
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


444'.
I

378.794
G43455
WP-911

DEPARTMENT OF AGRICULTURAL AND RESOURCE ECONOMICS
DIVISION OF GRICULTURE AND NATURAL RESOURCES

UNIVERSITY OF CALIFORNIA AT IERKELEY

U.S. INC*ME

113rkhig rib

!ST
CURVES

ew, T.K.M.

3;

aper No. 9H

UT!

by

eatty,

N AND GO NI kr\

Flloznee, amd

ENGEL

J . Pope

Was Ltbrty
Dept, Of Applied Economics
Univ*rsity of Minnesota
1994 Bufo[ tg Ave - 232 Ci
St Pad MN 55104-6040

•if

California Agricultural Experiment Station
Giannini Foundation of Agricultural Economics

September, 2000



The U.S. Rncome INstilibutlion and Gorman Engell Curves for Food

G. K. Agnew
University of Arizona

J. T. LaFrance
University of California, Iterkeley

Abstract

T. K. M. eatty
University of California, terkeley

R. D. Pope
righam Young University

method for nesting, estimating and testing for the rank and functional form of the

income terms in an incomplete system of aggregable and integrable demand equations is

derived. The ayesian method of moments ( MOM) procedure is applied to the problem

of inferring the U.S. income distribution using annual time series data on quintile and top

five percentile income ranges and intra-quintile and top five percentile mean incomes.

The MOM results are compared with those obtained from a parametric method utilizing

a truncated three-parameter lo I ormal distribution. The two estimates for the year-to-year

income distribution are combined with annual time series data on the U.S. consumption

of and retail prices for twenty-one food items to estimate the rank and functional form of

the income terms in U.S. food demand over the period 19194995, excluding World War

H.

Corresponding Author:

Professor Je ey T. LaFrance
Department of Agricultural and Resource Economics
207 Giannini Hall / MC 3310
University of California
erkeley, C 94720-3310

510-643-5416
510-643-8911
lafrance@are.berkeley.edu

Voice:
Fax:
E-mail:



The U.S. Encome Dftshibution a d Gorman Eragell Curves for Food

hatroductAon

Following Muellbauer's (1975) extension of the Gorman polar form to a nonlinear

function of income to obtain the price independent generalized linear (PIGL) and price

independent generalized logarithmic (PIGLOG) Inctional forms, much progress has

been made in the past 25 years on ag egation theory in consumption. The Almost Ede

Demand System (AIDS) of Deaton and Muellbauer (1980) implements Muellbauer's

results to produce demands wiih budget shares expressed as functions of linear and

quasi' atic terms in the logarithm of prices and a linear term in the logarithm of income.

The Al111)S and its linear approximation (LA- IDS) have been linchpins in applied

demand an ysis since their introduction. Most applications of the AIDS and LA-All S

either assume separability and estimate a complete system of demands for a disaggregate

oup of commodities as foinctions of prices for the goods in the group and total

expenditure on Ire roup, or estimate a complete system of demands with highly

agt egated commodities as famed° s of ag egate price indices and to

expenditures (hereafter, income, wI ch we denote by m).

1,. 1 consumption

Shortly er he by Deaton and Muellbauer, in a. remarkable and elegant

contribution to the festschrift to Sir chard Stone, Gorman (1981) derived the set of

functional forms for demand models that can be written in terms of any additive set of

functions of income. Any complete system of demand equations in the class of "Gorman

Engel curves" must satisfy two properties in addition to homogeneity, adding up and

symmetry. First, if the number of independent functions of income is at least 1 ee, then

the r ctions all must be either (a) polynomials in income, (b) polynomials in some non

integer power of income, (c) polynomials in the natural logarithm of income, or (d) a

series of sine and cosine functions of the natural logarithm of income. Second, the

Air



number of "linearly independent" functions of income in this class of demand systems at

most equals three, where linear independence refers to e rank of the matrix of price

functions that premultiply the income functions. One important implication is that

theoretically consistent demand ag IV Iegation in models that have full column rank for this

matrix requires three summary statistics from the distribution of income to estimate the

demand parameters with ag!! egate data.

Gorman (1981) also conjectured that second-order polynomials are i le most

general non-degenerate cases of demand systems that have 15.111 rank three. Pursuing this

conjecture by exploiting the methods of van Daal and Merkies (1989), Lewbell (1990)

was able to show that all full rank three generalizations of Muellbauer's PIGL and

PIGLOG demand models are quadratic forms analogous to the quash atic expenditure

system (QES) developed by Howe, Pollak and Wales (1979) and perfected by van Daal

and Merkies (1989). Lewbell (1990) also derived a full rank three trigonometric model.

All of the above results on the rank of I Ise coefficient matrix and I he functional

form of the income terms in the class of Gorman Engel curve demand models require the

adding up property of a complete demand system. However, often we are interested in the

demands for a subset of goods that make up o ly part of the consumption budget. In such

a case, separability is a strong assumption, and it is undesirable to impose strong

restrictions without good reason or prior evidence. Without separability, there is little

reason to impose the same functional form on the demand equations for the goods of

interest and all of the other goods for which we have little or no price or quantity

information. This implies that the above results cannot be applied directly to incomplete

demand systems.

In an ambitious paper, Gorman (1965; 1995) considered he structure of

demands for groups of goods in which each uroup's total expenditure is a function of
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income and a set of aggregate price indices for each group, and derived the restrictions on

e individual demand equations and the properties of the indirect utility function under

this set of restrictions. Independently and more recently, but along a similar line of

thought, Epstei i (1982), Li rance (1985) and L

a Leory for I

rance and Hanemann (1989) developed

e we k integrability of the demands for single proper subset of all goods

at does not exha 1St e consumer's budget, regardless of the number of prices that enter

the demand equations. The conditions for we , inte ability of an incomplete demand

system are that lie dem. ds are positive valued, 00 homogeneous in all prices and

income, the budget restriction takes le form of a strict inequality (not all of income is

exhausted by the subset of goods under study), and the submatrix of Slutsky substit tion

terms associated wi h this subset of demands is symmetric and negative semidefinite.

These conditions e aust he properties implied by consumer theory for any proper subset

of all goods and are necessary and sufficient for the recovery of the conditional preference

functions (bo direct and indirect) for those goods, with prices of all other goods acting

as conditioning variables (LaFrance (1985); LaF'rance and Hanemann (1989)). Inter alia,

the set of incomplete demand models that satisfy weak integrability is much richer than

e corresponding set of integrable complete demand systems.

This paper exploits the richness of e set of weakly integrable demand models to

extend aggregation in nonlinear functions of income to incomplete demand systems for

the PIGL and PIGLOG members of Gorman Engel curves. These extensions permit us to

develop a method to nest weakly integrable LA-AIDS, AIDS, quadratic AIDS (QAIDS),

quadratic PIGL (QPIGL), and extended QES1 models to simultaneously test for and

estimate both the rank and functional form of the income terms in aggregable incomplete

I "Extended QES"indicates that supernumerary income is income minus a quadratic form in prices and that
there is an nxn matrix of price effects in addition to the intercepts in the QES demands.



demand systems.

s noted above, a full rank three Gorman Engel curve demand model requires

three summary statistics from the income distribution, e.g., for a QPIGL model in

expenditure form we need the cross-sectional means of m, mh, and mlh' , where mh

is the income level of family h, h = 1, say, and K is the PIGL coefficient on income,

while for a Q S model we need te means of mh mh 1n(mh ), and mh[ln(m . To

calculate these means, we need information on e distribution of income. The U.S.

ureau of the Census annually publishes the quintile ranges, intra-quintile means, top

five-percentile lower bound for income, and the mean income wi I in the top five

percentile range for all U.S. families. We use the ayesian Method of Moments (It OM)

procedure to obtain annual information theoretic density functions at satisfy each of

these percentile and conditional mean conditions for the period 19104999. The MOM

densities and the resulting food demand estimates are compared with those obtained from

a parametric truncated three-parameter lognormal distribution for each year.

The income distribution estimates are combined wi I ag egate annual time series

data on per family U.S. food expenditures for 21 individual food items over the period

19194 995, excluding 19424946 to account for the struci al impacts of World War 11.2

In addition to annu measures of food expenditures, prices, and the income distribution,

we incorporate measures for e distribution of the U.S. population by age and the

ethnicity of the U.S. population in the incomplete demand model's specification. The

2 See LaFrance (1999a, 19991)) for empirical evidence for the exclusion of World War H and the si ,bility of
U.S. food demands over this long sample period. The twenty-one food items included in the data set can be
conveniently grouped into four categories: (1) dairy products, including fresh milk and cream, butter,
cheese, ice cream and frozen yogurt, and canned and dried milk; (2) meats, fish and poultry, including beef
and veal, pork, other red meat, fish, and poultry; (3)fruits and vegetables, including fresh citrus fruit, fresh
noncitrus fruit, fresh vegetables, potatoes and sweet potatoes, processed fruit, and processed vegetables; and
(4) miscellaneous foods, including fats and oils excluding butter, eggs, cereals, sugar and sweeteners, and
coffee, tea and cocoa.
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results of the empirical application strongly suggest that a full rank I ee model is

essential, and that the QMDS is si ongly rejected in favor of an extended QES.

The rest of e paper is organized as follows. The next section extends the

ag egation results of Gorman and others to incomplete demand systems at can be

written in a PIGL/PIGLOG form. The third section describes the implementation of the

1:MOM procedure estimating the U.S. income distribution and discusses estimation of the

parametric truncated three-parameter lognormal distribution. Section 4 presents a

summary and discussion of a subset of the empirical results, focising primarily on the

rank of the demand model and the I 1 ction form of the income terms. The final section

summarizes the findings of e paper and discusses possible limitations of the analysis

and possible directions for I I er research. Proofs of our main lemmas are contained in

an ppendix.

