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LAfter brief remarks on the history of modeling and inference techniques in economics and
econometrics, attention is focused on the emergence of economic science in the 20th
century. First,. the broad objectives of science and the Pearson-Jeffreys° "unity of science"
principle will be reviewed. Second. key Bayesian and non-Bayesian practical scientific
inference and decision methods will be compared using applied examples from
economics, econometrics and business. Third. issues and controversies on how to model
the behavior of economic units and systems will be reviewed and the structural
econometric modeling, time series analysis (SEMISA) approach will be described and
illustrated using a macro-economic modeling and forecasting problem involving analyses
of data for 18 industrialized countries over the years since e 1950s. Point and turning
point forecasting results and their implications for macro-economic modeling of
economies will be summarized. Last. a few remarks will be made about the future of
scientific inference and modeling Techniques in economics and econometrics.

I. Introduction

It is an honor and a pleasure to have this opportunity to share my thoughts with you at
this jou University Conference in honor of Professor Tong Hun Lee. He has been a
very good friend and an exceptionally productive scholar over the years. We first met in
the early 1960s at the U. of Wisconsin in Madison and 11 was gteatiyimpressed by his
intzliectual ability, serious determination and genuine modesty. As stated in his book.
Lee (1993),

-1 was *riginaliy drawn to e study of economics because of my concern over the
misery and devas tion of my native country. . . I hoped that what N learned might help
to improve hying conditions there. s a student, however, 11 encountered numerous

°Research linaJiced in pan by the U.S. Natoonal Science Foundatoon and by the H.G. . Allenvader Endowment Fund, •
Graduate School of Business. U. of Chicago. e-mail: arnold.zeliner:Fsg.sb.ischocago.edu
hap://gsbwww.itchicago.eduiraciamolld.zeilneriindeo.htmi
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conflicts between economic theory and real world phenomena. Over time I
acquired a deep conviction that economic research should be rigorous but policy
relevant and that it must reflect an appreciation of empirical evidence as well as of
economic theory." (p. IX)

Here we have a statement of Lee's objectives that are reflected in his many
research publications on econometric methods. economic theory and applications to
monetary, fiscal, regional and other problems that reflect his expertise in economic
theory, econometrics and applied economic analysis. Indeed, it is the case that Lee has
achieved great success in his research and career. When we contrast Lee's knowledge of
economics, econometric methods and empirical economic analysis with that of an average
or even an outstanding economist in the 1-9th century or in the early 20th century, we can
appreciate the great progress in economic methodology that has been made in this
century. This progress has led to the transformation of economics from an art into a
science with annual Nobel Prize awards. Recall that in the 19th century and early 20th
century we did not have the extensive national income and product and other data basesthat are currently available for all countries of the world. In addition, scientific survey
research methods have been utilized to provide us with extensive survey and panel data
bases. Also, much experimental economic data are available in economics. marketing.
medical and other areas.

Not only does the current data situation contrast markedly with the situationin the past but also the use of mathematics in economics was quite limited then. Further.good econometric and statistical techniques were not available. For example, as late asthe 1920s. leading economists did not know how to estimate demand and supply
functions satisfactorily. A leading issue was. "Do we regress price on quantity or quantityon price and do we get an estimate of the demand or supply function?" Further. in the
1950s. Tinbergen mentioned to me that he estimated parameters of his innovative macroeconometric models of various industrialized countries' economies by use of
-ordinary least squares" (OLS) since this was the only method that he knew. And ofcourse. satisfactory statistical inference techniques. that is estimation, testing, prediction,model selection and policy analysis techniques for the multivariate, simultaneous
equation. time series models that Tinbergen. Klein. Schultz, and many others built in thefirst half of this century were unavailable.

As is well known, econometric modeling, inference and computing techniqueswere in a very primitive state as late as the 1940s. Some believed that fruitful
quantitative, mathematical analyses of economic behavior are impossible. Then too,there were violent debates involving Tinbergen. Keynes, Friedman, Koopmans, Burns,Mitchell and many others about the methods of economics and econometrics. Theseincluded charges of "measurement without theory" and "theory without measurement."Others objected to the use of statistical sampling theory methods in analyzing non-
experimental data generated by economic systems. There were heated debates about howto build and evaluate empirical econometric models of the type that Schultz, Tinbergen,Klein, Haavelmo, Koopmans, Tobin and others studied and developed. Some issues



invollvo4i simpilicity iiode bilHng9 expLnziory versus foFecastingcriteria f©r modell flormance. applicability of probability theoq kia the mayes ofeCCUAOMiC CLIta, %NCR% concept of probabifity to utilinc, quality of available data. etc.• Finally, there were ar?-uiTents aortttat which sutisticaR pproach to use in anal3aingeconomic L-_, namely, likelih,toci, sampling iieory„ fiducial. Bayesian, or oiler inferenceapproaches.

Indeei there were many unsettled. contriNersial issues regarding ec(knomic andeconometric methodology in the early decades of this century. However, economics wasnot alone in this regard. Many other soci„ to biological and physical areas of researchfaced similar methodological issues. indeed. Sir Harold Jeffreys wrote his.famous books,Scientific Inference (1973, 1''ed. 1931) and Theory of Probability (1998, 1 Ed.1939) toinstruct his fellow physicists, astronomers. and other researchers in the methodology ofscience. In I. J. Good's review of the 3"l edition of the latter book, he wrote that Jeffreys'book". .is of greater importance for the philosophy of science, and obviously of greaterimmediate practical importance. than nearly all the books on probability written byprofessional philosophers lumped together." See also, articles in Kass (1991) and Zellner.(1980) by leading authorities that summarize Jeffreys' contributions to scientificmethodology that are applicable in all fields and his analyses of many applied scientificproblems. it is generally recognized that Jeffreys provided an operational framework forscientific methodology that is use I in all the sciences and illustrated its operationnature by using it in applied analyses of many empirical problems in geophysics,astronomy other areas in his books and six volumes of collected papers, Jeffreys(1971).

Jeffreys. along with Karl Pearson (1938). emphasized the "unity of science"principle, namely that any area of study. e.g.. economics. business, physics. psychology.etc.. can be scientific if scientific methods are employed in analyzing data and reachingconclusions. Or as Pearson (1938. p. 16) states. "The unity of all science consists alonein its method. not in its material.- With respect to scientific method, Jeffreys in his book,Theory of Probability, provides an axiom system for probability theory that is use:LI toscientists in all fields in their efforts to lean" from their data, to explain past experienceand make predictions regarding as yet unobserved data. fundamental objectives of sciencein all areas. He states that scientific induction involves (1) observation and meisuienhantand (2) generalization from past experience and data to explain the past and predict futureoutcomes. Note the emphasis on measurement and observation in scientific induction.Also. generalization or theorizing is critical but deductive inference is not sufficient forscientific work since it just provides stAements of proof, dispr*of or 441:Aramce. Rnductheinference accommo4tes statements less extreme than those of deductive kafeTence. Forexample. with an appropriate -reasonable degree of belief' definition of probability (seeJeffreys. 1998. Ch. 7 for a penetrating analysis of various, alternative concepts ofprobability). inductive inference provides a quantitative measure of the dei e of beliefthat an individual has in a proposition. say the quantity theory of money model or theKeynesian macroeconomic model. As more empirical data become available, thesedegrees of beliefs in propositions can be updated formally by use of pmbability them, inpanicular Bay& theorem, and this constitutes a formal, operational way of leaming
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from experience and data," a fundamental objective of science. Since other statistical

approaches do not permit probabilities to be associated with hypotheses or models, this

learning process via use of Bayes' Theorem is not possible using them. See Jeffreys

(1957, 1998), Cook (1990), Hill (1986), Jaynes (1983,1984). Kass (1982.1991) and
Zenner (1980, 1982,1988, 1996) for further discussion of these issues. That Jeffreys was

able to formulate an axiom system for probability theory and show how it can be used
formally and operationally to implement learning from experience and data in all areas of
science is a remarkable achievement that he illustrated in many applied studies.
Currently, Jeffreys' approach is being utilized in many fields, including business.
economics and econometrics and thus these fields are currently viewed as truly scientific.

