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Abstract

\W_e examine cooperative harvesting in a sequential fishery with stochastic shocks
in recruitment. Two fleets harvest in a stochastic interception fishery. We analyze coop-
erative management as a non-cooperative game, where deviations from cooperative har-
vesting are deterred by the threat of harvesting at non-cooperative levels for a fixed num-
ber of periods whenever the initial stock falls below a trigger level. We illustrate the se-
quential harvesting game with an application to the Northern Baltic salmon fishery. Co-
operative harvesting yields participants substantial gains in terms of expected payoffs.
The greatest gains accrue to the fleet harvesting the spawning stock, the actions of which
are not observed by the competitor. An explanation for the prevalence of fish wars is pro-
vided in that even if a cooperative agreement is reached, shocks in recruitment trigger
phases of non-cooperative harvesting. Further, the cooperative solution can only be
maintained when stock uncertainty is not too prevalent.

Keywords: fisheries management, shared resources, sequential fishery, non-cooperative
games, stochastic recruitment.

* This study has benefited enormously from ongoing discussions with Larry Karp and from helpful com-
ments from Jeffrey LaFrance. All remaining errors are the author's sole responsibility.
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I. Introduction j fi VP

Migratory fish stocks breed in one area, move to another to grow, and return to

their breeding area to spawn. During their migration the stocks are harvested in a

sequence of fisheries. Each fishery affects the stock available to the next fishery in the

gauntlet and therefore its economic performance. For example, salmon spawn in rivers,

feed in the open sea, and return to their home rivers to spawn. Southern bluefin tuna

spend most of their juvenile phase along the coast of Australia, then migrate to the high

seas between South Africa and New Zealand. Pacific Halibut travel along the coast of

Canada and the United States. If a single authority controls each fishery, two basic

management options arise: each fishery manager can either maximize the return from his

own fishery, or cooperate with other fleets in order to maximize the aggregate return, and

bargain for a share of that return. In a cooperative solution, agents negotiate over the

amount of fish they leave behind. When recruitment is deterministic, they can monitor

adherence to the agreement through the stock available at the outset of harvest.

Hannesson (1995) studies the case of two sequential fisheries., and examines cooperative

management as a self-enforcing equilibrium supported by the threat of harvesting non-

cooperatively forever if deviations are detected. Otherwise, transboundary management

of sequential fisheries has received little attention. McKelvey (1997) considers side

payments in a sequential fishery. Kaitala and Pohjola (1988) address the related problem

of joint harvest in a single fishery simultaneously exploited by two agents.

Stochastic fluctuations in stock recruitment complicate the joint management

problem. When recruitment depends on both the spawning stock level and unobserved

shocks, the agent who harvests the initial stock cannot infer the amount of fish left behind

by the other agent. Cooperative harvesting equilibria supported by the threat non-

cooperative harvesting ad infinitum break down. We study an agreement designed to

overcome this problem and maintain coordinated harvest as a self-enforcing equilibrium

in the case of stochastic recruitment. We incorporate stock uncertainty into Hannesson' s

(1995) setting and apply the model of non-cooperative collusion developed by Green and

Porter (1984) to a sequential fishery. We consider two fleets, each controlled by a sole

authority acting independently. Differing from Green and Porter (1984), one agent's

action follows that of the other.



The sustainability of a cooperative solution is an empirical question. We apply the
model to data for the northern It altic salmon fishery. The numerical results indicate that
by cooperating both parties could obtain substantial gains in expected payoffs. For most
parameter values, the agreement is characterized by an arbitrarily small likelihood of
reversion to a punishment phase. For a range of parameter values, the optimal length of
the punishment phase is practically infinite.

2. The Model

Assume that a fish stock migrates between two areas. It breeds in Area 2, and
migrates to Area 1 to feed. Agent 1 harvests in the feeding area. At the outset of the
season in year t he has access to the initial stock X , which he harvests down to the
escapement level S. The escapement left behind by Agent 1 migrates to Area 2, where

Agent 2 harvests I e stock down to the escapement S 2t The escapement left behind by
Agent 2 spawns, producing recruitment of young fish that in turn migrate to Area 1 to
feed. The stock available to Agent 1 in year t +1 is given by

(1) Xt." \

where R(S) is the expected or average spawning stock - recruitment relation, and lot

is a sequence of independent identically distributed random variables with unit mean.
Each 041 is a shock to the recruitment the agents cannot observe directly. The random
multipliers are distributed on some finite interval [a,b], where 0 <a<1<b<0., with

a common cumulative distribution function F and continuous density f. The recruitment

relation R(S) is differentiable and strictly concave, and b '(0) > 1 and

Ern 2 . aR/(S 2) < 1 There will

and

en be finite population levels

U = max{b (S ) bR(S12 z, z

1 = maxia (S): ( z, z
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such that the population will enter and stay within the interval [/, , on which in will
have a stationary limiting distribution (Reed 1978 and Reed 1979).

Let x denote the current size of the exploited stock at any moment in time, ci the

constant unit cost of fishing effort for agent i, and pi the constant price of catch.