2. Nesting LA- MS, Al

In the two decades since its in)11

S and S within a QPIGL-IDS

oduction by leaton and Muellbauer, the AIDS has been

widely used in demand analysis. The vast majority of empirical applications follows

Deaton and Muellbauer's suggestion and replaces the translog price index that deflates

income with Stone's index, w I ch generates the LA-AIDS. Although Deaton and

Muellbauer (1980: 317-320) cautioned against and avoided the practice, most empirical

applications of the LA-AIDS include tests for and the imposition of an approximate

version of Slutsky symmetry by restricting the matrix of logarithmic price coefficients to

be symmetric. Important examples include Anderson and Blundell (1983), Buse (1998),

Moschini (1995), Moschini and Meilke (1989), and Pashardes (1993).3 In this section, we

3 However, see Browning and Meghir (1991) for an application of estimating the integrable AIDS, using the
LA-AIDS with a symmetric matrix of log-price coefficients to obtain starting values for the nonlinear
estimation procedure.



derive the conditions for inte IP I ability of L IDS and a simple method for nesting the

homothetic inte able solution wit in a class of homothetic PIGL demand models.

then extend this nesting procedure to non-homothetic PIGL and QPIGL forms.

Let p be e n-vector of market prices for goods, let u be the utility index, let

e(p,u) be the consumer's expenditure nction, and let w be the n-vector of budget

shares. If it is inte

(1)

able, then e LA-AIDS can be written in matrix notation as

alne(p,u) 
=a+w =

amp

where a and y are n-vectors and It;

It; np+7
‘if

ine(p,u) (11np)' aine( 
amp

is an nxn matrix of parameters. At various points in

the paper, it proves to be help 1 to change variables from quantities, prices, expenditures,

budget shares, and income to particular transformations of these variables. In the present

situation, it is most useful to define x ln(p) and y(x, u) in[e( p(x), , where

p(x):-=-[ex' • exn]'. Wi H these definitions, we can rewrite (1) in e form

(2) +yx1)
aY(x,u) 

=a+
ax

Alx+yy(x,u)

This observation leads to our first result, which identifies conditions for the (local)

intes ability of the LA-AIDS.4

Lemma L If the LA-AIDS is integrable over an open set .g\i- c with

nonempty interior and such that 1+y'x # 0 V x E .3\f", then either (a)

4 Although is lemma only requires conditions that are satisfied locally, it is shown in the Appendix that the
set 5+1 covers all of n-dimensional space except for an (n-1)-dimensional hyperplarie (which has Lesbesgue
measure zero in n-space).



adL = ,8ory'for some 130 or (b) y=Oandi = ' In case (s'), the
logarithmic expenditure function has the form

y(x,u)=a1x-00 (14-p)In(1-Fyix)   ±(1-Fyix)u,(1-1-y 1x)

while in c se (b) it has the form,

Y(x9u) = a'x x+u 5

Case (b), which produces a homothetic demand model, is e sol tion of interest
dtin this paper. In p icular, this solution has exactly the same structure as the homo eticLIDS in LaFrance (1985). If one is willing to forgo symmetric ctional forms for alldemands, which is a relatively minor consideration in the case of estimating the demandsfor a proper subset of all goods,

AIDS and LIDS with

ILI s suggests a simple way to nest the homothetic LA-
ox-Cox transformations in an IDS framework. To develop thismethod, suppose that he model applies to n out of N n+1 goods and define

m(K) (i'e —1)/K, 13,(X) 7-= —1)/X, and p(X) [Pi (X) (X)r - Assume that m

Case (a), where e log-income coefficients do not vanish, but the log-price coefficient matrix has r
one, is too restrictive to be of empirical interest. However, this case reveals an interesting structural
property. In particular, it is characterized by a system of linear identities among budget shares,(3) Dts,:-..-a+y(wi )/yi V (p,m),where, without loss in generality, we have assumed that yi 0. Recall that the linear expenditure system
(LES) is characterized by a system of linear identities among expenditures, say,(4) 

—cti)/yi V (p,m),where e, p,q, and e [ei •-• e„}' is the n-vector of expenditures on the goods q. Similarly, it is shown in
LaFrance (1985) that inte able, non-homothetic Linear Incomplete Demand Systems (LIDS) are
characterized by linear identities among quantities, say,(5) q=-a+y(qi —al )/y1 V (p,m) .In this sense, case (a) closes the set of demand models that can be characterized by quantities demanded
(LIDS), expenditures (LES), or budget shares (LA-AIDS) lying on a ray in n-dimensional space, regardless
of the observed levels of prices and income.
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and p are deflated, with a common deflator that is a known, positive v ued and 10

homogeneous function of (at least some of) the prices of all other goods, say, 7r(15).

Under these conditions, we can write a class of weakly inte. I able, homothetic PIGL-IDS

models in budget share form as

(6) w = in-KPAla lq)(k)i9

where Px ---= diag[p,x1 is a diagonal matrix with typical diagonal element pt'. Using the

inte 2 1 ation techniques detailed in LaFrance and Hanemann (1989), it can be shown that

the expenditure function for this PIGL-IDS satisfies

(7) e(p,.13, u).------- 71(//) {1 ± K [a'p(X) +12- p(AY
1IK

Itp(X)+9(i;,u)] ,

where 0(/71,u) is 00 homogeneous in To and increasing in u, but otherwise cannot be

identified (LaFrance (1985); LaFrance and Hanemann (1989)). It Iso can be shown,.1

the demands in (6) are homothetic, with income elasticities equal to 1— K V DC E

This simple procedure for nesting the homothetic L

11:

1 i iat

IDS and LIDS wi in a

homothetic PIGL-IDS easily generalizes to he non-homothetic, inter able AIDS,

(8) it l (p) 4- if [1n(m) —a0 — a ' In(p) — il ln(py (p)
-

To show this, we require a second result, which states that (8) is a special case of a

complete class of incomplete demand models that can be characterized as follows. Let

y 7----- go (m) and xi E--- g( ), i = 1...n, where go(-) and g() are strictly increasing and twice

continuously differentiable functions on „ , and write the n-vector inverse of :0 as

p(x). Suppose that, after appropriate transformations, the demand functions for the n



goods q can be written in terms of a linear function of y(x, go(e(p(x), ji,u)) and

linear and quadratic functions of x, with no interaction terms between x and y,

(9)
ay(x, u)

= ai +131ix+-121-x'Aix+yiy(x,ii,u), i =1,...,nax

where, without loss in generality, # 0 and each nxn matrix, Ai, is sym etric V i. Then

we have the following.

inte' I

Lemma 1 The system of partial differentiAl equations in (9) is i tegr ble

only if, it cAn be written in the form

ay(x,ii,u) a +
ax

where ao is a scalar Oh

is n izx 1 vector,

where

It;

Pi —On

is

to:

r
xPi-YLY( 2

t may be a function of other prices), 05, = a — aoy

symmetric nxn mAtrix that sAtisfies +ya,' ,

nd = Vi.

Note that if go(o) and g(e) are both natural logarithmic functions we obtain the

able AliiS. In addition, with the above definitions for m(K) and p(X), we can write

an integrable non-homothetic PIGL-IDS that is linear in the

and linear and quadratic in the

(110)

ox-Cox price vector as,

ox-Cox expenditure term

w = in-KPx la + xp(X.)+ y[tn(K)—ao —a'p(X)--

where, for notational simplicity, we have dropped the tildes over the parameters.

ike the homothetic case, for all (K, X) pairs, this flexible functional form

allows one to estimate the income ag._ egation function through e Box-Cox parameter
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K. If K = 0 we obtain the inte. able AIDS model, if K = I we obtain the linear-quadratic

IDS (LQ-IDS) of LaFrance (1990), and for all (c, X) pairs we obtain an integrable PIGL-

IDS.6 Finally, it can be shown that the expenditure function for (10) is

(11) e(p,iy,u)-- n(j3){11+ K [ao +((2)+-1i- p(k)' xp(k)i- BUY, u)eY'P(x)1}11K 9

where 90 has the same properties as for the expenditure function of equation (7). Note

that the expenditure function GO simply generalizes the one in (7) via the additional term

a,o, which is often fixed at zero in empirical applications, and the factor e7 'P(x), which

produces the n-vector of non-homothetic coefficients in the demand model.

This nesting procedure also generalizes to demand models that include linear and

quadratic terms in the ox-Cox transformation of deflated i come (QES-IDS). In order to

motivate and demonstrate this, suppose that we have a transformed demand system of the

form

(12)
i=0

ai (x)gi (y(x,u)).

In a remarkable paper, by setting y = in(in) and x = in , Gorman (119 1) showed three

things about all complete demand systems of s type:

(i) fter normalizing for a uniq e representation and to account for adding up,

making a change of variables, and accounting for some of the implications of

Sit tsky symmetry, the nonlinear partial differential equations can be transformed

into a set of homogeneous linear ordinary differential equations in functions of the

natural logarithm of income. From the theory of differential equations, solutions

6 See Agnew (1998) for a comprehensive development and application of this full rank two PIGL-EDS.
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to this system are of the form hi(m)= ink  (in(m))!, where each Xi is a root of the

characteristic polynomial for the linear ordinary differential equations. In general,

such characteristic roots can be either real or complex, and complex roots come in

conjugate pairs that may have both real and complex parts.