• Before turning to the specific operations!of Bayesian inductive inference, it seems
important to point out that the origins of generalizations or theories is an important issue.
Some. including C. S. Pierce, cited by Hanson (1958, p.85), refer to this area as
-reductive inference." According to Pierce. ". . .reduction suggests that something may
be: that is. it involves studying facts and devising theories to explain them."
Unfortunately, this process is not well understood. Work by Hadamard (1945) on the
psychology of invention in the field of mathematics is helpful. He writes, "Indeed. it is
obvious that invention or discovery, be it in mathematics or anywhere else, takes place by
combining ideas."(p. 29). Thus thinking broadly and taking account of developments in
various fields provides for useful input alone with an esthetic sense for producing fruitful
combinations of ideas. Often major breakthroughs occur. according to the results of a
survey of his fellow mathematicians conducted by Hadamard, when unusual facts are
encountered. in economics. e.g.. the constancy of the U.S. savings rate over the first part
of this century during which real income increased considerably was discovered
empirically by S. Kuznets and contradicted Keynesian views that the savings rate should
have increased given the large increase in income. This surprising empirical finding led
arious economists including Friedman. Modigliani. Tobin and others to propose new

theories ol consumer behavior to explain Kuznets' unusual finding. Similarly, the striking
empirical fact that the logarithm of output per worker and the log of the wage rate are
found to be linearly related empirically caused Arrow. Chenery, Minhas and Solow to
formulate the CES production function to explain this unusual linear relation. Since
unusual facts are often important in prompting researchers to produce new breakthroughs,
thought it useful to brine together various ways, some rather obvious, to help produce

new and unusual facts rather than dull. humdrum facts. See the list in Zenner (1984.
pp.9- I 0) that includes (I) study of incorrect predictions and forecasts of models, (2) study
of existing models under extreme conditions. (3) strenuous simulation experiments with
current models and theories. (4) observing behavior in unusual historical periods, say
periods of hypennflation or major defiation,(5) observing behavior of unusual
individuals. e*.g.. extremely poor individuals. etc. By producing unusual facts, current
models are often called into question and work is undertaken to produce better models or
theories: .111 of this leads to the following advice for empirical economists and
econometricians, namely, PRODUCE UNUSUAL FACTS.

With these brief, incomplete remarks regarding how to produce new models and
theories, it is relevant to remark that when no useful model or theory is available, many
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Paconunend that we 2:_ssumeiJi veiniion As random waRess shown.o emise as a od
stifling point for ysis. No that Christ. Friedrnm Coorr„ Neilson.. Pllosserg -,Lnd
others used madam walk and other relatively simOe time series. benchmark fraodOs to
.appraise the predictive prfoce of Imge-scale macro-econornetric models pm
forward by Klein, Goldberger, the U.S.. Federal Reserve System and others. Also, such
benchmark models h ve been utilized in financial economics to evaluate pmosed
models that puntort to predict and expl in the variation of stock prices and ka work by
Hong (1989) and Min (1992) to evaluate the performance of complicated models for
forecasting growth rates of real GDP for industrialized counices. If such work reveals
that a complicated model with many parameters and equations can not perform better
than a simple random walk model or a simple univariate time series model. then the
model. at the very least, needs reformulation and probablyshattldte labeled UNSAFE
FOR USE. Indeed, in the last few years. We have seen the scrapping of some complicated
macroeconometric models. While the issue of simplicity versus complexity is a difficult
one. many in various theoretical and applied fields believe that keeping theories and
models sophisticatedly simple is worthwhile. In industry, there, is the principle KISS. that
stands for Keep it Simple Stupid. However, since some simple models are stupid. I
reinteTereted KISS to mean Keep It Sophisticatedly Simple. Indeed it is hard to find a
single complicated model in science that has performed well in explanation and
prediction. On the other hand, there are many sophisticatedly simple models that have
performed well, e.g. demand and supply models in economics and business, Newton's
laws. Einstein's laws, etc. For more on these issues of simplicity and complexity, see
Jeffreys (1998) for discussion of his and Doroh y Wrinch's "simplicity postulate" and ie
papers and references in Kuezenkamp. McAleer and Zeliner (1999) .

2. Bayesian Inference and Decision Techniques

As regards statistical and econometric inference and decision techniques, in
general since the 1950s and 1960s. there has been an upswing in the use and development
of Bayesian inference and decision techniques in business, statistics, econometrics and
many other disciplines by building on the pioneering w rk of Bayes. Laplace, Edgeworth,
Jeffreys. de Fineni. Savage, Box. Good. Lindley. Raiffa, Schiaifer. Dreze and many
others. ;)y now almost all general econometrics textbooks induci imatefial on the
ayes ian approach. In addition there are a number of Bayesian statistics, business,

engineering and econometrics texts available. in 1992. the International Society for
Bayesian Analysis (ISBA:www.bayesian.org) and the Bayesian Statistical Science
Section of the American Statistical Association (wv"voarnstat.org) were founded and
since then have held many successpil meetings and produced =mil proceedings
volumes, published by the Mnegican Statistical Association. Then too, for many yes
the NBER-NSF Seminar on 1ayesian Inference in Econometrics and Statistics, the
Valencia Conference, the Zayes-Niaxent Workshop. the Workshop on Practical
Applications of ayesian Analysis and the Bayesian lecision Analysis Section of the
Institute for Operations I":esearch and Management Science (INFMAS) have sponsored
many resench meetings, produced a barge number of Bayesian publications, and
srtsinsored various muds for outstanding work in Bayesian analysis. Further, the current
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statistical and econometric literature abounds with Bayesian papers. Indeed some have
declared that a Bayesian Era has arrived and that the next century will be the century of
Bayes.

To understand these developments, it is necessary to appreciate that Bayesian
methods have been applied in analyses of all kinds of theoretical and applied problems inmany fields. Bayesian solutions to estimation, prediction, testing. model selection.
control and other problems have been as good as or better than those provided by otherapproaches, when they exist. In addition. Bayesian methods have been utilized toreproduce many non-Bayesian solutions to problems. For example, as Jeffreys pointedout many years ago, in large samples posterior densities for parameters generally assumea normal form with a posterior mean equal to the maximum likelihood estimate andposterior covariance matrix equg to the inverse of the estimated Fisher informationmatrix which he regarded as a Bayesian justification for the method of maximumlikelihood.

As explained in Bayesian texts, e.g. Jeffreys (1998), Bernardo and Smith (1994).Berger (1985), Berry et al (1996), Box and Tiao (1993),Gelman et al (1995), Press(1989), Raiffa and Schlaifer (1961), Robert (1994). Zellner (1996), etc., Bayes' theorem,Bayes (1763) can be used to analyze estimation. testing. prediction, design. control andother problems and provides useful finite sample results as well as excellent asymptoticresults. In estimation problems, we have in general via Bayes' theorem that the posteriordensity for the parameters is proportional to a prior density times the likelihood function.Thus information contained in a prior density for the parameters is combined with sampleinformation contained in a likelihood function by use of Bayes' theorem to provide aposterior density that contains all the information, sample and prior. See Zellner (1988)for a demonstration that Bayes' theorem is a 100 per cent efficient information processingrule. invited discussion of this result by Jaynes, Hill. Kullback and Bernardo and furtherconsideration of it in Zenner (1991). The works, cited above, provide many applicationsof Bayes' theorem to the models used in business, economics, econometrics and otherareas.