Assuming that the harvest follows the Schaefer production function, the marginal cost of
harvest for each agent is given by ci / x. The profits in period t to Agent 1 from

harvesting the stock from X' down to Slt are given by

(2)
='( 1

P —s; = MX' c1(in xt — in

The period t profits to Agent 2 from harvesting the spawning stock from S; to S2t are

..s?(

(3) 71.2i = f P2 = p2(5:—S;)—c2On ,S; — in

The agents are risk neutral and maximize their expected discounted net revenue

ELootird, where 8 is the common discount factor.

The actions available to each agent in period t are setting the escapement levels,
for Agent 1 and St2 for Agent 2. Agent l's strategy s; R+21+1...4 R+ defines Agent 1 's •

escapement as a function of past and present recruitments and Agent 1 's past
escapements by s; (X °,..., x,, s,09..., sti -1) = S. 3 The choice of domain reflects the fact that

Agent 1 does not observe escapements left behind by Agent 2 but only perceives the
initial stock level X" at the beginning of the fishing season. Agent 2's strategy
s2, _...> R+ defines Agent 2's escapement level as a function of past and present

Agent I escapements and past Agent 2 escapements by s; Sit ,,V2) s2t-1 S. . Agent

2, unlike Agent 1, observes the competitor's escapement S. . A contingent strategy for



agent i is an infinite sequence s, = A Nash equilibrium is a strategy profile
s2.) that satisfies

(4)

X' (4115. E [
sla.s2,

1.0

co.

E [Egir,(4,5",.)15. E .[Egig2(52%sio,s2 
sl1=0 t=0

for each agent i and all feasible strategies si.

Reed (1979) showed that a constant escapement policy maximizes the expected
discounted net revenue from a stochastic fishery in the case of the Schaefer productio
function. If it were possible for Agent i to manage the resource as a sole owner, the first
order condition for the sole owner optimal escapement level would be

(5) p, —c, 1 s, (S,)j.

Let s: denote the solution to (5). Agent i's sole owner optimal escapement Si° would be
= 5,* if X > S: , and Si° =0 otherwise. Assuming that S: is always feasible in that

01 for all 9' e [a,b], the stochastic and deterministic models en yield the
same sole owner optimal escapement (see also Clark 1990).

30N -coo eration in a stochastic sequential fishery
We next examine non-cooperative harvesting where each agent makes s harvest

decision without considering its effect on the other agent's expected payoff. There are no
negotiations or understandings between the agents. We confine our attention to interior
solutions where both agents participate in uncoordinated harvest in every state of nature.
Each agent sets H s escapement to maximize the expected present value of his profits,
taking as given the other fleet's escapement which he can only infer from ii!s knowledge



of the other fleet's objective function. The optimal escapements are constrained by the
non-negativity and feasibility constraints 0 5_ Si' and 0 Si2 S..

The lowest profitable escapement levels are the zero marginal profit levels cl /

and c2 P2 . Agent 1 will harvest in period t only if his marginal net revenue p, c, / X' at

the outset of harvest is positive. Agent 2 will only harvest if p2 — c2 / Sii is positive. We

assume that 01R(c2 p2) > c1 /p1 for all 0 E [a,b], and that ci /p1 > c2 /p2. Both agents
then harvest at any state of nature. The expected discounted payoffs in period t are

(6a) EVI(x' ,S,')= p, (x' — in )+ sEy [oi R(s; ), s;+' I

(6b)

With X' >c1 .1 p, and SI2 given it is optimal for Agent 1 to harvest to the zero marginal

profit level ,S; = c1 / p1 , which maximizes short-term profit. Similarly, with S,' > c2 /p2

and S;+` given, Agent 2's optimal escapement is S = c2 /p2 .1

The competitive harvesting game has a stationary equilibrium in the strategies

{SIN = CI /p1

S2N -= C2 i P2 '

These escapements give rise to the expected non-cooperative equilibrium profits Er['

and g2N . The escapements are below optimal levels, since the agents do not account for

If c, I p, I p„ Agent 1 will maximize his expected payoff by excluding Agent 2: Agent 1 will be
able to harvest down to a stock level that is unprofitable for Agent 2, and force Agent 2 to leave an
escapement S = S. . Agent 1 will then maximize (6a) subject to the constraint S: 5_ c2 I p2. Similarly, if
bR(c2 / /32) 5c, I p,, Agent 2 will exclude Agent 1 by harvesting down to an escapement producing
recruitment at which it is not profitable for Agent 1 to harvest, forcing Agent 1 to leave an escapement
0' R(S). Agent 2 will then maximize (6b) subject to the constraint bR(S'2) 5c, I p,. If
9'R(c2 / p2) 5_ c, I p, only for some 0' <b, Agent 2 will only be able to exclude Agent 1 in bad seasons.
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the effect of their harvest on e fish stock. fly fish in excess of SiN left behind by Agent
1 would be harvested by Agent 2, while a spawning stock larger than S;s1 left behind by
gent 2 would only benefit A, gent 1.

.,

We study whether preplay communication, without commitment, enables the
agents to manage the resource more success illy. ssume that the agents confer, and
a ee on so e cooperative escapement levels other than Sr li, at yield higher expected
payoffs to each agent. Hannesson (1995) examines the case where cooperative harvesting
is supported by the threat of reverting to non-cooperative harvesting forever if defection
is detected. Stock uncertainty complicates the enforcement of harvesting agreements
since agents are no longer able to directly observe the actions of their competitors. We
next examine conditions under which cooperative harvesting can be sustained as a self-
enforcing equilibrium when stock fluctuations are incorporated into the model.

