard specification of the benefits of an investment,

in which they are simply summed over time, discounted as appropriate, with no restrictions on

the relationship of one period's benefits to those of another. Under the standard specification the

irreversibility effect continues to hold.

The consumption and savings example also enables us to shed light on another issue in the

literature on the irreversibility effect, namely whether risk aversion can be separated from the

irreversibility effect. Kolstad (1996) has argued that it can, while Gollier et al suggest not. To

atialyze this issue, we need to consider non-expected utility preferences, as in these, unlike in Von-

Neumann-Morgenstern preferences, the coefficient of relative risk aversion is not constrained to be

the reciprocal of the elasticity of intertemporal substitution. The effect of risk aversion can thus

be separated from that of intertemporally substitutability.

Consider the following generalized isoelastic preferences instead of the constant relative risk aver-

sion utility function (otherwise the problem is the same as Epstein's consumption-savings example):

.1
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Jt = B(ct,EtJt-Fi)

((1 —s)cl—P+,3[1+ (1— — a)EtJt+1]1=0
1—ca
1—p

— 1

(1 — —a)

where fi E (0, 1), a > 0 and is the coefficient of relative risk aversion and lp = a is the elasticity of

intertemporal substitution. Note that a is no longer constrained to be equal to -k. Unfortunately,

with isoelastic preferences it is hard to establish the relationship between the convexity or concavity

of the slope of the value function and a and p analytically and so we turn to numerical simulations

to separate the effects of risk aversion and intertemporal substitution. Our simulations, which

compare the optimal choice of savings in the first period with perfect learning and with no learning

for a wide range of parameter values for a and p, give the results in table 1.

Table 1: Experiments with Generalized Isoelastic Preferences

a < 1 a > 1

a < 1

a > 1

When a < 1 it is feasible for xl` < xr, that is, for savings to decrease with learning for both

a < 1 and a> 1. However, when a> 1 rel is always at least as large as xt* irrespective of the
coefficient of relative risk aversion. This implies that though the irreversibility effect is violated even

with non-expected utility preferences, the violation is caused by a low elasticity of intertemporal

substitution and not by a high coefficient of relative risk aversion. This numerical result provides

some support for an assertion by Epstein that violation of the irreversibility effect can be attributed

to intertemporal substitution rather than to risk aversion. Furthermore, it supports Kolstad's

assertion that the irreversibility effect can be separated from risk aversion.

7. CONCLUDING REMARKS

The central point of the paper is that the irreversibility effect holds more widely than one might

conclude from the existing literature. Conditions suggested as necessary and sufficient appear to

be only sufficient. Further, for an important case in which the effect appears not to hold, intertem-

porally nonseparable benefit functions, we show that it does, based on a careful analysis of the
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concept of flexibility. Finally, of the two cases where the effect is violated, the numerical exam-

ple discussed by Freixas and Laffont and the consumption-savings problem discussed by Epstein,

the former appears, to say the least, to be an unusual problem, one that does not correspond to

an ordinary economic model, as the violation of the irreversibility effect involves a violation of

quasi-concavity. The consumption-savings problem generates a violation of the effect if in addition

to being intertemporally nonseparable, preferences are intertemporally non-substitutable. Conse-

quently, even for this problem, if the decisionmaker cares about total benefits over time and not

too much about benefits in each period, the irreversibility effect holds.

,•
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