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Abstract

In this paper Bayesian analysis is used to analyze some problems that
arise in playing golf in what is thought to be a scientific manner. Some issues
that arise are: (1) Is a scientific analysis of golf possible? (2) What concept of
probability, models and inference procedures are most useful? And (3), Can
Bayesian decision theoretic methods be used to help improve George Judge's
and other golfers' scores? Several canonical golf problems are formulated
and analyzed using Bayesian methods. Finally, frameworks for analyzing a
consumer demand for golfing services and products and professional golfers'
income optimization problems are provided. In the concluding section,
implications for the future will be considered.

Key words: Bayesian analysis; sports statistics; golf science; decision
analysis.
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yeezzll Anallysfis of Gollf

by

Arnold Zenner*
University of Chicago

1. Introduction

Golf is a world-wide sport and business. There are amateur and professional golfers and

golf courses in almost all countries of the world. Manufacturers produce many products used by

golfers. Educators, often golf course pros, instruct individuals on how to improve their games,

i.e., lower their golf scores and play more consistently. There are many books by famous golfers

and others on how to play better golf, etc. The ASA's Section on Sports Statistics occasionally

has an article on golf in its annual proceedings volumes; see, e.g. Mosteller and Youtz (1992). It

is also the case that many are measuring and studying the performance characteristics of golfers'

clubs, balls, gloves, shoes, other equipment, health status, psychological condition and other

topics. Further, there is a need to learn from past data and experience, using the methods of

science, so as to be able to explain past results and predict and improve future performance. If

this is done using the methods of science, according to the Unity of Science principle put forward

and discussed by Pearson (1938) and Jeffreys (1998), the study of golf qualifies to be designated

a science.

In Section 2 a central club choice problem and some other canonical problems will be

analyzed taking account of current and past information. It will be shown how such problems can

*Research financed by the National Science Foundation and by income from the I-1.G.
Fumd, Graduate School of zusiness, University of Chicago.

I:. Alexander Endowment
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be solved using Bayesian methods given an appropriate loss function using just prior information

and then using prior information augmented by past sample information: Some statistical models

useful in analyzing these problems will be introduced and discussed. In Section 3, the problem

of modeling past golf data and predicting future outcomes, e.g. next year's average score, will be

analyzed using time series regression and dichotomous random variable models. Various

possible inference approaches including OLS, ML, traditional Bayes, Bayesian method of

moments, generalized maximum entropy, etc. will be discussed. In Section 4, economic models

of golfers' behavior will be formulated and analyzed. One deals with professional golfers who

play golf for a living while the second model deals with consumers who play golf for

entertainment even though some golf outcomes are painful. Last, in a concluding section, a

summary of results and some prospects for the future are presented.

2. Bayesian Analyses of Some Canonical Golfing Problems

The first canonical problem that is considered is the choice between a 3 iron and a 7 iron for a

tee shot on a par 3 hole of length 200 yards with a green surrounded by water. A decision to use

a 3 iron from the tee in an effort to hit the green may be successful. On the other hand, there is

the possibility of ending up in the water with an associated penalty. An alternative is to "play it

safe" by laying up with the use of a 7 iron from the tee. After the lay up shot, it may be possible

to hit the green on the second shot and possibly get a moderately good score. Generally, the

decision to use a 3 or a 7 iron for the tee shot is made "heuristically" taking into account past

performance, current conditions, personal whims, objectives, etc. To approach the problem more

formally, consider Table I where the possible outcomes associated with the use of a 3 or of a 7



iron from the tee are delineated. The probabilities of specific outcomes, e.g. a score of I on the

hole are indicated by p's and q's.

Note that in Table 1, we designate outcomes in terms of possible scores, namely 1,2, 3,..., 6

strokes. Here we are assuming that any outcome above a triple bogey, that is a 6, will be scored a

6. If desired, one could extend the range of outcomes beyond 6, but we shall not do so here.

Second, the p's and the q's are probabilities associated with possible outcomes. As in all°

problems, it is important to define probability in order to understand what it is we are discussing.

Here, we, along with many others, shall use the degree of reasonable belief definition of

probability. That is, with given background information, probability is a numerical measure of

the degree of confidence in a proposition, e.g. that use of a 3 iron will result in a score of three.

See Jeffreys (1998, Ch 7) for a perceptive analysis and discussion of alternative definitions of

probability including the axiomatic, long run frequency and hypothetical infinite population

definitions. He concludes that the "degree of reasonable belief' definition, a "subjective" concept

is most satisfactory for work in science. And in connection with the current problem, it seems

difficult to define a long run frequency since golfers tend to age in the long run and aging has an

effect on the value of a probability. As regards the axiomatic definition, we have six possible

outcomes in the present problem and to assign each a probability of 1/6 is absurd. (Would that

the probability of a I were 1/6.)