..4. Cooperative Management

Assume that e agents negotiate and agree on a constrained Pareto efficient joint
harvesting strategy, wi escapement levels Slc and S2C such that Sic > SIN and S2C > 4' .
If side payments are not possible, each agent must harvest to earn a profit. Cooperative
escapements give rise to the expected single-period profits Egic a d 2r2c , where

Egic > EriN and gf > g2N . The agents settle on the threat strategies of reversion to the

non-cooperative escapements SIN and g for T —1 periods if violations of the agreement

occur.2 Since Agent 1 only observes recruitment X f , which depends on both stochastic
shocks and Agent 2's escapement, a gger level Y is set which recruitment has to
exceed for Agent 1 to continue cooperation. Agent 2 observes S; and hence Agent l's
adherence to the agreement.

Suppose the agents en commence harvesting in accordance with their
cooperative escape ent levels Sic and S2C in a Nash equilibrium in trigger strategies.

They continue to do so until recruitment X i falls below the trigger level X, or Agent 1

2 Using non-cooperative escapements as threats is plausible because of their Nash equilibrium property.
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leaves an escapement S; below the cooperative level Si c . Then T -1 periods of

punishment phase follow, during which the agents harvest to the non-cooperative

escapements SiN and ,S;' regardless of what S; and X' are. At the conclusion of the

T -1 punishment periods, agents resume cooperative harvesting. Cooperation prevails

until the next time that X <5-c or Si < Sic . Assuming that S < SIN and S N < OR (5 I )

for all OE [a, b], both agents continue to harvest in the punishment phase.

Formally, the agreement is defined as follows. The game has normal and

reversionary stages. Agent 1 regards period t as normal if

(a) t=0,

(b) t-1 was normal and X > , or X t-T <X and t T -I was normal,

and reversionary otherwise. Agent 2 regards period t as normal if

(a) S; Sic and t =0 or t-1 was normal,

(b) <S and t - T was normal,

and reversionary otherwise. The agents act sequentially. Their strategies are defined by

{S,' if t is normal

Si" if t is reversionary.

We first determine the conditions under which cooperation is optimal for Agent 1.

Table 4.1 summarizes the definitions used in the discussion.3 Agent I cooperates in a

normal period t if the expected value EV,' (sr, X') of doing so is greater than that of

cheating, EViN (51,N , x ). Formally, cooperation in a normal period t is optimal if

EV," (sr, ) 5. EV ic(sr,  ) for X . In order for the threat of reversion to the non-

cooperative Nash equilibrium escapement Si" to be credible, it must also be optimal for

Agent 1 to harvest down to S," when X' X. We must thus have

EViN (S7 , X f EV," (S," , X ) for X' . At X' = X, the two conditions yield



(7) EV iN (S 7 9 = EV Lc 50 .

Condition (7) determines a trigger stock level ic for any given ,S,c S2c , and T such that
Agent 1 will adhere to the agreement, and harvest cooperatively in normal periods but
revert to punishment phase at low stock levels.

[Table 4.1 here]

To write out (7), we first write out Agent l's expected payoffs from cheating and
from cooperating. The expected payoff from deviating and harvesting down to SiN is

T-1

(8) EViN (S7 ,Xt)= 7r,(9,14 ,r)+ E ar 0), + oT EVic (S,c
r=1

The current period payoff from deviating is re, (siN r ). gent 2 detects cheating with
certainty and commences retaliation, harvesting to his non-cooperative escapement S.
Non-cooperative harvest then continues through T reversionary periods wi the
expected profits co, . In reversionary periods it is optimal for Agent 1 to apply his Nash
harvesting strategy. The expected payoff from resuming cooperation in period t + T is
Evfc (Sc le )9 with Agent 2 first returning to cooperation in period t + T

gent l's expected payoff from cooperating and leaving S,c in normal periods is

3
in order to avoid cumbersome notation, we suppress S, and T in Agent l's expected payoffs here.Agent l's payoff will depend on these variables, but they are not choice variables for him once theagreement has been negotiated.

4 In a more symmetric structure Agent I would first return to cooperation if he deviated first. However,only Agent 1 observes the initial stock level. Agent 2 would not know whether Agent 1 is cheating orpunishing Agent 2 after observing a low stock level. Agent 1 would always pretend that the latter be thecase.



(9)

EVic (Sic, X gi (Sic, X )+ [1— F(5-e/R(S ))6EVic (Sic, c i 
c )7)

F (k- I R(S (57 E8rco, + ST41 EV1c (S„
r=2

In period t Agent 1 obtains the cooperative profit g1(s, ,Xt). If X exceeds the trigger

stock Tk-, cooperative harvest continues with the expected payoff EVic (Sic c 1.kc

If X1+1 is below Y, a reversionary phase begins. In the first retaliatory period, Agent 1
obtains the expected profit yi , followed by T —1 punishment periods with expected

profits w1. Cooperation resumes in period t T +1, with expected payoff E V ic (5' ,c ,

Using (8) and (9), at Xt = X equation (7) can be written as

(10)

gi (Sic , :k7) = FokEVic
52 ST+I

FO 454,r1 4.  t'  col + 8T+1EviC (sic , )7c
1-8

81-- _sr
[1-8
 a) +ST EV,c(S,c

Equation (10) states that Agent 1 only prefers cooperation if the probability 0/ R(S2c

of entering a reversionary phase is sufficiently low.