(ii) However, Gorman was able to show that if the rank of the nxk coefficient

matrix A(x)--=-- [a(x)] equals at least three, then: (a) the characteristic roots are

either purely real or purely complex (i.e., 1)1 roots of the form 2, = a, +b,kr-71,.i

must have ai= 0 if b1 # 0 and conversely, bi = 0 if ai # 0); (b) if any roots are real,

there are no complex roots, and conversely; and (c) for real roots, there are no

product terms of e form ma (ln(m))13 with both a # I and 13 # O.

(iii) Finally, Gorman showed that the rank of A(x) is at most equal to three.

For rank three demand systems, this completely specifies the class of functional

forms for the expenditure terms. 0 y three mutually exclusive cases are possible: (a)

mOn(m))
r 
, where each r is an integer; (b) mil-tc , where x may or may not be an integer;

and (c) m sin (r 1n(rn)) and in cos (14 in(m)) , for some r 0, with both sine and cosine

terms appearing as a conjugate complex pair. In other words, for rank three demand

systems, the model must take one of the following three forms:

(13)

(14)

k

q = ao(x)in + E ai(x)m(ln(m))i ;
i=1

-Kq = a0(x)an + E 13,(x)m' + E y t(x)in14-K ,
KET KET

where T is a set of nonzero constants; or
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(15) q = ao(x)m+ E fir(x)m sin (rin(m))+ y yt(x)mcos('r ln(m)) ,
TET TET

where T is a set of positive constants. The case defined by (13) includes Muellbauer's

(1975) PIGLOG model and extensions that are polynomials in (m), while the case

given by (14) includes polynomials in income, as well as Muellbauer's PIGL model and

extensions that are polynomials in ink.

Demand models I at have full rank are characterized by the property that the rank

of the matrix A(x) is equal to the number of its columns, that is, the number of different

income functions, gi(y). Clearly, full rank one demand models must be homothetic,

(16) q = a0(x)m,

due to adding up. Muellbauer (1975) showed that all full rank two demand systems are

either PIGL or PIGLOG, that is, either

(17)

for some K # 0, or

(18)

q =a0(x)m-Foti(x)mi÷K,

q . a 0 (x)m + al (x)m in(m) .

Muellbauer's results are based on two things. First, adding up requires that one of the gi(•)

is identically m. Second, symmetry requires the system of partial differential equations to

be linear in some transformation of income. Only two transformations satisfy both of

these conditions. One is the 1:ernoulli equation,

(19)
. ,p,ae(p,u)K 1c eu,

k )K-1 ( ae(P' u)) = Po (p) + Pi (P)e(P,u)K •ap ap
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which has the PIGL form

(20) ae(

'I,

The second is e logarithmic

(21)

1111

= (,0 (p, 01-K +131(p) (

ansformation,

(e(p,u)) _1 ae(p,u) I ap)
a e(p,u)

which has the PIGLOG form

(22)

= 00(P) + (P) In(e(p,u))

ae( 00(p). e(p,u) +13,(p) • e(p,u)- In (e(p,u)).ap

Gorman (1981) conjectured that polynomi is of order two are the most general•

nondegenerate cases for rank three demand systems. Following up on this conjecture by

exploiting e mel 1 ods of Van

r

iiaal and lerkies (1989), Lewbell (1990) showed at all

three generalizations of the PIGL and PIGLOG models are exact analogues to

the QES. Lewbeli (1990) so derived a rank three trigonometric model of

al I ough we do not m..I e use of that result here.

It e form (15),

All of the above results on the rank of the (price dependent) coefficient matrix and

functional form of the income terms in aggregable demand models rely on the adding

up condition for a complete system of demand equations. In this study, however, we are

interested in the aggregate U.S. demand for food items, and apply an incomplete demand

system approach along the lines of Gorman (1965), Epstein (1982), LaFrance (1985) and

LaFrance and Hanemann (1989). Since total food expenditures make up only a small part

of a typical household's budget, the budget identity takes the form of a strict inequality. In

addition, while we have a rich and long time-series data set on consumption and prices
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for individual food items, we do not have such detailed information on the individual

consumption levels or prices of other goods. These considerations preclude us from

directly applying the above results in this study.

Nevertheless, even for incomplete demand systems of the form (12), it can be

shown I at Gorman's rank theorem is a corollary to symmetry for polynomials in income,

PIGL and PIGLOG , 111ctional forms.

Lemma 3 If y -m go(m)is m, le, or ln(m) and the (possibly incomplete)

system of demands (12) is integrable, then there exist real-value

functions, (pi : 2,...,k such that

as(x) Ti(x)ak(x) V i .

Therefore, we can proceed with our nesting procedure by extending the r

IDS expenditure function in (11) to one I at is, at least possibly, r

,.111

iy

two PIGL-

three and Lat

generates a relatively simple form for the quadratic terms in the demand equations. A

simple, and convenient, choice is a quasi-indirect utility function ausman (1981);

LaFrance (1985); LaFrance and Hanemann (1989)) that can be written in a form that is (in

principle) consistent with the QES originally developed in Howe, Pollak and Wales

(1979),7

1 
(23) (P(P,m)= ---{

[m(K) — a 0 — a' pOLY Bp(7)1

7 Solve (11) for 0, transform to O = —go to get Cp(p,m)= — eY'P(11[m(K)—ao—oLip(20-0(21/4.

and add the term —81p(X)eY.P(4) to obtain (23).
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Applying ie methodology of LaFrance and Hanemann (1989), it can be shown

at (23) is equivalent to an expenditure function of the form

(24) t() 1+ K ao a'POL)± POtY (k)
(5'p(X)eY'P(x) +0(11,u))

eY`P(x)

That is, the QPIGL-ItS expenditure fimction in (24) generalizes the non-homo etic

PIGL-IDS expenditure function in (11) by replacing the term B(P,u)eY'P(x) with the term

—Wp(X)+ (90-5,0e-Yxx)i-' , which produces the n-vector of parameters 5 associated with
the quadratic term in supernumerary income, in addition to the n-vector of parameters y

associated wi the linear supemumer41 income terms.

Finally, an application of Roy's identity to (23) generates a QPIGL-IDS in budget

share form as

(25) W = PP? fP(X) + y [m(lc) ao &POO — P(X)' P001

+ [I + y'p(A,)]5[m(K)— ao — (X) p(X)' 4p(X)1
2 

.

Assuming that a and B do not completely vanish simultaneously, it follows that: (a) y

0, 5 is necessary and sufficient for a 11 rank three QPIGL-IDS; (b) y 09 = 0 is

necessary and sufficient for a full rank two, non-homothetic PIGL-IDS; (c) y =0, 8 0 is

necessary and sufficient for a full rank two QPIGL-IDS that excludes the linear term; and

(d) y = = 0 is necessary and sufficient for a homothetic PIGL-IDS. Thus, we obtain a

rich class of models that permits nesting, testing and estimating the rank and functional

form of the income aggregation terms in incomplete demand systems.
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3. Estfimatkg the U.S. acme Dfistrfiballfion

en a demand model is nonlinear in income, the demand equations do not ag egate

directly across individual decision units to average (per capita or per family) income at

the market level. The advantage of the Gorman class of Engel curves is that, when

information on the income distribution across economic units is available, only a small

number of summary statistics from is distribution are required to obtain a theoretically

consistent, ag egable demand model. Indeed, all full r three Gorman Engel curve

demand models require three summary statistics from the income distribution, e.g., a

QPIGL requires the cross-sectional means of mih-K m4 , and mih-f-K . To calculate these
means, however, we need information on the distribution of income.

The U.S. ureau of the Census publishes annually quintile ranges, intra-quintile

means, the top five-percentile lower bound for income, and the mean income within the

top five-percentile range for all U.S. families. These data are currently available for 1947-

1998 on the U.S. ureau of t e Census orld Wide Web site, and for the years 1929,

1935/369 1941, 1944 and 1946 from the Census ureau's historical statistics (U.S.

Department of Commerce, 1972). Several issues arise regarding the use of these data to

estimate the U.S. income distr ibution. First and perhaps foremost is an appropriate

methodology for obtaining a reasonable density unction given the probability ranges and

intra-range means. In i is paper, we consider three possibilities, depicted in figure 1 for

1997, which are developed and explained in this section.

The simplest, most naïve and uninformative approach is to construct a sequence

of piecewise uniform densities on each of the first four quintile ranges, the 85-95
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percentile range, and the top five percentile range.8 However, these piecewise uniform

densities generally do not satisfy le inIFa-quintile and top five percentile mean

conditions. A slightly more informative solution is to construct a pair of uniform densities

on each range, separated at the intra-range mean, and wit i tot .1 probabilities that sum to

.20, .15, or .05, as appropriate. To illustrate, let [ini..1, rni) denote the ith income range, iii

th. .i mtra-range mean, and pi the proportion of the total number of U.S. families whose

incomes that fall within this range. We calculate a piecewise uniform der sity on [mi_ i,mi),

satisfying

(26)

fu, V xe [ffii_14.ti)

Jr2,i, V XE [ii19M1)

subject to the probability and mean conditions,

(27) ii,i(i-li — m1-1)+./2,i(mi —iii) =,

ji,i(i4 — /4-1) +./.2,i(P4 —PI) (28) = iii •
2pi

Solving the two constraint equations for he two density levels gives

(29) fi,i = (  mi -Pii pi)Ili — mi-i (mi — m1--1)
,

8 The mean for the 80-95 percentile range is calculated as u, 80-95% = (.20180_100% —.051195-100% )/.15 . The

85-95 percentile range is the interval from the lower limit of the top quintile to the lower limit of the top
five percentile range, while the top five percentile mean is assumed to be the midpoint of that range for the
piecewise uniform densities discussed in this subsection.
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/
Ki - mi-i J  Pi .  .