Investigators can use a posterior density to compute the probability that aparameter's value lies between any two given values. e.g. the probability that themarginal propensity to consume lies between 0.60 and 0.80 or that the elasticity of afirm's.sales with respect to advertising outlays lies between 0.9 and 1.1. As regards pointestimation. given a convex loss function. say a quadratic loss function, it is well knownthat the optimal Bayesian estimate that minimizes posterior expected loss is the posteriormean while for absolute error loss and for -zero-one" loss, the optimal Bayesianestimates that minimize posterior expected loss are the median and the modal value of theposterior density, respectively. These and other results for other loss functions, e.g.asymmetric loss functions, are exact, finite sample results that are extremely useful inconnection with. e.g., real estate assessment, time series and simultaneous equationmodels where optimal sampling theory finite sample estimators are not available; seeBerry et al (1996) for many examples and references. Also, as Ramsey, Friedman,Savage and others have emphasized. this minimal expected loss or equivalently maximalexpected utility action in choosing an estimate is in accord with the expected utility



eory @cononics; see, e.g. Mei mem and Savage (11 9489 R952). Foftheg, tese
Bayesian ©jpfl71a1l iimates, viewed Ls estimators, ha.ve been show, to minimize 13ayes9
Fisk. when it is finite, wad 24.inbk. For more on time propcnies of Bayesian
estimators, s©@ e.g., Berger (II985)9 Judge ©t at 0987). Greene 0998) uad the other texts
cited 5JitVe,

rvgarti:_) some ayesian econometric estimati© results, see Hong (1989) who
used the ayesian approach to yze time series. thi order autore ssive-lleading
indicator (ARLD models for forecasting annual growth rates if real GDP. He not only
produced finite sample ayesian posterior distributions for the parameters of the model
but. also computed the probability 0.85 that the process has tw complex roots and one
real root. Also, he computed the posterior densities for the period and amplitude of the
oscillatory component of the model. He found a posterior mean for the *loci of about 4
to 5 years and a high probability that the amplitude is less than one. Also, the posterior
density for the amplitude of the real root was centered over values less than one. These
results were computed for each of 18 industrialized countries' data in Hong's sample.
From a non-Bayesian point of view. it is not possible to make such probabilistic
statements regarding the properties of solutions to time series processes and. indeed, it
appears that just asymptotic, approximate sampling theory procedures are available for
such problems.

Another area in which Bayesian procedures have produced improved results is in
the area of estimation of parameters of simultaneous equations models. For example. in
estimating the parameters of the widely-used Neriove agriculture supply model. Diebold
and Lamb (1997) showed that use_of easily computed Bayesian minimum expected loss
(MELO) estimators led to large reductions in the mean-squared error (MSE) of estimation
relative to use of the most widely used sampling theory technique. Similarly, in Park
(1982). Tsurumi (1990), Gao and Lahiri (1999) and Zellner (1997, 276-287, 1998),
Bayesian MELO estimators' finite sample performance was found to be generally better
than that of non- ayesian estimators including maximum likelihood, Fuller's modified
maximum likelihood, two-stage least squares. ordinary least squares, etc. In addition to
these fine -operating characteristics- of Bayesian procedures in repeated trials, for a given
sample of data. they provide optimal point estimates. finite sample posterior densities for
parameters and posterior confidence intervals, all unavailable in non-Bayesian approaches
that generally rely on asymptotic justifications. e.g.. consistency, asymptotic' normality
and efficiency, properties also enjoyed by Bayesian estimators.

Various versions of Bayes-Stein shrinkage estimation techniques, described in
Stein (1956). James and Stein (11961). erger (1985). Zenner and Vandaele (1975) and
other references, have been employed with success by Gaa-cia-Feffar et all. (1987), Hong
(1989). Min (1992). Zenner and Hong (1989). Quintana et al.(1995), Putnam and
Quintana (1995) and many others. Here in say a dynamic seemingly unrelated ref-ression
equation system for countries' growth rates or for a set of stock returns, the coefficient
vectors in each equation are sunned randomly distributed ab*ut a common mean vect*r.
By adding this assumption, Bayesian analysis provides ?)(tstenor means for the coefficient
veciors that are -ihc." towards an estimate of the common mean. This added
information provides much improved estimation and predication results, theoretically and



empirically. Indeed, Stein showed that many usual estimators are inadmissible relative tohis shrinkage estimator using a standard quadratic loss function. See Zellner andVandaele (1975) for various interpretations of Stein shrinkage estimators that have been-.extremely valuable in many empirical estimation and forecasting studies and Quintana etal (1995) for their use in solving financial forecasting and portfolio selection problems.
Further, for a wide range of dichotomous and polytomous random variablemodels, e.g. logit, probit, multinomial probit and logit. sample selection bias models. etc..new integration techniques, including importance function Monte Carlo numericalintegration, Markov Chain, Monte Carlo (MCMC) techniques and improved MCMCtechniques have permitted Bayesian finite sample analyses of these difficult models to beperformed. Many applications using data frcs marketing, education, labor markets. etc.have been reported. See, e.g. Albert and Chib.(1993), selected articles in Berry et al.(1996), Gelman et al. (1995), Geweke (1989). McCulloch and Rossi (1990.1994), Pole.West and Harrison (1994), Tobias (1999). and Zellner and Rossi (1984). It is the casethat use of these new numerical techniques. described in Geweke (1989), Chib andGreenberg (1996), Gelman et al (1995) and the other references above, has permittedBayesian analyses of problems that were considered intractable just a few years ago.
As regards prediction, the standard procedure for obtaining a predictive densityfunction for unobserved data, either past or future. is to write down the probability densityfor the future. as yet unobserved data. denoted by y. given the parameters, 0, f (yI0):

By multiplying this density by a proper density for the parameters, say a posterior density,derived from past observed data via Bayes' theorem. we can integrate over the parametersto get the marginal density of the-as yet unobserved data. say h(y1/) , where / denotes thepast sample and prior information. In this case, and in many others, the integration overthe parameters to obtain a marginal predictive density is a very useful way to get rid ofparameters by averaging the conditional densities using the posterior density as a weightfunction. Given that we have the predictive density, kyll), we can use it to make
probability statements regarding possible values of y. For example, we can computethe probability that. next year's rite of growth of GDP is between 3 and 5 per cent or theprobability that next year's growth rate will be below this year's growth rate. Further, ifwe have a predictive loss function. we can derive the point prediction that minimizesexpected predictive loss for a variety of loss function.'For example, for a squared errorloss function. the optimal point prediction is the mean of the predictive density. See, e.g.Varian (1975). Zellner (1987) and articles in Berry et al (1996) for theoretical and appliedanalyses using various symmetric and asymmetric loss functions. As emphasized in thisliterature, symmetric loss functions. e.g. squared error or absolute error loss functions arenot appropriate for many important problems. Thus it is fortunate that in estimation andprediction. Bayesian methods can be employed to obtain optimal point estimates andpredictions relative to specific, relevant asymmetric loss functions such as are used in realestate assessment, bridge construction, medicine and other areas.