We next consider next Agent 2's problem. Table 4.2. summarizes the notation.
Agent 2's actions are not observed directly. Unlike Agent 1, Agent 2 then faces a
continuous choice of escapements S, in normal periods. The escapement determines his

current payoff and the probability of cooperative versus reversionary play in the next

period. Given S, )7 and T, Agent 2's chooses a cooperative escapement S2 that

maximizes his expected payoff from cooperative harvesting. Let S,c denote Agent 2's

optimal choice. Let EV,' (S7 ,s,N) denote Agent 2's expected payoff at the beginning of a

punishment phase. Agent 2's expected payoff EV(S,` ,s2) then satisfies the functional

equation
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Ev2c (s,c , s2 ) = g2 (s.c ,S2)+[1 F(Y I "(S2))
+ F(5-C-*/ (s ) V: (S7 , S';`' )

. g, (sic , s2 )+, [11 — F(y / (52)) ,

+ F(5-( I . (S2 ))6ri 8r(02 + 8T-17r2 (57 9 s2)r=0

+ sT I — F(k- i (s2 ))1Ev2c (s,` , s2 )4- F(Y/ R(S2 ))E1/213 (SiN ,S" )11
ffir

In a normal period t Agent 2 harvests Agent l.'s cooperative escapement s,c . If Xt+1 > Y ,
cooperation continues in the next period. If X'+' <X , Agent 1 harvests down to SIN, and
T —1 reversionary periods with 1 he non-cooperative profit (02 follow. In reversionary
periods it is optimal for Agent 2 to harvest to 4 . In period t +T , Agent 2 first returns to
cooperative harvesting, with the profit n2 (SiN , 52 ) . Depending on X1+1 , cooperative
harvesting resumes in period t +T +1, or another reversionary phaseis entered.

[Table 4.2 here]

Solving (12) for Agent 2's expected discounted payoff EV2(s,c , S2) yields

— F(Y I R(S2))8T kr2 (S,C 9 S2 ) — 7r2 (SIN , S2 A +  (02 (12) EV2(sic , s2 ) = g2 (SIC 9 s2) — (02

1-8 + (8 —81F(5-f- 1 R(S2)) 1-8*

The details of 1 le derivation are presented in Appendix 1. Agent Ts expected discounted
payoff consists of the non-cooperative profits, plus the single-period gain from harvesting
cooperatively, appropriately discounted. The gain from cooperation is adjusted for Agent
2's loss from first returning to cooperation after a reversionary phase.

Given Sic , X, and T, gent 2's optimal cooperative escapement S2C must satisfy

(13) EV2c (Sic , S2 ) :5. EV2C (S IC 7 Sf ) for all S2.
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Assuming an interior solution, the necessary condition for (14) is aEv(s,c ,s,c)/ as, = o,
which from (13) equals

(14) 0 = [-/-s7 (S; , - +(a- gr+i)F(Y I R(Sf

+ f I R(S))YR'( 
S 8T+117. 1. 2 (.5 s ) 7z. 2 (s s )11

R(Sf )2 2 .

Agent 2's optimal cooperative escapement S2c balances the marginal benefit of additional

harvest with the marginal increase in the risk of losses resulting from a switch

reversionary play. Equation (14) implies d 2 (s, , S2 )/ as21s2=sf < 0 . Since

a2g2(s,c, s2)/(as2)2 < 0 , comparing (14) to the condition that determines Agent 2's non-
cooperative escapement level, ar2 (SIC , S2 )i as, =0, we see that the cooperatives2.4

escapement always exceeds the non-cooperative one.

The parties confer prior to commencement of harvest, and agree on T and Sic that

maximize a weighted sum of their expected payoffs, subject to the trigger stock equation
(10) and Agent 2's first order condition (14). Given T and ,S,c , equations (10) and (14)

determine -.7e- and S. . The cooperative equilibrium is constrained by the requirement that
each agent obtain at least his expected non-cooperative payoff. Formally, suppose that the
agents negotiate in period 0 after the stock X° has been observed. Let a be the weight
on Agent l's expected payoff and (1- a) that on Agent 2's expected payoff. The
objective is to choose SI'. and T that maximize the expected joint payoff

(15) .1(S,, S2 , X,T, X° = otEV2c S S2, X, T, X° )+ (1- a*V2c (s„ S 
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subject to conditions (10) and (14). For any S,c and T, the constraints determine Sf and

X. 5 A cooperative solution characterized by T, )7, sLc, and Sf such that conditions
(10) and (14) hold is a self-enforcing equilibrium, and the strategies are subgame
perfect.6 Varying with the weight on each agent's preferences, there are an infinite
number of joint value maximizing cooperative solutions.