\ mi-Ai (mi-mi-i)

This density is illustrated in figure 1 for 1997 by the series of horizontal line seLC 1ents.

118

Of course, this density estimator is ad hoc, discontinuous at eleven points,9 an

artifact of the manner in which the data are reported, and does not satisfy any particular

validating criterion. Moreover, since we have a fixed number of observations in each year

on quintile limits, intra-quintile me oi 1 1s and the top five percentile lower limit and mean,

we cannot appeal to properties like consistency as "sample size" increases. Therefore, a

density estimator motivated by some formalism is preferable to this piecewise uniform

density. Two possible approaches to this issue are considered here.

The first is the tayesian Method of Moments, which is based on information

theory and well-known to possess several desirable properties (Zenner 1988). This

approach generates an income density that is smooth and monotone within the pre

specified income ranges and satisfies each probability and intra-range mean condition

exactly, but is discontinuous at the boundary between each pair of contiguous income

ranges. For 1997, this density is depicted in figure 1 by the series of piecewise

exponential curves marked with solid black circles.

The second approach is a parametric, truncated three-parameter lo: normal

density. This density is smooth everywhere and has a general shape that is similar to the

tMOM density, but does not satisfy either the probability or mean conditions exactly in

any range of income. For 1997,

marked with empty circles.

1 1 1is density is depicted in figure II by the smooth curve

9 For simplicity, and lack of a better alternative, the intra-range mean of the top five percentile group is
assumed to be located at the center of that range, making the top percentile uniform density continuous up
to the point x.95 + 4.95, which reduces the number of discontinuities from twelve to eleven.
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301 T e itayesian Method of Mo EI e sity

The starting point for the MOM is the maximum e tropy (MAXENT) criterion,

(31) E max --
(f)

f (x) In (f (x))dx ,

19

to select a density function, f (x) , that satisfies, in this case, the piecewise probability

and me.mi constraints for each quintile and the top five percent of family incomes,

(32)

(33)

f( A = i =1,...,6,

xf(x)dx = p1p, I =1,...,6,

where mo =0, m6 = co , and pi = .20, i =1,...,4, p5 = .15, and P6 = .05.

The MAXENT criterion is motivated, developed and discussed in detail in Csiszar

(1991), oh hale and Kullback (1978), Jaynes (1957a, 1957b, 1984), Kullback (1959) and

Shannon (1948), while detailed derivations and discussions of the MOM are contained

in Tobias and Zenker (1997), Zenner (1988, 1997) and Zenner, Tobias, and Ryu (1997).

In e present case, the MAXENT density is the (unique) proper density on OR, that

minimizes the average logarithmic height of the density function while satisfying the

inte 1111 I ation and moment constraints, which in turn provide the available prior information

in this problem. In this respect, it is the density function that is "closest" to the piecewise

uniform density function originally considered in this section, where close in this context

is defined by the Kullback-Leibler cross entropy pseudo-distance measure (Golan, Judge,

and Miller (1996)).



20

Formally, the it MOM density is the maximum with respect to and minimum

with respect to the Lagrange multipliers P1/4,0,X,1) in the La: angean function,

(34) = '33 f (x) kn[f

=
i =1

)1
i=1

6

[ dm, _ f1
fmi

f (x) fin[f (x)] ko,, +kijx)

6
on,

fEX1 t[Pigi X (X)dd
-me-1r=i

6

+ p, (x0,, +x,).

Note that the second line of (34) involves a sum of inte

i=1

als in with no differential or

boundary value constraints on the optimal density function. It therefore follows from

optimal control theory (see, e.g., Seierstad and Sydsaeter, 1987, or Clegg, 1968) that, for

any choice of the La!iange multipliers on the isoperimetric (i.e., inte

necessary condition for a maximum of t with respect to {f} is to

) constraints, the

find the pointwise

maximum of each of the six individual inte ands with respect to f Also, note

each term in this sum, the inte • and is strongly concave in f, w

linear in (f) so at this maximum is unique.

(35)

at for

le the constraints are

Thus, the first-order conditions for a constrained maximum wi respect to {f} are

[f(x)]-1-X0 +A.,,,,x) =0,V xE[rn,_1,m1), i=1,...,6,

toge er with the integral constraint conditions (32) and (33). Solving (35) for f for each

X E [Mi_j , ), i = 1,...,6 , then implies

(36) f (x) = A,x)}, i =1,...,6 ,

so that we obtain a sequence of six exponential densities, each defined on their respective

percentile ranges. Next, inte ating (36) over each percentile range, substituting the
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resulting the right-hand side expression into the associated probability constraint (32),

and solving for e-('+4') gives

(37) f (x) =

l_pixiie-x,.,x/(e-A.1.,m, _ e-A.,"_, )
, xE[mi_i,m;), i =1, 

9
5

9. . 0

P6A1,6e-''6(x
-m5) X E [M5 , co )

with p, = 0.20, i = 1...4, ps = 0.15, and P6 = 0.05. Finally, multiplying x times e right-

hand side of (37), inte ating ag n over each percentile range, substituting the resultingF •

right-hand side expression into the associated mean constraint (33), and rearranging terms

ves the defining equations for the Lagrange multipliers for the mean constraints in

form

(38) ex,.,(m,-me_,) I 4- Xi,i(mi  = 0 i .1,...,5,

1 Xi,i (1-ti

(39) X1,6 := 1/(g6 --- ms)-

It is self evident from (39) that A.1,6 is strictly positive and can be readily

calculated from the data, while there is no closed form expression for the solution to (38).

However, it is straightforward to c • culate the unique solutions for each of the first five

A,i,, terms from the following set of elementary observations. First, if 1.t, = (m1+ m._1)/ 2,

then there is only one solution to (38), namely, A1,1 = 0. Second, the first term in (38) is

always positive, while the second term has a zero at X.1., = —1/(m, g,) < 0 and a pole at

A1, =1/(1, m 1) > 0. It follows that if t. > (m, + m,) 12 , then Xi < 0 and a simple

interval halving procedure over AL, e(-1/(m1 —113,0) produces an approximate solution

with accuracy on the order of 2', where n is the number of iterations, or interval
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squeezes. Similarly, if <(m1 )/ 2, then > 0 and a successive interval halving

procedure on 2, e(0,1 /(p., — in 1)) produces the desired approximate solution. In every

case in the empirical application for this paper, the numerical estimates of X1,, stopped

changing (in double precision, to fifteen digits) after less than twenty iterations.

Figure 1 illustrates the MOM solution for the U.S. Income Distribution in 1997.

s see in the fi e, this solution is made up of piecewise exponential densities marked

with solid circles, with a discontinuity at the boundary between each pair of contiguous

percentile ranges. Similar to 1 e mean constrained piecewise uniform density in the

figure, the t MOM density intersects e vertical axis above zero, is unimodal and is

skewed the right. These properties of the piecewise uniform and MOM densities —

piecewise continuous, a single mode, and positively skewed — are maintained in all years

of the available time series data. The number of discontinuities in the

(five) is less 1 an half of 1 i

t,MO I density

e number in the piecewise uniform density (eleven). tth the

frequent exception of e boundary between the first and second quintile, the absolute

magnitude of the discontinuities e iMOM density at the percentile boundaries tends

to be substantially less than in e piecewise uniform. Intuitively at least, these two

properties, in addition to the formal motivation and justification on information theoretic

ounds, is a si.!! ificant advantage for the ItMOM density relative to a mean constrained

piecewise uniform density. Hence, we do not employ the piecewise uniform density in the

empiric demand analysis discussed in the next section.

However, the number and location of the discontinuities in the tMOM solution

re am n as artifacts of the way in which the income distribution data is reported by
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timate goal of this study is to estimate the coefficients of a

demand model that aggregates across income by using the income distribution that we

construct from a limited set of available prior information. The discontinuities in the

piecewise exponential MOM solution beg for a continuous alternative that can be used

to estimate and evaluate the sensitivity of the demand model's parameter estimates and

the conclusions 411awn from those estimates. The specific parametric alternative

considered in this paper is a trunc ted three-parameter lo iormal distribution, w

motivated, derived and discussed next.

3.2 The Truncated Tinree-Parameter Lognormal IstRibitadon

ch is

Let the random variable z have a standard normal distribution and define the latent

income variable x by in(x —0) = ut +az, where x> 0 and {bi,a,0} are constants. Then

random variable x has a three- r meter lognorm

function (pdf) defined by

(40)
1 

f(x;ii,a,e)= expf
-42na(x —0)

A few motivations for this specification in 1

1 sistribution, with probability density

2

a

e current study include the following:

1° It is possible to construct a continuous I:MOM solution for the income distribution wherein the first-order
derivative of the MAXENT density (with respect to x) is an absolutely bounded con" ol variable in the
optimization proble . One possible ( though arbitrary) choice for the maximal absolute slope of this

piecewise differentiable MOM density is sup If(x)I, where f0(x) is the discontinuous BMOM solution.

It can be shown that this piecewise differentiable solution is characterized by a sequence of piecewise
exponential and linear segments, with the boundary point between each pair of contiguous segments
determined endogenously as part of the MAXENT optimization problem. One also could go a step further
and constrain the second-order derivative of the density to be the (absolutely bounded) control variable,
which generates a C' sequence of exponential and quadratic splines. However, constructing either of these
modified BMOM solutions involves finding a suitable set of roots for a fairly large set of highly nonlinear
equations, each of which has multiple zeroes. As a result, we do not pursue a continuity or differentiability
constrained BMOM solution in this paper.
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(a) As the above discussion clarifies, the piecewise uniform distribution and

1:MOM distributions, which are both constructed to satisfy the quintile and top

five-percentile probability and conditional mean conditions, are unimodal, skewed

to the ri t, and intersect the vertical axis in the income/pdf plane at strictly

positive values.