The predictive density has been shown to be very useful in developing optimalturning point forecasting techniques; see. e.g. Zenner and Hong (1991), Zellner, Hongand Min (1991). LeSage (1996), Zellner and Min (1999) and Zenner, Tobias and Ryu
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outcomes. DT or ,likrr, fte optimal forecast that minimizes e)gcted loss can be easily
determined. For example, if the loss stscucture is symmetric and P>112., the optirraM
forecast is DT whereas if P<I1/2. the optimal forecast is NDT.. Similar analysis can be
used to obtain op • upturn and n* upturn forecasts. Using these techniques. in t.
papers cited is ve, about 71 per cent of 211 turning int outcomes for 18 indusi Tialized
countries' rates of growth of real GDP. 1974-1995 were .correctly forecast. This
performance was much better than thatyleided by usingibenchmark techniques. e.g..
coin-flipping, "eternal optimist." '-eternal pessimist- and deterministic four-year cycle
approaches. Also, LeSage (1996) used these techniques and obtained similarly
satisfactory results in forecasting turning points in U.S. regional employment data.

Another area in which predictive densities play an important role is in optimal
portfolio analysis in theoretical and applied finance; see, e.g., Brown (1976), Bawa.
Brown and Klein (1979), Jorion (1983. 1985). Markowitz (1959, 1987), Quintana.
Chopra and Putnam (1995) and Zellner and Chetty (1965). Given a predictive density for
a vector of future returns, a portfolio is a linear combination of these future returns.
denoted by R, with the weights on individual returns equal to the proportion of current
wealth assigned to each asset. Maximizing the expected utility of R. EU(R) with respect
to the weights subject to the condition that they add up to one provides an optimal
portfolio. In recent work by Quintana. Chopra and Putnam (1995), a Bayesian dynamic.
state space. seemingly unrelated regression model with time varying parameters has been
employed to model a vector of returns through time. By use of iterative, recursive
computational techniques. the model is updated period by period and its predictive
density for future vectors of returns is employed to solve for period-by-period optimal
portfolios, in calculations with past data. the cumulative returns, net of transaction costs,
associated with these Tit ayesian portfolios have compared favorably wi - the cumulative
returns associated with a hold the S&P five hundred index stocks strategy. Currently, We
CDC Investment Management Corporation in New York is employing such Bayesian
portfolio methods. Also, as reported at a workshop meeting.ahthe. U. of Chicago severiA
years ago. Fisher Black and Robert Lineman reported that. they use ayesian portfolio
methods at Goldman-Sachs in New York.

Last, there are many other areas in which Bayesian predictive densities are
important since fundamentally inducti"n has been defined to be generalizati(in or
theorizing to explain and predict. Further. the philosophers, according to a review paper
by Feigi (1953). have defined causality to be -predictabiliv according to a law or set of
laws.- Also practically, forec tang and prediction are very important in 2.1li res and thus
Bayesian predictive densities have been widely employed in almost P 1 11 are- s of science
and application including marketing. business and economic forecasting, clinical trials,
meteorology, astronomy, physics. chemistry, medicine. etc.
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Bayes' theorem is also very useful in comparing and testing alternative hypotheses
and models by use of posterior odds that are equal to the prior odds on alternative
hypotheses or models, nested or non-nested, times the Bayes factor for the alternative
hypotheses or models. The Bayes factor is the ratio of the predictive densities associated
with the alternative hypotheses or models evaluated with the given sample observations.
This approach to "significance testing" was pioneered by Jeffreys (1998) and applied to
almost all the standard testing problems considered by Neyman. Pearson and Fisher.
Indeed, Jeffreys considered the Bayesian approach to testing to be much more sensible
than the Neyman-Pearson approach or the Fisher p-value approach and provided many
empirical comparisons of results associated with alternative approaches. Note that in the
non-Bayesian approaches, probabilities are not associated with hypotheses. Thus within
these approaches, one can not determine how the information in the data change our prior
odds relating to alternative hypotheses or models. See the references above and Kass and
Raftery (1995) for further discussion of Bayes' factors and references to the voluminous
Bayesian literature involving their use.

•If. for example, we have two variants of a model, say &model to forecast GDP
growth rates. as explained in Min and Zellner (1993) and Zenner, Tobias and Ryu (1998.
1999). we can employ prior odds and Bayes' factors to determine which variant of the
model is better supported by the data. For example. we might start with prior odds one toone on the two variants, say a fixed parameter model versus a time-varying parametermodel. Then after evaluating the Bayes' factor for the two models and multiplying by theprior odds. here equal to one. we obtain the posterior odds on the two models, say 3 to Iin favor of the time-varying parameter model. Also. the posterior odds on alternativemodels can be employed to average estimates and forecasts over models, a Bayesianforecast combination procedure that has been compared theoretically and empirically tonon-Bayesian forecast combination procedures in Min and Zellner (1993). Also, in Palmand Zenner (1992). the issue of whether it is .always advantageous to combine forecasts istaken up. As might be expected. it is not always the case that combining forecasts leadsto better results: however, many times it does.

To close this brief summary of Bayesian methods and applications, note that manyformal procedures for formulating diffuse or non-informative and informative priordensities have been developed: see Kass and Wasserman (1996) and Zellner (1997) fordiscussion of these procedures. It stiotild4àIso be appreciated that the Bayesian approachhas been applied in analyses of almost all parametric. nonparametric and semiparametricproblems. Indeed, at this point in time. it is probably accurate to state that most, if not all,the estimation, testing and prediction problems of econometrics and statistics have beenanalyzed from the Bayesian point of view and the results have been quite favorable fromthe Bayesian viewpoint. With this said. let us turn to a-comparison of some Bayesian andnon-Bayesian concepts and procedures.

3. Comparison of Bayesian and Non-Bayesian Concepts and Procedures
Shown in Table 1 are 12 issues and summary statements with respect to Bayesian andNon-Bayesian positions on these issues. First we have the fundamental issue as to
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whether a formai esaming model is used. Bayesims use Bay& the0Feffl as a lleming
alacclell whereas non-Bayesians do not appeff to use a fomal learning rnodeli. In effect,

Some

Table I

ayes- on- ayes Issues and 1,:esponses

Rssues Responses

Bayes Non-Bayes

I. Formal learning model? Yes No

2• Axiomatic support? Yes

3. Probabilities associated with

hypotheses and models? Yes

4. Probability defmed as measure of degree

of confidence in a proposition?

5. Uses Pr(a< 9 <ID given data)?

6. Uses Pr(c<y/ <cl given data)?

Yes No

Yes No

Yes No

7. Minimization of Bayes risk? Yes No

8. Uses prior distributions? Yes

9. Uses subjective prior information? Yes Yes

10. Integrates out nuisance parameters? Yes No

1L Good asymptotic results? Yes Yes

12. Exact. good finite sun* results? Yes Sometimes

non-Bayesians are learning informally. As mentioned above, use of the. ayesian lemming
model has led to many useful results. However, this does not mean t Je ayesiaan
learning model can not be improved and indeed several researchers including Diaconas,
Goldstein. Hill. Zbell, Zenner and others have been involved in research desiffned to
extend the applicability of the Bayesim learning model.

Sec ncily. there are several Bayesian axiom systems that have been put forward by
Jeffreys. Savage and others to provide a rationale for Bayesim inference procedures. As
regards axiom systems for non-Bayesin inference and decision procedures, I do not
know of any.