We next determine the expected fraction of time spent in cooperation during a
cycle, denoted by M, and the expected ratio of cooperative to non-cooperative periods,
denoted by N. If cooperation lasts i periods and a punishment phase T —1 periods, the
fraction of a cycle spent in cooperation is i/(T —1+ i). Given that period t —I was

normal, e probability of reversion in period t is F(S2c, TO and the probability of

cooperation 1— F(S2c, k). The expected fraction of time spent in cooperation during a
cycle is

(16) i_E-
,...0 7' —1+i r 1 — F (.5 f ., 501 F (S f ,ii) .

- ,
The expected number of cooperative periods in a cycle is y i1.1— F(S2c, 5-ClF(S2c., k-).

i=0

The expected ratio of cooperative periods to punishment periods then is

(17) N= 1  i 41 — F (S 2 , i)l' F (S „ -I ) .T

5. E piric illustration: the Northern Baltic Salmon Fishery
We illustrate the joint management game with an application to the Northern

altic salmon fishery. The No em Baltic salmon stock is harvested sequentially by

it

I.

5Mirrlees (1999) points out difficulties that may arise in solving a maximization problem of the typediscussed here. Using the Lagrangian method of constrained optimization is only legitimate when for anyIS, , Te, T1 there is a unique S, that maximizes EV,(S,,S,,k,r). If this is not warranted, an analogue of
the Kuhn-Tucker method depicted by Miurrlees (1999) may be used to solve the problem.6 The equilibrium is not renegotiation proof, since the agents could negotiate if low stock levels have beenobserved, and resume cooperative behavior, avoiding the punishment stage.
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commercial offshore and inshore fleets. Stock recruitment fluctuates, mostly due to the

M-74 disease. Economically sound cooperative agreements have not been reached. The

computations indicate that the cooperative solution we propose could be sustained for a

range of parameter values. Since we consider a simplified model of the fishery, our

application is primarily used to illustrate the sequential harvesting game rather than to

prescribe policy in a specific fishery.

The offshore fishery corresponding to Agent 1 in our previous discussion harvests

the stock first. The inshore fishery corresponds to Agent 2. The structure of the Northern

Baltic salmon fishery is more complicated than the basic case analyzed above.7 Only a

fraction a of the offshore escapement moves inshore to spawn, while a fraction p
remains offshore till the next season. A recreational river fishery harvests the stock left

behind by the inshore fishery. River harvest share is small compared to that of the

commercial offshore and inshore fisheries, and was here assumed to remain constant.

Only a proportion v of the stock is wild salmon that reproduce.

Table 5.1 displays the parameter values. By assumption, average recruitment

follows the Ricker recruitment relation R(S2) = k(v S,— H,)exp[/(vS, —HO], where H3

is harvest of spawning salmon in the river fishery and k and 1 parameters, estimated by

Romakkaniemi (1997). In addition to natural reproduction, constant stockings I maintain

the stock. The stock available to Agent 1 in year t is X ' = I + fiS: +6' R(S;) . We

consider the case of 0 uniformly distributed:

(18) f(19

1
for a 5,6 0 _.L.

b — a
0 elsewhere,

where a =1— E and b =1+ e, with 0< e 5_1. The mean of this distribution is 1 and the

variance o-: = e2 /3. We let e = 0.5 in the base case.

[Table 5.1 here]

7 The description of the fishery follows Lauldcanen (1999).

..
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Adjusted for stockings and a part of offshore escapement remaining offshore till
the next season, k, gent l's participation constraint is I + Pc, /p1 + a (c, 1 p,)> c, /p1
and Agent 2's ov, /p1 > c, /p2. Since the population is partially maintained by stockings,
the parameters in Table 5.1 satisfy the participation constraints for all 0< E 5.1. The
value of S2c is no smaller than ,S1;/ and no larger than cSic , the part of the cooperative
offshore escapement moving inshore. The value of Stc is no larger than the maximum
offshore escapement with no Agent 1 harvest, [1' + uj/(1— fi), where u is the upper bound

to recruitment Since the probability of reversion is 1 for values of 5-c-- larger than u, it
suffices to consider trigger stocks --i- between 0 and u. The optimal agreement was
computed by maximizing J subject to these constraints, with the weight a on Agent It's
payoff varying between 0 and 1 in steps of 0.1.

Figures 5.1 to 5.3 illustrate the optimal agreement. Table A.1 in Appendix 2
displays the full set of results. The cooperative solution can be sustained for any weights
on e two agents' payoffs. Each agent must obtain at least his non-cooperative payoff. In
addition, the optimal agreement has to satisfy ! he individual optimality conditions (10)
and (14). Each agent's payoff enters the joint maximization problem through these
constraints even with a zero weight on it in the objective nction. us, bo agents gain
from cooperation no matter the weights on their payoffs.

Agent 1 's expected payoff increases monoto ically with its weight, whereas
gent 2 is better off when some weight is given to the competitor's payoff. The trigger

stock 51- set by Agent 1 decreases in a, as Agent l's gains from cooperation increase.
Agent 2's gains and thus his optimal escapement decrease in a. Since the probability of
reversion increases in --i- and decreases in Sf, , it needs not be monotonic in a. Giving
some weight to Agent 1 may then decrease the probability of reversion and increase
Agent 2's expected payoff, as in our example.