(b) It oth the piecewise uniform and ItMOM density functions are discontinuous at

arbitrary points defined by the construction and reporting procedures of the U.S.

I:ureau of the Census. We expect 1: non i that t i 1e income distribution would be

better approximated by a continuous density function.

(d) The two-parameter loLCormal distribution has been criticized for estimating

income distributions (McDonald, 1984), and in the present case is incompatible

with a positive intercept for the pdf And,

(e) Combined with a simple, accurate, closed-form and invertible approximation

to the standard normal cumulative distribution nction (cdf), which is discussed

in detail below, the truncated three-parameter log-normal distribution is simple to

estimate and gives excellent results, given 1 1e limited nature of the available prior

information on the U.S. income distribution over time.

Since we only observe values of x ?.. 0, we are interested in estimating the

conditional distribution of x given that x 0. Therefore, let xo :-0, define the standardized

zero income limit by zo = (lln(-0) — .&)/a, and denote the standard normal cdf at zo by

(z0) = f::, co(z)dz , where (p(z) = (1/427t)e-z2/2 is the standard normal pdf Note that zo,

and hence '41qz0), depends on the parameters {1,a,0}. Then the conditional pdf for x given

x > 0 is defined by

(41) f (xlx >_ 0;111,a ,0) =
I.

42na(x — 0)0 —0 ,

1
 exp{----2- in(x — 0) — lu

,2
0)) 2a - 1 -
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e information we have for each year takes the form

of i come limits, xi, where Pr(x mi I x 0) = F, = .2, .4, .6, .8, .95 for i = 1, 2, 3, 4, 5,

respectively. Therefore, to estimate the truncated three-parameter lognormal distribution,

in addition to zo above, define the standardized limits by

(42) 1n(mi 0) —111 • =1,...,5,zi =
a

and the empirical limit equations,

(43) Fir = 110)(za)/(1 — ))+c, =1,...,5,

where ci is an estimation error. This produces five observations in the t ee-parameters

{p.,a,9}, which can be estimated by nonlinear least squares."

However, due to the small number of observations available in each year, rather

than using numerical inte.! ration to ev uate the standard normal cdf multiple times at

each observation in each iteration of the nonlinear squares estimation procedure, we use

the following simple, accurate oatd invertible approximation to he standard normal cdf

For any compact set of values of the si idard normal variate, z, a variant of Taylor's

We also could generate an additional six data points for each year based on the intra-percentile mean
conditions. In practice, however, adding these additional data points created numerical overflows due to
positive-valued estimates for the parameter 0 in years prior to 1971. As a result, only the five data points
associated with the probability constraints are considered here. However, the points estimates for (0,11,a)
are virtually identical using all eleven observations per year in each year over the period 1971-1999 as when
only the percentile range probability conditions are used. See Johnson, Kotz and Balalcrislman (1994),
chapter 14, for additional discussions on the numerical difficulties typically encountered when estimating a
three-parameter lognormal density function.
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theoremi2 implies that a polynomial of sufficiently igh order in the exponential term of a

logistic-type cdf will closely approximate the standard normal cdf In addition, symmetry

of the normal distribution implies that all even powers in z for this polynomial expansion

must be zero. In particular, V z E [=3, +3], we find

(44) 41»

11.6092.z+.066826.z3

(1+ e1.60926826-z3)

with R2 = 1.00000 and max ii,1=1.45x l0, using 0.001 increments for z. Plots of he pdf

and calf for the third-order logistic approximation are indistin ishable from those for the

standard normal distribution." The resolution is substantially better for the log-odds ratio

of the standard norm. and I e polynomi 1.6092.z + .066826.z3. This is illustrated in

figure 2, where it can be seen that the interval [=3, +3] can be used with virtually no error.

Moreover, the probabilities in the remaining tails and hence the differences between those

12 Taylor's eorem is applied to the log-odds ratio In (z)/(1—" (4)1 = 13 z +13 z
3 
+ 0(z

4 
). Note that the

1 3
I ii ,41o,

log-odds ratio is an analytic function of z (i.e., has an infinite radius of convergence for the series V Z E ).

y symmetry of the normal distribution, the error of approximation is o(z4). Terms can be easily added to
the expansion in (6) to increase lIe range and precision of the approximation. However, numerical
overflows are likely to be encountered (even using double precision) for IzI > 5. In the present case, the
largest absolute value of z is associated waiii zo, which is on the order of 2.0 — 2.5, and a 3rd .order expansion
is extremely accurate wii in this range.

13 One significant advantage of this approximation to fHe n(0,1) cdf, though not relevant in I e present
study, is e fact that Cardano's formula can be used to invert i0 to obtain z in the form z = u + v, the only
real root to the characteristic Yd-order polynomial, with u and v defined (in closed form) by

u=
41,)+211:;

where A = 5.5854=110' ± 6.0461-103 • [{ /(l-4)}12 > 0 te E (0,1) . This should prove particularly
useful for many types of simulations and Monte Carlo experiments, since only a single uniform (0,1)
pseudo-random variate is required to obtain a pseudo-nomial variate, and the support of the resulting
pseudo-normal variate is compact (thou empirically not very much different from a standard normal
random variable).
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3.3 Extrapolating the Ina) e Data
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Data for U.S. food consumption and retail prices, as well as additional variables that are

described in the next section, have been ob ined from LaFrance (1999a) for the years

1918-1995. However, observations on the Census Bureau's summary data for the income

distribution are available for 1929, 1935/36, 1941 and 1946-98. One issue that arises in

using this daL. in an a!' egate U.S. food demand model, then, centers on predicting or

extrapolating this income data for e years 11918-1928, 1930-40, 1942-43, and 1945.

We take the following approach to address this question.

To forecast the lower limit of the second quintile (equivalently, e upper limit of

the first quintile, we utilize data on per capita disposable personal income and the

unemployment rate as predictors. We estimate a least squares relationship with the log of

e second quintile lower limit as the dependent variable and a constant term, the log of

average per capita disposable income and this variable squared, and the unemployment

rate as regressors, with first-order serial correlation in e error terms,

(45) = a+ Pi InGipc,,) P2 [1n(A,,, )]2 +03u, +pe1 _1 EL, 9

where 1.),/„,, is per capita disposable personal income and tit is the annual average U.S.

unemployment rate. The sample period for this equation is 1946-97 due to the presence

of autocorrelation. Predicted values for in(mi are calculated from this regression

equation for the years 1918-1928, 1930-40, 1942-43, and 1945 with the observations on

average per capita disposable income and the unemployment rate for each year in which

data of the income distribution is not available.
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For the larger income limits, we follow a recursive forecasting procedure in which

an ordinary least squares prediction equation is estimated using a constant term and first

second and third-order powers of the log of the closest smaller limit as re

(45)

MIessors,

ein(no ) = at, + P,i in(m,,,,) + Pa Un(ini_012 +15,3[1nOni_i,,V +

for i = 2, ..., 5. The summary statistics in table 11 and the plots of the observed data and

regression curves in figure 3 suggest that these conditional prediction equations are quite

precise. For each year in which the income distribution data is not reported by the Census

tureau, a recursive forecast obtained from the above sequence of steps is used to fill in

the missing observations on the income distribution's percentile limits.

We follow a similar procedure to forecast the intra-percentile means, beginning

with the first quintile mean as a linear function of a constant term, the log of average per

capita income and the square of this variable, and the unemployment rate, with first-order

autocorrelation,

(46) In(1-111 ) = a + Pi in0-Lxj) + P2[1n(11 1 Val+,3u, ± vi,„ v1, . pvi j_, +

As for the first quintile upper limit regression, the sample period for the first quintile

mean income re ession is 1946-97 due to the presence of autocorrelation. Predicted

values for in(ti,t) are calculated for the years 1918-1928, 1930-40, 1942-43, and 1945

using data on average per capita disposable income and the unemployment rate. These

predictions, in turn, are used in the following recursive prediction procedure for the

remaining intra-percentile mean incomes.

For each intra-percentile mean income above the first quintile, we estimate an

ordinary least squares prediction equation using a constant term and first- second-- and

i
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d-order powers of the log of the nearest smaller intra-percentile mean, the log of

average per capita disposable income, and the unemployment rate as regressors,

(47) In(111,1) = ai PEI In(jli-1,) ± 1312 Un01,,A2 + P3fin011_1,1)113 + 3i4 inOircv 0,5u, +

for i = 2, ..., 6. The summary statistics in table 2 and the plots of the observed and

predicted values of each intra-percentile mean in figure 4 suggest that these conditional

prediction equations also are very precise. As in the previous case, we use the predicted

values obtained from the least squares regressions to fill in le missing observations on

the U.S. income distribution.

4. Esti mem

The system of empiric.•

the Nested QPIGL-I S for U.S. Food ema di

nested QPIGL-IDS demand equations at we estimate for U.S.

food consumption for the years 1918-1995, excluding 1942-1946, can be written in

deflated expenditure form as

(48) {As + p (X) + y[m (K) p()' As I — X.Y

I +y'pl(X)]8[mt0c) pt(42 As, pYt(X Bp(Xt .)]2 1 + Et t = 1, T,

where et= [pi ••• Pn ni]' is the n-vector of deflated per family annual expenditures on

individual food items, 851 is a vector that includes a constant, the mean, variance and

skewness of the U.S. population's age distribution, the proportion of the U.S. population

that is lack and the proportion of the population that is neither Black nor White, and s, is

an n-vector of mean zero, identically distributed error terms. We specify the empirical

model in expenditure form to keep all income terms on the right-hand side so that the
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1 of the appropriate transformations of income are properly calculated

across all U.S. families during the econometric estimation of he demand parameters.