Third, as stated above, Bayesians use probabilities to express degrees of confidence in
hypotheses and models. Non-Bayesians who use axiomatic and frequency definitions of
probability do not do so formally. However, many times non-Bayesians informally do so
and incorrectly associate p-values with degrees of confidence in a null hypothesis. While
it is true that some posterior odds expressions are monotonic functions of p-values. the ',-
value is not equal to the posterior probability on the null hypothesis nor was it ever meant
to be.

Fourth, non-Bayesians pride themselves in their axiomatic and frequency "objective"concepts of probability and are critical of Bayesians for their "subjective" concepts of
probability. In this regard most of these non-Bayesians have not read Jeffreys'(1998. Ch.7) devastating critiques of axiomatic6atittlreqUency-defiriitions of probability. For
example, on the long run frequency orNenn limit definition of probability. Jeffreyswrites, "No probability has ever been assessed in practice. or ever will be. by counting aninfinite number of trials or finding the limit of a ratio in an infinite series.. .A definitevalue is got on them only by making a hypothesis about what the result would be. On thelimit definition,. ..there might be no limit at all....the necessary existence of the limitdenies the possibility of complete randomness. which would permit the ratio in an infiniteseries to tend to no limit." (p.373). Many other examples and considerations are
presented to show the inadequacies of the axiomatic and limiting frequency definitions ofprobability for scientific work. As far as I know. Jeffreys' arguments have not beenrebutted. perhaps because as some have noted. they are irrefutable. He further writes,"The most serious drawback of these definitions, however, is the deliberate omission togive any meaning to the probability of a hypothesis." (p.377) See also Jeffreys (1998,pp.30-33). Kass (1982) and Zellner (1982) for discussion of Jeffreys' definition ofprobability as compared to the "personalistic" or "moral expectation" or "betting"definitions put forward by Ramsey. de Finetti. Savage, and others.

Under issue 5 in Table I. we have the probability that a parameter's value liesbetween two given numbers. a and b given the data. a typical Bayesian posteriorprobability statement. first derived analytically by Bayes (1763). Non-Bayesians can notvalidly make such statements even though many practitioners misinterpret samplingtheory confidence intervals in this manner. The same is true with respect to the Bayesianprediction interval for the future random vAriablcunder issue 6 in Table 1. For example.a Bayesian might state that the probability that this random variable lies between thegiven numbers c and d is 0.95. On the other hand if c and d are the realized values of theendpoints of a 95%-sampling theory confidence interval, then it is incorrect to say that thefuture value lies between c and d with probability 0.95. Rather one should state that theinterval c to d is the realized value of a random interval that has probability 0.95 ofcovering the random variable.

With respect to issue 7 in Table 1. non-Bayesians do not minimize Bayes risk sincethey don't introduce a prior density for the parameters, an essential element in thedefinition of Bayes' risk given in Bayesian texts. Bayesians minimize Bayesian risk inchoosing estimators and predictors in order to insure that-they have good operatingcharacteristics. However in situations involving a single set of data, averaging over
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unobserved outcomes may not b© relievmt and use of the ©Ti© znithmization of

expected Ross °yen tie OM sample of datt is more appropriate.

As regards issue 8, Bayesians use diffuse or non-informative, and infomative prior

densities quite broadly. No ayesians generJ ly y they do not. However an an yses

of hierarchical models, state space models, random erects models, and random initi

conditions for time series models, 4, ,stributions are often untroducc_* for parameters that

are us ily considered to art f the model" and not prior densities. As Good (1991)

and others have recoiHzed, this distinction is rather thin and for Good represents a

possible compromise between Bayesians and non-Bayesians. Note too that in

econometrics, some non-Bayesians have attempted to introduce subjective prior

information using the "mixed estimation" procedure of 'rhea and.Q.oldberger explained in

Theil (1971), inequality restrictions on estimators and predictors, ridge regression and

other approaches. In addition, many have recognized that prior subjective ° ormatisin is

used extensively in model formulation by Bayesians and non-Bayesians.

That subjective prior information is used quite broadly is noted by several

prominent non-Bayesians. For example, Tukey (1978, p. 52) writes, "It is my impression

that rather generally, not just in econometrics, it is considered decent to use judgment in

choosing a functional form but indecent to use judgment in choosing a coefficient If

judgment about important things is quite all right, why should it not be used for less

important ones as well? Perhaps the real purpose of Bayesian techniques is to let us do

the indecent thing while modestly concealed behind a formal apparatus." Also, ano er

prominent non-Bayesian Freedman (1986, p. 127) has remarked, "When drawing

inferences from data. even the most hard-bitten objectivist usually has to introduce

assumptions and use prior information. The serious question is how to integrate that

information into the inferential process and how to test the assumptions underlying the

analysis." Last. Lehmann (1959, p. 62) writes in connection with non-Bayesian

hypothesis testing, "Another consideration that frequently enters into the specification of

a significance level is the attitude toward the hypothesis before the experiment is

performed. If one firmly believes the hypothesis to be true, extremely convincing

evidence will be required before one is willing to give up this belief, and the significance

level will accordingly be set very low.- From these quotations it is de ly the case that

non-Bayesian, so-called objective analysts use considerable subjective information in

their analyses. usually informally in a non-reproducible fashion.

n issue 10 in Table 19 Zayesians with a posterior density involving parameters if

interest and nuisance parameters usually integrate out the nuisance parameters, a beautiful

solution to the nuisance parameter problem. This integration has been mathematically

interpreted as an averaging over conditional posterior densities of the parameters of

interest given the nuisance parameters. However, non-Bayesians have no such solution to

the nuisance parameter problem. For example, when a generalized least squares

estimator involves nuisance parameters, say elements of a disturbance term covariance

matrix, it is usual practice to insert estimates of the nuisance parameters and give the

resulting "operational" estimator an asymptotic justification. Often times, the finite

sample properties of such "operational" estimators are unknown and sometimes far from

optimal. Bayesians, by inteyrtafing out nuisance pm-meters cibtain a finite sample
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posterior density and can use it to derive optimal, finite sample estimates of parameters ofinterest and to make exact finite sample probability statements about parameters' possiblevalues.

With respect to issue 11, generally Bayesian and non-Bayesian methods producegood asymptotic results. See, e.g., Jeffreys (1998), Heyde and Johnstone (1979) andChen (1985) for Bayesian asymptotic results for iid and stochastically dependentobservations. In the former case, assumptions needed to derive asymptotic normality arethe same in Bayesian and non-Bayesian cases; however, in the case of stochasticallydependent observations, Heyde and Johnstone (1979) state that conditions needed for theasymptotic normality of posterior densities centered at the maximum likelihood estimateare weaker than those required for the,:asyrnptotic normality of maximum likelihoodestimators. Also, in cases in which the -number of parameters grows with the sample size,the incidental parameter case, both makimurn likelihood and Bayesian estimators areinconsistent as emphasized by Neyman, Scott, Freedman, Diaconis and others. With justone observation per parameter, it is indeed unreasonable to have estimators' densitiesbecome degenerate as the sample size grows. By adding more information, e.g. byassuming a hyper distribution for the parameters and integrating out the incidentalparameters, both Bayesian and maximum likelihood techniques yield consistent results.
Last, with respect to issue 12, generally Bayesian methods produce exact finitesample results in general whereas in many time series problems, simultaneous equationsmodel problems, etc., non-Bayesian methods do not yield optimal finite sampleestimators, exact confidence intervals and test statistics with known, finite sampledistributions When this is the case, usually non-Bayesian approximate large sampleinference techniques are employed as in analyses of cointegrated time series models,generalized method of moments problems, selection bias models, and many others. Asstated above. Bayesian methods have been employed to obtain exact finite sample resultsfor these and many other "difficult" models.
To close this section, a simple binomial problem will be considered to illustratesome general points, one that I have used for many years in my lectures. Suppose that infive trials, five sons are born and that the trials are considered independent with aprobability 0 of a male birth on each trial. How does one make inferences about thepossible values of this parameter given the outcome, five sons in five trials? Forexample, what is a good estimate? How can one get a confidence interval? How can onetest the hypothesis that 0. 1? What are the odds on this hypothesis versus thehypothesis that 9= 1/2? Or versus the hypothesis that the parameter is uniformlydistributed? Note that the likelihood function is 05 and thus the maximum likelihoodestimate is equal to 1! What is a good way to compute a confidence interval toaccompany this estimate? Also, what test statistic is available to test the null hypothesisthat the parameter's value = 1? Note that under this null hypothesis, the process isdeterministic and thus there will be difficulty deriving the probability distribution of a teststatistic under the null. This problem was analyzed years ago by Laplace who put auniform prior on the parameter, and used Bayes' theorem to obtain the normalizedposterior density that is proportional to the prior times the above likelihood function, thatis the normalized posterior density is, 695. The modal value is 1, an optimal point
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estimate relative to a zero-one Ross function wit the.posterior mean is 6/7, o optimal