For any weights a, Agent 2 has the greatest relative gains from cooperation with
expected payoffs 10 to 14 times his non-cooperative payoff. Agent 1 is at most able to
double his expected payoff. gent 2's relative advantage is explained by the asymmetric
structure of the game. Since gent 2's actions are not observed, he can choose S2c
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optimally given the values of sic, Y, and T. Agent 1 only has the choice between

leaving S,c and S7 . Since Agent l's deviations are observed directly, the optimal

deviation is always to harvest down to S7.

[Figure 5.1 here]

The probability F(s2,Y) of entering a reversionary period is close to zero for all

weights a. The optimal length of the punishment phase is finite, ranging from 2 to 11

years. The smaller the weight on Agent l's payoff, the longer is the punishment phase.

The expected fraction of time spent in cooperation, M, increases from 0.89 to 0.99 as the

weight on Agent l's preferences increases and the probability of reversion decreases. The

expected ratio of time in cooperation to time in punishment, N, increases rapidly as the

probability of reversion decreases, ranging from 26 to 2,800.

[Figures 5.2 and 5.3 here]

5.1 The Effect of Stock Uncertainly on the Optimal Agreement

We next examine the sensitivity of the optimal agreement to the level of stock

uncertainty. In addition to e =0.5, we computed the optimal agreement at 6=0.2,

= 0.6 and e = 0.8. Figures 5.4 and 5.5 compare the results at S = 0.2 and e = 0.5 (see

also Table A.2 in Appendix 2). The agreement at 6 = 0.2 is similar to that at 6 = 0.5, but

the expected payoffs vary more with the weight on the agents' payoffs. The lower degree

of uncertainty gives Agent 2 less freedom in choosing his optimal escapement,

decreasing the relative advantage of Agent 2 over Agent 1. At large weights on Agent l's

payoff, Agent 1 gains more from cooperation, obtaining expected payoffs over five times

his non-cooperative payoff. Agent 2 gains less. No cooperative solution agreeable to both

agents exists at S = 0.6 or 6 = 0.8 .8 Large variations in stock recruitment make Agent 2's

8 Equations (10) and (14) were not satisfied simultaneously for any values of 0 a 5..1
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optimal escapement small. Agent 1 then is better off cheating and harvesting down to his
non-cooperative escapement. Agreements on cooperation break down.

(Figures 5.4 and 5.5 here)

5.2 Alternative Parameter Values

The economic characteristics of the offshore and inshore fleets in e Northern
altic salmon fishery differ markedly. Furthermore, only a fraction of the offshore

escapement moves inshore to spawn. To study the extent to w ch our results were driven
by the economic differences of the fisheries, we computed the optimal agreement for an
alternative set of parameter values. We used the Baltic salmon fishery data but changed
the inshore price equal to the offshore price, and set the inshore fishing costs 20% below
the offshore costs. 9 The fraction of spawners was set equal to one. Stockings were still
included in the stock equation. The alternative parameter values satisfy the regulatory
conditions of section 3 for any e. The results for e alternative parameter values were
similar to those for the actual Northern T. altic salmon fishery data. We next summarize
the results. The full results for the alternative parameters are available from the au or
upon request.

Cooperation was again sustained no matter e weights on the agents' payoffs,
with Agent It's expected payoff practically the same for any weight a. Agent 's gains
from cooperation were now negligible. With Agent 2's prices and costs similar to those
of Agent 1, Agent 2's harvest share under non-cooperation is small. Thus Agent 1 who
harvests e stock first faces little competition, operating practically as a sole harvester.
The cooperative agreement then yields gent 1 little additional profit. The punishment
phase was practically infinite for most values of a, at 160 periods, with a probability of
reversion arbitrarily close to zero. Cooperation could again only be sustained at moderate
levels of uncertainty.

uncertainty.

oth agents' gains from cooperation decreased with stock

9 In the actu data the offshore price is 15 % higher than the inshore price, and the offshore unit costs 70 %higher than those inshore.
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5.3 Implicit versus Explicit Enforcement: Joint Management with Stock Monitoring
An interesting policy question is whether an agreement with no escapement uncertainty is
more stable than the trigger stock solution. Are there gains from explicit enforcement in
the form of measuring the spawning stock? To study joint management with stock
monitoring, we applied Hannesson's (1995) cooperative management model to the
Northern Baltic salmon fishery data. We modified the model to include stochastic shocks
in recruitment. Figure 5.6 displays the results (see also Table A.3 in Appendix 2). Each
agent's escapement is now observed. Differing from the trigger stock agreement,
constrained by equations (10) and (14), cooperation can only be sustained for a narrow
range of weights on the agents' payoffs. For small weights a on Agent l's payoff, the
expected joint value is maximized when Agent 1 is excluded from harvest. In the absence
of side payments, Agent 1 will not agree to giving up harvest. Similarly, Agent 2 is
optimally excluded for high values of a, which he will not agree to without side
payments. The expected payoffs from cooperation differ little from those characterizing
the agreement without monitoring. Agent 1 benefits from stock measurements, while
Agent 2 looses the relative advantage arising from the asymmetric structure of the game
and would therefore be better off with unobserved escapements. The qualitative results
for joint management with stock monitoring at the alternative parameter values were
similar to those for the actual Northern Baltic salmon fishery data. Cooperation was again
only agreeable for a narrow range of weights on the two agents' payoffs. Agent I: would
again benefit from monitoring the competitor's escapements, while Agent 2 would be
better off with unobserved spawning stocks.