Expanding the second line of equation (48) and

demand equations can be rewritten in the form

{(49)

1
+—

K,

ouping terms, the QPIGL-IDS

C l
Ast Pt(k)— Y —K P(kYAs (k)'t

y — 2[I + y'pt(X)-

which shows explicitly 1

+ y'pg(k)..8(1),(2)' As, + pi (20'

11, mt

2

il;Pf (2) 
1

7/M2018 4' + Et ,
2

at we require the means with respect to the income distribution

of the variables m, m„ and m:" in each year to consistently estimate the demand

parameters with ag• 'egate market data. Estimation of the model's parameters therefore

requires, for any given value of K E (0, IL numerical intey ation methods to evaluate the

expected values of the three powers of income at each year in the sample period, where

e expectation is taken over that year's estimated income distribution.

To accomplish this, we transform x E into yE [0, 1) through the change of

variables y = x1(14-x) and use Simpson's rule on a grid over the unit interv

that this numerical approximation is good, for the It

.1 . To ensure

MOM distribution we compare the

intra-quintile and the top five percentile mean incomes, which are known exactly, with

the numerical values obtained through numerical integration. In this case, the numbers
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e truncated three=

parameter lognormal distribution, we use Monte Carlo simulation to estimate e income

moments using a pseudo-random sample wiIii 107 observations and compare

estimated values with the results obtained by numerical integration.14

We use two-step nonlinear seemingly unrelated re essions equations (NLSURE)

estimation methods, combined with a one dimensional search over the income term's

ox-Cox parameter K. Only one iteration on the residual covariance matrix is calculated

to avoid numerically over fitting one or more equations, which can occur with iterative

NLSURE in large, highly parameterized demand models such as this.115 A search over x is

used to incorporate the numeric inte ations required to generate the ag Negate income! I

variables, which in turn depend upon the parameter K. Symmein of the coefficient matrix

14 The Monte Carlo simulation proceeds as follows. First, a vector of 2N pseudo-random numbers is drawn
from a uniform [0,1] distribution using a two-step compound linear congruential pseudo-random number
generator. In the first step of i's compound pseudo-random number generator, one number in the [0, 1]
interval is drawn using one of seventeen mutually relatively prime linear congruential generators. The unit
interval is broken up in into sixteen mu ii. ky exclusive and exhaustive sub-intervals of equ.I length, and the
outcome from the first step determines witich of the remaining sixteen 0 leer linear congruential generators
is used to obtain a second pseudo-random number. That is, two pseudo-random numbers from the uniform
[0, 1] distribution are awn to obtain one useable observation. Mixing sever relatively prime linear
congruenti I pseudo-random number generators in is manner can be shown to overcome the known serial
correlation problems inherent in a single linear congruential generator.

The second step is to use the it ox—Mueller method to transform pairs of independent uniform [0,1]
observations into pairs of independent observations from the a standard normal distribution. Then each z,
from the sample of 2N i.i.d N(0, 1) pseudo-random variables is transformed to xi from the three-parameter

lognormal distribution using the formula zi = [1n(x1 —0)-1.1]/.5 , equivalently, xi =0+expfiu+az1 . If xi <0,

then the observation is excluded from the truncated sample.

Finally, the sample moments of the retained observations on 4-K , x., and x K are calculated

using the number of retained observations as e divisor. Throughout the period 1918-95, this resulted in
simulated sample sizes in the neighborhood of 9.8-9.9 x 106. Each simulated moment fell well within the
range of 99-101% of the corresponding moment calculated by numerical integration.

15 See, e.g., LaFrance (1999b), footnote 12 for a discussion of this issue. The crux of the matter is that all of
the model parameters, which in the present case total 317, enter each of the demand equations, while there
are only 76 time series observations. This creates a numerical possibility for a singular estimated covariance
matrix when iterative NLSURE is employed, which generates an unbounded likelihood function.
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is maintained throughout ,e estimation process in order to reduce the dimension of the

parameter space from 527 to 317 estimated parameters.

Figure 5 presents the results of both steps of this estimation procedure, with the

second step generated by searching over x while holding the estimated residual

covariance matrix fixed at e value calculated from the total sum of squared residuals

minimizing value for K. s can be seen from the figure, this value is 1.00 for the

truncated three-parameter lognormal (T3PLN) density and 1.03 for the MOM density.

Conversely, the optimal values for x obtained in the second iteration of the NLSURE

procedure are 1.03 and 1.00 for e T3PLN and MOM income densities, respectively.

There are several important aspects of the results that are illustrated in fi e 5.

First, e QAIDS-IDS is strongly rejected in favor of an extended QES-IDS for this data

set, for both income distribution estimates, and at both stages of the NLSURE estimation

process. Second, the T3PLN density appears to fit the data substantially better th H the

MOM density, as measured by the residual sum of squares, for both iterations on the

residual covariance matrix. However, the resulting estimates for the first- and second

order i come coefficients, y and 8, respectively, as well as the optimal v .11ues for the

Cox parameters, x and 2, are statistically very similar in the two specifications for the

income distribution. Third, the residual sum of squares appears to have a discontinuity in

the interval K E [.05, .10], which appears even with increments in K of .001 in that

interval and WI I the starting values for the o er parameters in the nonlinear estimation

procedure initialized at each fixed value for K in the range 0.001 to 0.200. However, this

discontinuity decreases substantially in the second NLSURE step.

Table 3 presents the individual equation summary statistics for the T3PLN model

of income distribution and table 4 presents this information for the MOM model. As

would be expected from the differences in the residual sums of squares, the R2 measure of



33

fit for the former tend to be slightly higher than for the latter in most of the demand

equations, although this is reversed for nine out of the twenty-one goods. On the other

hand, three of the Durbin-Watson sl .itistics for serial correlation are considerably closer to

2.0 in e T3PLN model relative to the MOM model (cheese, fish, and process fruit),

although only the first one (cheese) reverses the inference from rejecting the null

hypothesis of no autocorrelation based on the lower bound for the five percent critical

value of the test statistic.I6 On the other hand, four Durbin-Watson statistics in the

MOM model are considerably closer to 2.0 than in the T3PLN model, and none of these

reverse the conclusion that there is no autocoNelation at the five percent sit nificance

level. Evidently, both versions show heteroskedasticity for a substantial number of the

demands equations (seven in the T3PLN model and ten in the tMOM model), based on

the reush-Pagan La ange multiplier test. Ali hough not very surprising given the longs'

and frequently volatile period covered by the sample set, this issue warrants further

consideration.

Table 5 presents the t ox-Cox price coefficient and the first- and second-order

income coefficients for both versions of e model. The standard errors reported in this

table are conditional on the estimate of due to e generated income variables nature of

the demand model's parameter estimates. This, combined wi the evidence of potentially

serious heteroskedasticity presented in the previous two tables, implies that these standard

errors should be intel oreted wa caution. However, in the absence of heteroskedasticity,

it is possible to calculate consistent test statistics for the rank of the demand model using

a Wald test. For the T3PLN version, we btain e following:

16 This conclusion is based on calculating the upper and lower bounds for the Durbin-Watson statistic by
using the average number of parameters per equation (fifteen) for K and the number of time series
observations (seventy-six) for N in the Durbin-Watson tables.



Ho:y=0 I-Icy# 0

H0: &D =0 HI: .5# 0

Ho:y=5=0 licy#Oor 5# 0

Similarly, for the ZMOM version, we obtain:

Ho:y=0 1-11:y# 0

Ho: 5=0 Ii1:8#01

H0:y=8=0 Picy#Cor 8# 0

X2(21.) = 114.89

59.99

x2(42) = 349.18

X2(21) = 148.77

X2(21) = 105.16

X2(42) = 373.50
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In both cases, we are lead to reject all three versions of the null hypothesis at any standard

level of significance, and therefore conclude 1 I 1at the full rank ee QES-NIDS model is a

significant improvement over all of the more restrictive versions. We also conclude that

any version of inte

alternative with the

*1,.

It

able a\1DS model is significantly inferior to the corresponding

ox-Cox income parameter statistically very close to unity.

S. Conclluasftons

This paper presents a method to nest, test and estimate both the rank and functional form

of the income terms in an incomplete system of aggregable and integrable demand

equations. The Itayesian method of moments procedure is applied to the problem of

inferring the U.S. income distribution using annual time series data on quintile and top

five percentile income ranges and intra-quintile and top five percentile mean incomes.

The results obtained with the itMOM income distribution are compared and contrasted to

those obtained with a truncated t i ee-parameter lognormal income distribution. Estimates

for the year-to-year income distribution are combined with data on the U.S. consumption

and retail prices for twenty-one food items, as well as variables to account for the age

distribution and ethnicity of the U.S. population. The time series sample period for the

demand modle is 1919-95, excluding 1942-46 to account for orld az II.
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The empirical results suggest that full rank integrable versions of the 1DS4DS

are rejected in favor of a full rank I ee extended QES-IDS. This has significant

implications for future demand analysis, particularly with respect to food consumption

using ag el egate market-level data sets. For example, in a model of the demand for dairy

products, Ag ew (1998) finds that Iiie nonhomothetic, inte able full rank two AIDS

contributes to rejections consumer theory — i.e., symmetry and curvature. He also infers

(as do we) at the AIDS4DS (QAIDS-IDS) is inferior in all statistical respects relative to1

an extended LES-EDS (QES-IDS).