it estimate TeRathge to a squwed error loss ft anction. and a speci2_I c e of Laplace's

Rule of Succession. A1*, given witAever Ross &action ti-t4 is appropriate, an optimal

Bayesian t estimai can 6-z derivt- minimizes posterior expected.lAss. Fur-Liter,c 
e parameter's vAue liesposterior probability intervals i-Ning iJre probability

between any two .-°rven v ues, say 1/2 and 19 are easily co
posterior density. so, the posterior odds on the hvfiodieses thcit the parameter's value is
It versus that its value is 1/2 is easily evaluated. If the prior odds are 1:1 on these two
hypotheses, the posterior odds in favor of It versus /2 is 32 to 1. Such problems are
important not only regarding sex birth ratios but also it testing effectiveness of gs,
quality of products, the validity of scientific theories, etc. See Jeffreys (1998) and
Zellner (1997, 1997a) for further analysis of the Laplace Rule ofSuccession.

Al

tJi tFi

it*put using Lite above

4. Information Theory and ayesian Analysis

My personal conclusion given the above considerations is that IT PAYS TO GO
AYES, to quote an old colleague of mine. However this should not be interpreted to

mean that the ayesian approach can not be improved. See, for example Soofi (1996,
1997), Jaynes (1988), Hill (1986,1988) and Zenner (1988,1991,1997) where it is
recognized that inference involves information processing. In the Bayesian framework,
the input information is information in a likelihood function, the data information, and
information in a prior density. The output information is the information in a post data
density for he parameters and a marginal density for I e observations. y putting
information measures on the inputs and outputs, we can seek the form of a proper output
density for the parameters, say g, that minimizes the difference between the output
information and the input information. Given the entropic measures of information
employed, when this calculus of variations problem was solved, it was found that the
solution is ayes' theorem, namely take g proportional to the product of the prior density
and likelihood function. Further, when g is taken in this form, it is the case that the output
information equals the input information and none is lost in the process. Thus
information-pr•cessing when ayes' theorem is employed is 100% efficient. Jaynes
(1988, p. 280-281) commented as follows on this result:

"...entropy has been recognized as part of probability theory since-the work of
Shannon (1948)...and the usefulness of entropy maximization...is thoroughly
established...This makes it seem scandalous that the exact relation of entropy to other
principles of probability theory is still rather obscure and confused. But now we see that
there is, after all, a close connection between entropy and Bayes's theorem. Having seen
such a start. other such connections may be found, leading to a more unified theory of
inference in general. Thus in my opinion. Zenner's work is probably not the end of an
old story but the beginning of a new one."

As part of the "new story," ZeRIner (1991) has considered the prior and sample
information inputs to be of differing quality in deriving an information processing rule
at minimizes the difference between output and input information subject to the output

post data density for the parameters being proper. The result is a modified form of Reyes'

t h
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theorem that equates the quality adjusted input information to the quality adjusted output
information. Similarly, when the information in a prior density is weighted differently
from the sample information in a likelihood function, the optimizing information
processing rule is different in form from Bayes' theorem, namely the post data density for
the parameters is proportional to the prior raised to a power times the likelihood function
raised to a power. When dynamic information processing is considered with possible
costs of obtaining and adjusting to new information, from work in progress it is found
that the dynamic optimization solution is different from the static solution, Bayes'
theorem, just as static and dynamic maximization solutions differ in engineering, physicsand the economic theory of the firm. Much work remains to be done in this area of
information processing.

Another area in which information theory is useful is the problem of what to dowhen the form of the likelihood funciion is unknown. Of course for many years maxentor information theory has been employed to produce models for observations in physicsand chemistry. For such work in economics, econometrics, finance and statistics, see,e.g., Davis (1941), Cover and Thomas (1991), Ryu (1990,1993), Stutzer (1996), Soofi(1996), Fomby and Hill (1997) and Zellner (1997). In addition, information criterionfunctionals have been employed-to produce diffuse or non-informative as well as
informative prior densities; see e.g. the review article on prior densities by Kass andWasserman (1996) and results on various methods for producing prior densities inBernardo and Smith (1994) and Zellner (1997, 127-153).

While maxent results are helpful in producing models for the observations whensampling properties of systems are known, e.g. sampling moment side conditions andother restrictions, when such sampling properties and restrictions are unknown, then aproblem arises in the derivation of sampling densities for the observations using maxent.In such situations. some have resorted to empirical likelihood methods and bootstrappedlikelihood functions; see, e.g.. Boos and Monahan (1986) while others have introducedmoment side conditions directly on functions of realized error terms of a model for thegiven data and from these have deduced implied post data moments of the model'sparameters. For example, if y,. u,, i = 1.2,..., n, are n observed times to failure,
0 < ,9 < 00 , = + ü is the relation connecting the mean of the y's, y, to the
parameter 0 and the mean .of the realized error terms, ü.- Then if we apply a subjectiveexpectation operator to both sides of this last relation, we have for the given observationmean, y. E9 + ETA. If the measurements have been made properly with no outliers, no
left out variables and departures from the linear form, we can then assume that En. 0.Given this moment assumption, we have E9 =5;, that is the post data mean of the
parameter is equal to the sample mean. Using this moment side condition, the properprobability density function with this mean that maximizes entropy is the exponentialdensity, f (9ID) = /y)exp{—ely} , where D denotes the given sample data and
background information. This is an example of a Bayesian method of moments (BMOM)post data density for a parameter. It is called Bayesian since the density can be employedto compute the post data probability that the parameter lies between any two numbers, i.e.Pr{a<9<b ID} , where D denotes the given data and prior assumptions, a solution to the
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probllem ?Atsed by Bars (11763). , e.g., Green and Straw,: 0996), Tobias arAd
liner (1997), Zel er, Tobias ant ()1998, 1999)o LaFrance (11999), vm, der Merwe

mad Vilj (R 998) and Zeher (119949 11997, 1997a,R 998) for ,i,iditional 2Tip11ications of
01,i to Rocation, dichotimous random van bk, univaria© and multivariate

reLKession, semicparametdc, deseries and other models. h athilition to moments for .
models' parameters, by making assumptions a@ @Alt future, L's yet uiu Find error terms
d ven the tst ta moments of parameters. it is ii,tssibIe to obtain moments of fuwr©,

as yet unobserved values of future observations and use them as side cona dons in
deriving maxent probability densities for future observations as shown and applied in
several of the papers cited above. Also. these predictive densities can be used to form
ayes' factors to discriminate between or among models.. The use of maxent densities

here isjustified by their well knowmptopeirty of being the least informative densities that -
incorporate the information in the mment side conditions as explained in Jaynes (1983).
Cover and Thomas (1991), Soofi (1996) and other works on information theory.