[Figure 5.6 here]

The result that implicit cooperative agreements can only be supported when stock
uncertainty is not too prevalent explains why cooperative harvesting is rare. Explicit
enforcement in the form of stock monitoring is a joint management alternative that can be
sustained even when variation in recruitment is large.



18

6. Conclusion

We examine cooperative and non-cooperative harvesting in a stochastic
sequential fishery, and define conditions under which cooperative harvesting can be
sustained as a self-enforcing equilibrium when the actions of one harvester are not
observed. Even when both agents cooperate, reversionary periods may occur with a
positive probability. 'though the agent harvesting first knows that a low stock level
reflects a stochastic shock to recruitment, it is rational to participate in reversionary
periods. 0 erwise, the agent harvesting the spawning stock would have no incentive to
cooperate. The equilibrium is subgame perfect but not renegotiatio proof. Supposedly
the agents could renegotiate and agree to continue cooperation after low stock levels or
low escapements have been observed. However, both parties realize that renegotiating
would unravel e rational for cooperation.

We illustrate the sequential harvesting game with an empirical example based on
data for the Northern i altic salmon fishery. The cooperative solution was supported at
moderate levels of stock uncertainty. Both agents gained from cooperation, but the agent
whose actions are not observed had the eatest gains. The finding that cooperation can

;_.

only be sustained when stock uncertainty is not too prevalent sheds light on why we
rarely observe cooperation in transboundary fisheries. The policy alternative of
measuring the spawning stock provides a cooperative solution that both parties can agree
to regardless of the extent of stock uncertainty. The agents do not benefit equally from
stock monitoring. The agent harvesting the initial stock gains from measuring the
spawning stock, w le e agent harvesting the spawning stock is better off when his
escapement remains unobserved.

Allowing for side payments in cooperative management of a stochastic sequential
fishery would be an interesting topic for future study. In particular with notable
differences in the sequential fisheries prices and costs, allowing for side payments might
yield greater expected joint v ue and individual payoffs than the trigger stock a!' r eement.
Exclusion of one of the fisheries from harvest would preclude monitoring problems — it is
more straightforward to control whether a fleet is harvesting than how much it is
harvesting. However, joint management with side payments is often politically infeasible,
especially if one fishery should optimally be excluded from harvest.
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Appendix 1. Closed-form solution for Agent 2' expected cooperative payoff.

The functional equation for Agent 2's expected cooperative payoff is

(Al)
EV2c (S,c. ,S2)'71.2(Sic ,S2)+[1— F(X- I R(S2))..SEV2c (Sic , S2)

+ F (iT I R(S 2))SEV 2P (S 7 , , S ' )

= Tr2(51c ,S2)+[1— F(X I R(S2))61112c (Sic , S2)

+ F(Y" I R(S2))8[8r0)2 -1- 8T-17r2(SiN , S2 )
r=0

+ ST lb— Fck- I 102)1 EV,c (Sc, S2 )-f- F(tie" I R(S2 ))EV2P (SIN / ,S;v )11

In order to solve equation (Al) for EV2c (sr, s2) , we rewrite (Al) as

1

S
[EV2c (Stc , S2 )— 7r2 (S,c , S2 )1 = [1 — F(X / R(S2 ))}EI/2C (SIC , S2 ) .

T-2

+ We/ RIGS"

‘ 

4

4

E1(0" + ST 17C2 (SIN , S2 )

r=0 

+ or 1[1— F(5( I R(S 2))1EV 2c (S lc , S 2) + F(5 ( 1 R(S2))EV: (SIN ,,S';' )11

We then replace period t +(T +1) expected payoff in equation (Al) by

1 i r
—8LEI/2C ksIC ,s2 ) — ir2 (sr, S 2 )1 and use the formula for a geometric sum, which yields

EV2C (.5 lc , S 2 ) = 71.2 (S,c. , s 2 ) + [1 — F CY / R(S2 )125EV2C (S IC , S 2 )

(A2) + F(X / R(S2 ))15[1— 8T 1 (02 +8T-lir2(SliN , S2 )÷ sT-1 IEV2C 
(sic, 

S2 ) — 71.2 (sic , S 2 )111 — 8

We solve (A2) for EV2c(5ic, s2) and simplify the result by adding and subtracting co2 in

the denominator and rearranging, which yields

, \ g2 (SIC , S2 ) — W2 — F(k- / R(S2 ))8T kr2 (Sic, S2 ) — 71.2 (SIN , S2 )1 w(A3) EV2c (SiC 1 '32 1 = +  2  .
1 — s
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Table A.3. Agreement with monitoring.

a S, (kg) S2 (kg) EV, (mk) EV2 (mk) J (mk)

0 X 2,605,010 0 800,162,000 800,162,000
0.1 X 2,605,010 0 800,162,000 720,146,000
0.2 X 2,605,010 0 800,162,000 640,130,000
0.3 X 2,605,010 0 800,162,000 560,113,400
0.4 X 2,605,010 0 800,162,000 480,097,200
0.5 8,643,630 2,697,160 585,075,000 269,923,000 427,499,000
0.6 6,913,430 3,023,680 800,494,000 4,262,460 482,001,000
0.7 5,165,130 2,582,565 686,636,000 0 480,645,200
0.8 5,165,130 2,582,565 686,636,000 0 549,308,800
0.9 5,165,130 2,582,565 686,636,000 0 617,972,000

1 5,165,130 2,582,565 686,636,000 0 686,636,000
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Table 4.1. Notation in Agent l's problem.