However, the empirical results presented in this paper regarding e demand for

U.S. food consumption are at least somewhat limited in scope and interpretability. The

main reason is that all other parameter estimates are conditional on e ioxCox

parameter for the income coefficient. If we were willing to assume a priori at a QES

model is the best specification, then we could inte

in e usual manner.

11'ret I e remaining parameter estimates

ut of course this would be unfair play at this stage of the game. It is

interesting to note, however, that given the QES specification, i he moments required from

the income distribution for exact aggregation are precisely the mean and e variance.

This is an interesting result in its own right. Another limitation of the empirical results is

the apparent presence of a significant level of heteroskedasticity. This could impact our

inferences on the parameters and model structure and warrants further consideration.

Finally, no attempt is made to test for or impose the curvature restrictions necessary for

the model to be consistent with weak integrability. Consequently, these results should not

be used for welfare analysis.
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Appenda: Proofs of Lem=

Lemma. n: It can be show that 11+ yx'l = 1 + y 'x, so that I + Tx' is nonsin

40

lair and has an

inverse defined by I - yx'/(1 + '6,$) if and only if y 'x -1 (Dhrymes, 1984: 38-39).

Typically, p is a vector of price indices each normalized to unity in a base period, so that

x vanishes in the base period. In addition, the elements of 7, which measure Ihe departure

from homotheticity of the individual demand equatio s, often are quite small (e.g., the

empirical results obtained by Deaton and Muellbauer). Moreover, 00 homogeneity

requires that the elements of y sum to zero. Therefore, in

[11 D.- 1]' for some 9 e

is nonsingular in a nei

1 cases where x = 91. wi

(including 9 = 0) at a base point for ILe data, the matrix i+ yx'

borhood of that point. We therefore have the following property.

A. 1+Yx#0VxeXc

where jsi is open, has a nonempty interior, contains the line passing through 0 and t, and

includes all of except an n-1 dimensional h F.e 'lane with Lebesgue measure zero.

Property A permits us to write Fe LA- S as a system of linear parti

differential equations,

ay(x, u) y(x, u) Yx' 
— (a+ax (1-Fyix) (1-4-yix)_

where use has been made of [I- yx'/(1 +y px)]y y / (1 +y 5s). Then, by simply noting that

a y(x, u) 

Ox 1+y 'x
[aY(x,u) Y(x,u) 1 

Ox (11+It'x)_(1+ylx)'

we can multiply by 1/(1 + y x) to make the left-hand-side an exact differential.

Consequently, Slutsky symmetry is equivalent to symmetry of the nxn matrix
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_a i  1 I  yx'  

[ 

(1+1,k)]
(a +.13x)}.

ax' t(11+yk) 

2(ccix + x'./3x)yy ' 

(1 +#1,'.r)3 .

Imposing symmetry on each of the terms associated with like powers of (1 + y 'x) and

ignoring terms that are automatically symmetric, we obtain B = B' and yxIB = 'Pry' .

There are two ways that these conditions are satisfied simultaneously V x E

(i) y * 0 and = poyy' for some po (including 130 = 0); and (ii) y =0 and

Case (i) gives the LA-ALPS model in the form

ay 
= a + y

(y—aix-00(ytx)2) 1y—aix+1307`k
—a-i-Pork+1' = 
ax 1+y'x 1 + 7 'x )

This is a very simple system of linear first-order partial differential equations. Noting that

and that

a (  a ix  Ha y (  a 'x  )]  1 
...._ ,
ax 1 -Fy k 

a rrno+7k)-(  71x  Ns" ix
1+yix (1+y)2'

combining these two equations with equation (4), and integrating with respect to x, we

obtain the logarithmic expenditure function as

[ Y ix + (1 +y 1x)u ,
(1+100
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with an obvious normalization for the utility index.

Case (ii) generates the homothetic L A -AIDS demand model,

4'x

which gives the logarithmic expenditure function as

y(x,u)=a5c+-;- x+u,

again wi an obvious normalization.

This establishes necessity of the parameter restrictions for integrability. On

o er hand, y = trivially gives an LA-AIDS form. To show sufficiency when y # (1), write

a)/
31— x/—=Y—x' a+00Y75c -1-1/

ax

fy—a1x—f30(p)

11-yix

Direct substitution gives the equivalent LA-AIDS form,

4.

—=a+130yy'x+y
ax ax

31 —a/X-00(75W 
•1+y'x

Lemma 2: Symmetry of the Slutsky substitution terms is equivalent to symmetry of the

nxn matrix with typical element

S!I .. = !I. EeijkXk Yi
k=1

n n

ai Pikxk y zeik,xkx, +7Y
k=1 k=1 k=1 i=1

To show necessity, we will derive the implications of symmetry, sij = V i, j. These

implications can be conveniently grouped into three sets:

(a) = Pii +Yjai ;
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(b)

and

(c)

E (0ift +7i0,13xk = E(9Ijk 1-7JOik)Xk
k=1 k=1

n n n P2

71E oik,xkx, =yjE E 0 ikpCkX1
k=1 1=1 k=1 1=1
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From (a), it follows that a a —y6to , where asi = (p„ Old /y1 and eto =

Substituting e right-hand-side for each ai back into (a) implies B + is

symmetric, equivalently [Pa]
— yai for some symmetric matrix

Now turning to (b), we use a result of LaFr ce and Hanemann (1989, eorem 2,

p. 266) to obtain eijk +710ik = iik A- 7jPik V I, j ,k w

First, however, we apply the same result of L

YleJkI =7j011d V i,j,k,l, w i

1

ich we will return to in a moment.

rance and Hanemann to (c) to get

ch in turn implies that, for each i, the nxn ma I

[eiki] = yiC where C is a symmetric matrix with .icall element Cid = 01k1 71.

Combining this with (b) gives i(c ik + b jk) = y i(cik +bik) V i, j, k. Exploiting yi # 0 and

the symmetry of bo iv and C then give Oki + cii) = cll)y iy / y?, so that

and C are related by C = —(X Eyy°) , where c =

Combining all of these implications, transformed demands can be written in

matrix otation as

ay(x,u)
=a—aoy+

ox
76V)ix + cry')x + yy(x,u)

= a + Bx + y[y(x,u)— Oco — xi (B +

Now, note that adding and subtracting Ey and Erix has no affect on the transformed

demands. Therefore, let a = a + Ey , B = B + sr', and ao = +6 , and rewrite the

partial differential equations in the equivalent form
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ay(x,u) 

ax
itx-F y[y(x,u)—a.0 x

Finally, the integrating factor &Ix makes the partial differential equations exact,

a—[xx,u)e-Yx]. [a 4.
ax

1.7x -

[(a.0 (5ex +I
ax 2

(ao

wi complete solution class given by

y(x,u). al) jex+-1- x-1-8(ji,u)eP.

Sufficiency is demons ated by applying Hotelling's/Shephard's lemma.if

Lemma 3. We begin by proving the lemma for simple polynomials in m. Dropping the p

arguments for notational clarity, the Slutsky matrix can be written as

k aa k k
S =E hot .ce.mi+j-1

1=0 aP' i=lj=0

where each acciiap' is an nxn matrix. ty the continuity of each term in S, symmetry

requires that each like power of in must have a symmetric coefficient matrix. All such

matrices In reply to: powers of in from k+1 through 2k-2 involve nontrivi symmetry

conditions without any acciiap° terms (The m2k-1 matrix only involves aketik wi 'al is

clearly symmetric.) We will combine terms in the like powers of m and work backwards

recursively from the m21-2 matrix; then

(k —1)ak-14 kakaik-i
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is symmetric if and only if ak_i tcpk_iak , say, for some

(k —2)a. k_2(4 + (k — Da + ka, ka'k_2

is symmetric if and only if ak_2 (pk_2ak for some (pk_2 :

recursion applies, consider the 1112k4 matrix for k>3,
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. Similarly,

. Now, to see how the

(k — 3)a, k_34 + (k —2)a k_244 + (k — Da + ka.

Note that symmetry of the middle two terms follows from the two previous results, since

then we have ak_2aik_i = coirk_2(pk_itakak and ak_14_2 = 9k_ftpk_2aka.9k . Also, note that

(k —3)(a k_3(4 +

is always symmetric. Therefore, the 1782" matrix is symmetric if and only if 3aka'k...3 is,

which requires that ak_3 (pk_3ak for some (Pk-3

for all k 5 5.

If k> 5, then for each j such that 4 j k-1, ..., we

ak_i (Pk-iak

. This completes the proof

foup like terms, substitute

for each i < j, and exploit symmetry of the matrix

(ak÷i-icilk akceik+i-j)

form is symmetric:

ch sequentially requires that each matrix of the following

j-2

j —1)a kat' k+17/ + (k — k...0 joe kaik

Each of these matrices is symmetric if, and only if,  a+-k1 for some

(1) ic+1— j IR  -4 . Note that j =4 gives us the condition for ak..3, while j = k-1 gives us

the condition for a2, thereby proving inductively for any k that all of the ai terms, i = 2,

k, are proportional. Therefore, the rank of the matrix [au] is no greater than three.
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To see that these arguments apply to polynomia.1 expansions of the PIGL and

PIGLOG models, note that

ae(p,u)'(.3e(p,u))=
= K e( p, 0'1   ao(P)-F al (p)e(P, u)K + a2(P)e(p,u)2' + --

ap ap 
,

has the generalized PIGL form of Gorman and Lewbell,

w

q = a0(p) . mik''IC + al (p) . in + a2(p) . ml+K ÷ .

a in (e(p,u)) .1 ae(p,u)I OR).= ao(p)i-ai (p) In (e(p,u))+a2(ap \ e(p,u)
In (e(p,u))j2 + • • • ,

has the generalized PIGLOG form of Gorman and Lewbell

q = ao(p)- in+ otR(p)• m •In(m)-F a2(p)•me[log(m)]2 4--- .