This emerging synthesis of probability theory and information processing is
indeed exciting from a scientific point of view and also from an economic theory point of
view in terms of the economics of information. For example. using the definition of the
information provided by an experiment in Zell= (1997)9 with a value of a unit of
information given. it becomes possible to value the information provided by an
experiment. It is then possible to design experiments so as to maximize the net value of
information, namely, the value of the output information minus the costs of the input
information with respect to various control variables. e.g. the sample size, the number if
strata to sample. etc. This represents an extension of some of the economic
considerations bearing on the design of surveys and experiments described in the
literature on sample survey and experimental design.

Even though the BMOM approach does not require an assumed form for the
likelihood function. it does require a mathematical form for the relation satisfied by the
observations and error terms. Obtaining the form and relevant input variables for such
relations is a problem in reductive inference, as mentioned earlier. Unfortunately, formal
procedures for obtaining satisfactory forms for such relations are not available. In the
next section. an approach called the structural econometric modelling, time series analysis
approach (SEMTSA) will be briefly presented and an application of it in macroeconomic
modeling and forecasting will be described.

5. Formulating Models for Explanation and Prediction

The difficult problem of model formulation has been mentioned above. Rra this
section. we describe the SEMTSA approach that has been formulated and is in the
process of being applied to produce useful macroeconimetric modes that explain the past
and are useful for prediction and policy analysis. As explained in previ us w rk, Garcia-
Ferrer et all. (1987). Palm (1976. 1977), Zenner (1979, 1984), and Zeilner and P.m
(1974). it is possible to derive mivariate transfer function models from dramic,
rnukivariate time.senes macroeconomic and other models. Such transfer functions can be
tested with data to determine whether their formulations and forecasting performance are
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satisfactory. See Zenner and Palm (1975) for one example of this approach. However. if
no satisfactory multivariate model is available, an alternative approach is to formulate
univariate transfer functions using heuristic economic considerations and check to
determine how well they perform in point and turning point forecasting. If a satisfactory
transfer function equation, say for the rate of growth of real GDP for a country is
obtained, it may be asked can a macroeconomic theoretical model be specified that
algebraically implies a transfer function for the growth rate of real GDP that is close in
form to that derived empirically from the data. Then the process is continued by
producing other components, transfer functions for other variables, that perform well in
terms of fining past data and are successful in point and turning point forecasting. Thus
our approach is to get components that work well in forecasting and then put them
together to form -a reasonable, economically motivated model for the observations. This
approach contrasts markedly with the,"general to specific modeling approach employed
by some in the macroeconometric literature. Note that there are many general models and
if the wrong one is chosen, users of the -general to specific" modeling strategy will be
disappointed.

In Garcia-Ferrer et al (1987). we began our analyses using an AR(3) model for
annual real GDP growth rates since such a model could have two complex roots
associated with a oscillatory component and a real root associated with a local trend. Itdidn't take long to find out that an AR(3) model did not work Well in explaining variationin past data and in forecasting new data. A fundamental problem was that it was missingcyclical turning points by overshooting at the top of the business cycle and continuing togo down when the economy was recovering from downturns. Given that Burns andMitchell had found in their research using pre-World War II data for the US, UK. Germanand French economies that money and stock prices tended to lead in business cycles thatthey studied. we decided to introduce the lagged rates of change of real money and of realstock prices as leading indicator variables. Earlier research has shown that changes inreal money affect aggregate demand through real balance effects. Also, changes in realstock prices reflect all sorts of shocks hitting an economy, say oil shocks, war news. etc.Finally. by introducing the median rate of change of real stock prices for the countries inour sample in each country's forecasting equation. a -world return" variable, this led tocontemporary error terms in countries equations to be practically uncorrelated. Thus wecould use a diagonal contemporaneous covariance matrix for our 18 countries' errorterms rather than a non-diagonal matrix containing many parameters.

Thus our transfer function model or autoregressive-leading indicator (ARLDmodel for the annual rate of change of real GDP for each of N countriesin our samplewas formulated as follows:

y, = X,fl, + u, i= N (1)
where, for the isth country, y, is a Txl vector of observed annual growth rates, X, is a
Txk matrix of observations, of rank k. on input variables, namely
(1. .y, . y,.,_ 3 , SR,.,_ „SR,.,_ 2 , GM ,.,_,,WR,). Here we have included three lagged
growth rates to incorporate allowance for endogenous oscillatory behavior, two laggedvalues of the rate of growth of real stock prices, SR. one lagged value of the growth rate

r
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of real money, 0 9 and the oiii j of tho N counties' ©

proxy for the worlld rem, denoted by WR.
1\- od ged S vables. a

e xkodelã (1) was hz1Aemented with for dm industrialized

countries and iater fir ei teen countries. The model and vati.is of it were fitted using

ta. 1954439 and firecasting tests were perfonned using th for 19744 98L Later the

forecast period was e nc1,41 to R995. See for is, 4:s1OLs of the @)AL:;) . Of eat

value in improving our point forecasts' RMSEs was the use of ayesian shrinkage or

pooling techniques. See Table 2 for a dramatic demonstration of the effects of the use ef

shrinkage or °oiling on countries' root mean squared errors of forecast. In addition to

fixed parameter models, several time varying parameter models were also employed in

point and turning point forecasting experiments.

Table 2

o9t Mean Squared Errors of One Year Ahead Forecasts, 1974.4987,

Using Pooled and Unpooked ARLIW1 Models*

RNISE (%)

1.00-1.49 F

Countries

(a) Pooled

GER NET SPN

1.50-1.99 AUR BEL CAN F1N-ITY NOR SWD UK US

2.00-2.49 AUL DEN JAP SWZ

2.50-2.99 IRE

Median = 1.74 Minimum 1.17 Maximum -7==.. 2.53

(b) Unpooled

1.00-1.49 UK

1.50-1.99 EL F GEI1), NET SPN S

2.00-2.49 AUR US

2.50-2.99 CAN DEN ITY NOR

3.00-3.49 AUL FIN RE JAP SWZ

V,'D

Median 2.37 Minimum = 1.39 Maximum = 3.32

°See equation (2) below•,=1-,d Zenner (1994) for more inftrmation regarding the
autoregressive-leading indicator-world income ( ftLIWO models employed, results and
references. Observations from the U.of Chicago's P\IF IntenaationM Financial Statistics
da base were employed to fit the models, 1954-73 and to calculate one-year-emead
forecasts, 1974-87, updating estimates year by year.