IC C = OR(Sf) , je N = 19*v )

EV,c (S ,c , X')

EV," (S ," , X ' )

E V ,'. (S Lc , j e

E V ,` (5 ,` , k"

c)

Ti =Ekr,(stijec)ii.c<rci

co, = E,,r,(S," ,:k ")

Pr (01?(S 2) < x)= F (X I R(S 2))

Random recruitment with escapements S 2C and S2N

Agent l's expected payoff from leaving the cooperative
escapement S. in a normal period, evaluated after
observing X' such that X t > Ye'

Agent l's expected payoff from harvesting down to the
non-cooperative escapement S7, evaluated after
observing X'

Agent l's expected cooperative payoff evaluated prior
to observing X I , given period t was preceded by a
normal period

Agent I's expected cooperative payoff conditional on
i'c .?._ IC evaluated prior to observing X ' , given period
t-1 was normal

Agent l's expected profit in the first period of
reversionary play

Agent Vs expected profit in subsequent reversionary
periods

Probability of reversionary play

Table 4.2. Notation in Agent 2's problem.

(02 = g 2(S iN , Si'

It 2(s, c ,sf)

EV2(g ,Sf)

EV: (S," ,,S;')

Pr(OR( 3 2) < 50= F(Y I 452))

Agent 2's single period payoff in reversionary periods

Agent 2's single period payoff in cooperative periods.
7r2(sic,sf)> 602

Agent 2's expected discounted present value of
cooperative harvesting

Agent 2's expected payoff at the beginning of a
punishment phase

Probability of reversionary play
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Table 5.1. Parameters describing the Northern Baltic salmon fishery
Parameter Estimate

Price of salmon offshore'

Price of salmon inshore a

Unit cost of fishing effort offshore b

Unit cost of fishing effort inshore b

•iscount factor

Fraction of Si' moving inshore`

Pi

P2

C

C2

a

Fraction of S: surviving to next year" fi

Stockings"

Proportion of wild salmon in stock

Parameters of R(S2) d

Parameter of the distribution f(0)

24.32 mk/kg

20.56 mk/kg

9.62407 mk

2.69.107 mk

0.95

0.

0.50

4 170 000 kg

0.10

20.88

1 -2.76-6

0.5

a Derived from Prices Paid to Fishermen in 1993. Official Statistics of Finland, 1994:5. FGFRI.b 
Evaluated from unpublished data in the 1994 FGFRI study Profiles of Commercial Fishing.c Derived from ICES 1994 and ICES 1995.

d Estimates from Romakkaniemi (1997).



27

4001906 mk

=o 350

a. • 300 -

250 -

0- 200 -x
150 -

CM
Z. 100 -
a)
DI 50-

0

EV , EV 2

wi/(1-8), (02/(1 -8)•

0 100 200 300 400 500 600 700

Agent 1's Expected Payoff 106 mk

Figure 5.1. Both agents gain from cooperation no matter the value of the weight
parameter a . Agent 2 has greater relative gains.10

0.004

0.0035

0.003 -

0.0025 -

0.002 -

0.0015 -

0.001 -

0.0005 -

— 12

— 10

— 8

— 6

— 4

2

0
0 0.2 0.4 0.6 0.8 1

Weight a on Agent l's payoff

amminnasProbability of Reversion

'cm—Pa-Length of Punishment
Phase

Figure 5.2. The optimal length of the punishment phase decreases in the weight a on
Agent l's payoff. The probability of reversion need not be monotonic in a.

10 Agent l's expected discounted non-cooperative payoff is co, /(i-8) and that of Agent
2 co, 41— a). In the modified model 2 iv in co, = Eez,(5 , 2 1') is given by I + AS iN +01?(S;s1).
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Figure 5.3. The expected fraction of time spent in cooperation is close to one. Theexpected ratio of time in cooperation to time in punishment increases as theprobability of reversion decreases along with the weight on Agent l's payoff, rangingfrom 26 to 2800.
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Figure 5.4. With less uncertainty, the agents' expected payoffs vary more as the
weights on the payoffs change. At i l'gh values of a, smaller amount of stockuncertainty yields Agent 1 eater gains from cooperation.
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Figure 5.5. Contrary to the case of s =0.5 , at e = 0.2 probability of reversion
increases in the weight on Agent I's payoff.
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Figure 5.6. Agreement with monitoring. Cooperation can only be sustained for a
narrow range of weights on the agents' payoffs. For small values of a expected joint
value is maximized when Agent 1 is excluded from harvest, which Agent I will not
agree to without side payments. Similarly, Agent 2 is optimally excluded for high
values of a.