Thus, the lemma applies to these models as well as to polynomials in income, and the

rank three part of Gorman's theorem is a simple corollary to symmetry for this class of

demand models. 4
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C instant

1946 - 1997

iffqpipc,t) Eino4c,1)12 Unemp IED-W

In(m11) -5.568 2.514 -.09593 -1.439 .9990 1.621
(.9566) (.2278) (.01332) (.3638)

ei,f = .6529e1,14 + el,/
(.1093)

1928,1935/36, 19411 a d 1946 - 1.997

Consta 1111(mpl,1) .1_012 [111(Mi.,194113 R2 D-W

llal(ng291) -2.088 2.101 -.1516 .006813 .9994 1.459
(1.942) (.7209) (.08854) (.003597)

D1On3,g) 7.242 1.177 .2223 -.007330 .9999 1.237
(1.178) (.4093) (.0470 (.001794)

flanOn44) 5.674 -.4928 .1331 -.003720 .9999 1.067
(1.151) (.3824) (.04210) (.001535)

Id 54) 13.21 -2.569 .3267 -.009746 .9993 1.523
(3.505) (1.113) (.1173) (.004095)

Numbers in parentheses are estimated least squares standard errors.

D-W is the Durbin Watson statistic for autocorrelated errors.
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Talk 2. Prediefion Eqp.ilatAons fon- U.S. Rncome ElistRibutilon PercentAlie Mums.

Constamt ilall(ppch

j1946 -11997

ilt010.1.pa 2 Umemp

lilln(-14,t) -5.719
(2.819)

2.429
(.6691)

-.09083
(.03915)

eL, = .8943eL,..1 + EL,
(.0595)

4.982 .9978 1.621
(.5293)

Const

1928, 1935/36, 1941 and 1946 - 1997

InG-Le-asie) Pn(1.444)12 Un(ili-R,e)13 (ppc) u

Ilroi(129,) 7.286
(1.275)

11 (l134) .9981
(.4022)

1111(144) 2.661
(.2268)

1111n(15,1) 27.92
(5.472)

li 6.084
(.3858)

3.190 -.3061 .01057 .5804
(.5510) (.07212) (.003251) (.03359)

.7409 .008884
(.05770) (.006234)

.5136 .03200
(.02985) (.003515)

.9998 1.251

.1165 .3149 .9998 1.351
(.05418) (.08553)

-.07413
(.03695)

.9999 1.056

-6.172 .6920 -.01980 .5699 4.399 .9990 1.365
(1.804) (.1899) (.006797) (.1390) (.2621)

.2495 .06530
(.08777) (.003334)

-.5704 -.5396 .9997 1.444
(.03234) (.1020)

Numbers in parentheses are estimated least squares standard errors.

D-W is the Durbin Watson statistic for autocorrelated errors.
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ary Statistics for th Truncated 3-Parameter Lognormal

istribution

Fresh Milk and Cream

utter

Cheese

Frozen tairy Products

Durbin- LM Het.

Watson Test P-Value

.9975 1.935 3.713 .054

.9971 1.559 6.839 .009

.9977 1.353 5.349 .021

.9661 1.333 .8390 .360

Canned and Powdered ilk .9648 1.287 2.449 .118

.9741 1.280 2.367 .124

.9266 1.315 .0363 .849

.9569 1.455 5.835 .016

.9899 1.665 .3366 .562

.9628 1.098 3.882 .049

.8474 2.084 4.861 .027

.9668 2.628 15.88 .000

.9834 1.790 .00895 .925

Po; .toes and Sweet Potatoes .9671 1.869 .2154 .643

Processed Fruit .9869 1.829 9.921 .002

Processed Vegetables .9785 1.554 .7384 .390

Eggs .9747 1.771 .00394 .950

Fats and Oils, Excluding Butter .9983 1.551 2.494 .114

Cereals and Bakery Good .9925 1.279 3.516 .061

Sugar and Sweeteners .9828 2.145 .3966 .529

Coffee, Tea and Cocoa .9691 1.930 2.639 .104

Zeef and Veal

Pork

Lamb, Mutton and Goat

Fish

Poultry

Fresh Citrus Fruit

Fresh Noncitrus Fruit

Fresh Vegetables
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'ICablle 4. Equatfalrfi SIRMEIERT Staflstfics for the Bayedan Method of -Monnermts U.S.

Income Dftstrilbullfion

Eittion

Fresh Milk and Cream

utter

Cheese

Frozen Dairy Products

Canned and Powdered Milk

eef and Veal

Pork

Lamb, Mutton and Goat

Fish

Poultry

Fresh Citrus Fruit

Fresh Noncitrus Fruit

Fresh Vegetables

Potatoes and Sweet Potatoes

Processed Fruit

Processed Vegetables

Eggs

Fats and Oils, Excluding itutter

Cereals and akery Good

Sugar and Sweeteners

Coffee, Tea and Cocoa

Ek2

.9915

.9939

.9964

.9748

.9766

.9737

.9059

.9426

.9824

.9616

.9547

.9716

.9949

.9620

.9877

.9900

.9917

.9972

.9956

.9735

.9452

Ihurbfin- LM Het.

Watson Test IPVilluiie

1.841 6.952 .00

1.591 13.58 .000

1.170 1.984 .159

1.323 1.443 .230

1.369 6.586 .010

1.266 3.260 .071

1.542 .0342 .853

1.559 5.596 .018

1.212 .5206 .471

1.300 2.228 .136

1.922 4.698 .030

2.260 15.86 .000

1.749 2.5065 .113

2.217 13.90 .000

1.507 4.969 .026

1.397 2.204 .138

1.877 45.32 .000

1.693 11.69 .001

1.312 .2067 .649

2.091 .1889 .664

1.720 .1416 .707
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Table 5. Estim,,ted Income Coefficients for the QPIGL-IDS for U.S. Food Consumption.

Truncated 3-Parameter Lognormal: k= 1.03 Bayesian Method of MomeAs: iZ = 1.00

Parameter Estimate

.853915

Conditional
Standard Error Estimate

Conditional
Standard Error

51

-.024642

12 -.258821.10-2
y3 -.911698.10-3

14 .017188
15 .301518-10-2

Y6 .022654

17 .010451

18 -.313399.10-2
19 .339135.112

Ylo -.934498104
111 -.968060-10-3

112 .048544

113 .768783.10-2

114 -.020795

Yis _.550843.102

116 .026156

117 .011163

118 .61515140'2

119 .021258

120 .019811

121 .254267.110-2

81 .112092-10-5

82 -.187811-10-7
53 .866507-10-7

54 -.463795-10-6
85 -.726773.10-9

56 -.51884610-6
87 -.316928.104
88 .137460-104
89 .720693.104

Sio .250661 •104

811 .650096-10-7

82 -.193640-10-5

813 .496807-104

814 .959843-104

815 .51002240-6

816 -.445306-104

817 -.366017.104

818 -.159808.104

819 -.525896.104

820 -.288873-104

821 -.13882340-7

.033923

.013093

.20615340'2

.221715.10-2

.500290.10'2

.5922524 0-2

.010523

.995331.10.2

.371416-10-2

.209848.10-2

.425920.10-2

.997693.10'2

.015135

.772512-10-2

.020258

.685728.10-2

.74390040.2

.439605-10'2

.353595.10-2

.013952

.939334.10'2

.252764.10-2

.486111-104

.862305.10-7

.802000.10-7

.203328.10'6

.226065-10'6

.405252.104

.401569.104

.136176404

.714625-10-7

.199447-10-6

.391085.104

.670224.104

.294807-10-6

.731403-104

.285776-104

.328907-104

.187846-104

.174505-104

.569711.10'6

.386350-104

.982542.104

.905925

-.024504
-.010249
.984936-10-3
.391228.10'2
.573810-10-3
.946772.10'2
-.136379.10
-.245839•10-2
.885948-10-3
-.270148-10-3
-.020254
.038601
.915188.10-2
-.189372-10-2
-.012508
.021646
.483915.10-2
-.356145-10-2
.157884-10'2
-.010722
.167696.10'2

.108833-10-5

.176424-10-6
-.123694.10-7
.49412240-7
.227677-10-7
-.121129.104
.252274-10-6
.138579.10'6
.553370.104
.159695.10-6
.602407-10-6
-.116682-10-5
-.28432840-7
.149585104
.470437.10'6
-.144042.104
-.152148-104
.104303-104
.201483-10'4
.336199-104
-.441223-104

.033745

.015251

.14016640-2

.149990.10'2

.277973.10-2

.314409-10-2

.573816.10-2

.582051.10-2

.224639-10-2

.136181-10-2

.243933-10-2

.767887-10-2

.014255

.687591-10'2

.013863

.660558.10-2

.662656.1 0-2

.2626117-10-2

.218127-10-2

.929659-10-2

.601554.110-2

.156889.10

.416836-10-6

.415999-10-7

.389894-10-7

.774281-10-7

.847906.10'7

.151601-10'6

.157432.10-6

.582947104

.326526.1 0-7

.7248114 0-7

.18738040-6

.391205-104

.171947.104

.354263.10'6

.175568-10-6

.18337710-6

.743101-10-7

.641430-10'7

.242090-10-6

.164316-104

.416300-10-7
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