Another variant of the model involved adding the current median growth rate ofthe 18 countries, denoted by w'. w2. , , wr ) as a variable in equation (1) as follows:
yi = wyi + Xifli ui (2)

and adding an ARLI equation to explain the variation in the median growth rate, namely,
w, = a. + alw,_i +a2Wt-2 + a 3 w,.=.3 +a4 a5MGM,_1 +c, (3)

t = 1,2,..., T, where MGM is the median annual growth rate of real money, and MSR isthe median annual growth rate of real stock prices for the 18 countries in our sample; seeFig. 1 for a plot of these variables. By combining the analysis of (2) and (3), it waspossible to improve point and turning point forecasting performance by use of thisaptoregressive, leading indicator, world income, or ARLIWI model.
Given these models, one can use an economic aggregate supply and demandmodel to derive an equation in the form of (2); for details, see Appendix A. Further, Hong(1989) derived an equation in the form of (2) from a macroeconomic Hicksian IS-LMmodel while Min (1992) also did so using a generalized real business cycle model that heformulated. Thus equation (2) and variants of it are compatible with certainmacroeconomic theoretical models.
The models described above in equations (1)- (3) and variants of them, includingtime-varying state space formulations, performed better in forecasting than variousrandom walk, AR(3), Barro's and the Nelson-Plosser ARIMA benchmark models andabout the same in terms of RMSEs of point forecasts as OECD models and probablybetter in terms of turning point forecasting. See Zenner, Hong and Gulati (1990), Zellnerand Hong (1991), Zellner, Hong and Min (1991), Zellner, Tobias and Ryu (1998) andZellner and Min (1999) for methods and results for forecasting turning points in 18countries' real GDP growth rates and LeSage (1996) for use of similar methods inforecasting turning points in regional employment series. An editor of the International J.of Forecasting, R. Fildes (1994) commented as follows in his published review of one ofour papers, Min and Zellner (1993):
The alternative models and methods "...were carefully compared based on theirindividual country performance measured by root mean squared errors for the years 1974-1987, and the distribution of these (particularly the median) The results offer mildsupport for using time-varying parameter schemes. Pooling [shrinkage] is important inimproving accuracy. Model selection schemes are not particularly helpful except in so faras they identify pooled TV? [time varying parameter] models as the most accurateforecasting models. Combining does not improve over the TVP models and with theGranger-Ramanathan unconstrained scheme for choosing the weights, led to substantiallypoorer accuracy. Equal weights were not considered.
This paper is an excellent example of good empirical economics where the theoryis utilized effectively in analyzing the problem in hand." (pp. 163-4)

.7:

20



Whill prcvi'ous Tem:As s sfying, ti-iere is still the probRem of how to achieve
improved forecasting ,;..iod tc-iinomic theoretic results with associ ted reductions n

SE s a:J-1d MAEs of f cast wgd higher Freentages of COMM Zurnint point forecasts.
• ne .$)ssible way to hieve improvement. emphasized for o-any yews by Guy Orcutt.
Ton Hun Lee's mentor at the U. of Wisconsin when he was a uate student. is

OUii tho tful dissaggregation of the GDP variable. To show that disaggregation can
produce improved forec Ii-xformance. in Zenner and Tobias (l99). equ tion (3) w
em lo ed as earlier in Zeliner and Hon 1989 to provide point f recasts of the median
growth rates of the 18 countries. As an alternative way to forecast the countries ° median
growth rates, equations (2) and (3) were employed to forecast each countries ° one year
ahead growth rate and the median of these eighteen forecasts was employed as a point
forecast., Itwas found that this latter disaggregated approach produced better one year
ahead point forecasts with RMSEs of forecast approximately 20 per cent lower for the
period 197444, that is RMSEs of 1.22 versus 1.54 percentage points and MAEs of 1.08
versus 1.44. Thus there is some evidence that disaggregation may. help in certain
circumstances.

P',1%
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To get a meaningful, economic disaggregation. we are currently formulating
Marshallian demand, supply and entry equations. see e.g. Veloce and Zellner (1985) for
major industrial sectors of the U.S. economy. For each sectoral model it is possible to
solve for the output transfer function equation that is a function of the growth rates offactor prices, real aggregate income, household formation, real money balances. etc.Thus we shall have a set of transfer function equations for sectoral outputs that can becombined with transfer equations for real income and factor prices derived from demandand supply models for labor, capital. money. and bond markets. Then forecasts can beobtained for sectoral output growth rates and combined to provide a forecast of aggregateoutput. It will be of great interest to determine whether such forecasts are more accuratethan aggregate forecasts, derived from aggregate data and whether this sectoral
Marshallian model will add to our understanding of how the econorn :)perates. Note thatthis model includes interactions among sectors such as construction, manufacturing.retail. aericulture, mining. etc..which have different cyclical properties. instead ofthinking of the economy as a single oscillator. it may be better to consider it to be a set ofoscillating sectors coupled through common factor markets and product markets andaffected by macrowariables such as real income, real money balances, tec ical change,real interest rate. exchange rates and expectations of macroeconomic variables. Whensuch a macroeconomic model of interacting sectors is formulated. it will be subjected tosimulation and forecasting experiments to determine its properties and compare them toproperties of the many theoretical Keynesian. Monetarist. Neo-Keynesian, NeMonetarist, ea! usiness Cycle. Generalized *cal Business Cycle and cuffendyoperating macroeconometric models.

(01

In this work, data are being collected and will be analyzed using itayesianestimation. testing and forecasting techniques. described above. Such tec »liques havebeen found my useful in forecasting in our work with aggregate data for 18 cowatliesand will also be extremely valuable in our future work wi models using data for variousinterrelated sectors of economies.
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Given Tong Hun Lee's keen interest in macroeconomic theory, forecasting and
policy, it will be a pleasure to keep him and his colleagues informed, of progress in our
continuing research. Also, it is very satisfying to recognize the great progress in economic
research and analysis that has been made in Korea and many other countries of the world
that has resulted in economics and business as coming to be recognized as .progressive.
fruitful and useful sciences.
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Appendh

and Sad Supply M©©©

Here we © nsider a short-run aggregate demand and supply rn de for t*tall real output.
Y. assumed given, that is equal to aggregate demand, Le sum of real consumption. C.
investment, 1., government expenditures. G. and export. X minus im ort, M. de ands.
i.e. Y C + 0 +X 4M is the equilibrium condition. Now, if we write y log Y and
assume a semi-logaritiunic representation of total demand. incorporating a monetarist real
balance effect, we have:

* *

y, y +aoy, ao.,..3 +ar° a5m,_0 a6W, +' ex, all (Al)

where 1-'7 = anticipated real rate of interest, m log of real money balances, W log
real world income, and ex =: real exchange rate. The left side of

(A1) is given supply and the right side is a representation of total demand that includes
lagged real income, real balance, interest rate. world income, exchange rate and trend
effects. If the change in the anticipated real rate of interest is assumed given by
enipirkal relation.

r,° + /3, , ASR,_ 2 + 151:; ;FR, _ (A2)

where SR = rate of change of real stock prices and WR = rate of change of real world
stock prices, then we can first difference (Al) and substitute from (A2) to obtain:

= +8,4v, 4: 82 Ay,_2 +8, SR,_, (5,SR,_2 5,WR +5, ton Aex
(A3)

where .5y, = log Y, — log Y,_, . the growth rate of Y. measured as real GDP in iur
empirical work. Note that (A3) is in the form of our ARUWI model except for the
inclusion of an exchange rate variable that has as yet not been included, in our forecasting
equations. Since the change in Li-,e exchange rate is close to being white noise, it is
included in our. error terms. Ting it out of the error term and including it in our
forecasting equation may hap to improve our forecasting results, as Granger noted many
years ago in a general context. See also Hong (1989) and N'in (1992) for more det fled
derivations of our A LIWI model from Hicksian IS-11,N1 and generalized real business
cycle models.
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Figure 1: Medians and interquartile Ranges for Growth Rates of Real

Output (A). Real Money (B) and Real Stock Prices (C):

for 18 Industrialized Countries: 1954-1995.1
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The dasised hoe connects the annual median powtit rates (the we's) and the vertical lines give the interquartik
ranges.
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