Using the degree of reasonable belief definition, we have the problem of assigning values

to the p's and q's, the "assessment problem." If we have little background information, we might

use a "dif e" or "noninformative" prior. One possibility is to assign the values to the p's and

q's that maximize entropy A la Jaynes (1968). If we do we get all the p's = 1/6 and all the q's =

1/6, i.e. uniform prior probability mass functions. With use of a 7 iron, we know that we can not



hit the green short of a miracle, and thus the probability of scoring a one is practically 0 As

Jaynes would be quick to point out, additional information is available that should be used in

6
deriving a maxent prior. For example, we could seek the pi's that maximize H = E pdn pi

1=1

6 6 6
subject to E p1=1, ai, < pi <bi =1, 2, . . 6, E pii= ,u, a given value, Eo-pypi.v, a

i=1 1=1

given value, and possibly other side conditions. Using numerical procedures, the optimal pi's

can be computed. Note, in contrast to many other procedures for producing prior probabilities,

Jaynes' procedure does not require knowing the form of the likelihood function. While the

maxent procedure can be employed, here we shall proceed to assign prior values to thepi's and

q. 's heuristically taking account of available information regarding current weather conditions,

mental state, physical state, recent past performance, etc. Given that we have done so, it is

possible to make probability statements about possible outcomes, e.g., given that a 3 iron is

selected, the probability of scoring above 3 is equal to the sum of the probabilities of scoring a 4,

a 5 and a 6. Further, the predicted mean score, denoted by ES, given that we use a 3 iron is:

Similarly,

6
ESP= >ipi

1=1

6
ES 17 = igi

i.1

(2.1)

(2.2)



If our problem were just a prediction problem, (2.1) and (2.2) provide optimal point

predictions relative to a squared error prediction loss function. Or if we employ a 01 loss

function, the optimal point prediction would be the outcomes associated with the largest values

of the p's and of the q's. However, our problem is a club selection decision problem, not a pure

prediction problem. To solve it, we consider the problem of choosing an appropriate utility

function and face problems similar to those faced by Tinbergen (1954) who was concerned about

the appropriate social welfare function to use in making economic policy. See also Zellner

(1973) for consideration of the effects of errors in formulating utility or loss functions. Here we

might assume that a player's utility increases the lower the score. If utility is linear in score, S,

i.e., U(S) = a -bS, with a,b >0, expected utility is higher for choice of the 3 iron if mean score in

(2.1) is lower than that in (2.2). The rule that emerges in this case is: CHOOSE THE CLUB

FOR WHICH EXPECTED SCORE IS LOWER OR LOWEST if more than two choices are

being made.

However, there will be many cases in which a player's utility structure will be different

from the linear structure described above. To tailor the analysis to the individual player, assume

that U(i) denotes the utility of scoring i, i= 1,2,3,4,5 and 6, with U(i)> 11(i + j) for j>0. Note that

some players associate enormous values to U(1), the utility of a hole in one and this can rule out

linearity of the utility function in score and the use of a 7 iron to lay up on a par 3 hole.

Formally, these considerations are taken into account by comparing the following expected

utilities,

6
EU given 3 = E pi U(i)

1=1
and

(2.3)
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6
EU given 7 = E (i)

1=1
(2.4)

If (2.3) is larger than (2.4), the optimal choice is a 3 iron while if (2.4) is larger, the optimal

choice is a 7 iron, using the maximization of expected utility framework. By assigning values to

the p's, q's and U(i)'s and computing expected utilities as given in (2.3) and (2.4), we have

arrived at an operational, optimal rule for club selection.

As regards the above solution to the club selection problem, note that we have relied on the

maxim, act so as to maximize expected utility when making decisions under uncertainty, a

precept supported by analyses of Ramsey, Morgenstern and von Neumann, Savage, Friedman, et

al. If other approaches, e.g. those of Meginniss (1977) or Machina (1987), that involve making

the utility function depend on the probabilistic structure, that is the p's and q's above, are

considered more appropriate, solutions will be somewhat different. Note, that we have assigned

the same utility to a birdie, that is i=2, whether it is made by use of 2 iron or by use of 7 iron.

Some would prefer a birdie made using a 2 iron to one made luckily after a 7 iron tee shot.

Clearly, we could elaborate the utility structure to take account of such considerations and solve

for the optimal acts within these other frameworks. Last, it may be the case that the outcome

space, here a set of 6 mutually exclusive and exhaustive outcomes is not specified in great

enough detail. As an alternative outcome space, consider that shown in Fig. 1. Here we have

allowed for much greater detail in describing alternative possible outcomes. Given that we can

assess the probabilities shown in Fig. 1 and have an assignment of utilities to scores, we can

evaluate the probabilities of alternative outcomes, compute expected utilities and choose between



the 3 and 7 iron tee shots in an optimal fashion. Whether use of more complex utility

specifications and the more complex outcome space shown in Fig. 1 will produce better results in

practice is an empirical matter that can not unfortunately be settled deductively. See Mockus

(1989) and Mockus, Mockus and Mockus (1991) for algorithms for computing Itayesian

solutions to discrete optimization problems, such as that described in Figure 1.

Another interesting canonical problem is whether use of a 3 iron will lead to a lower or

equal score than that provided by use of a 7 iron, i.e. Pr [S(3)..._ S(7)] = P and 1-P is the

probability on the outcome S(3)>S(7). Here we can define a dichotomous random variable and

use past data and prior information to make inferences about possible values of P. For example,

if a binomial model for the outcomes is considered appropriate, given past data, various inference

procedures can be employed to make inferences about possible values of P. In the Bayesian

approach, noninformative or informative priors can be employed. Also, when there is some

question about assuming a binomial process for the outcomes, the BMOM approach has been

applied in Zellner (1997) to produce a postdata density for P that differs somewhat from that

yielded by a traditional Bayesian approach using, say, a :ayes-Laplace uniform prior.

For example, if in 5 cases it is observed that S(3) S(7), and it is assumed that the trials

are independent binomial trials, the likelihood nction is just P5 and the maximum likelihood

estimate is equal to 1. On other hand, with a uniform prior, the posterior density for P is 6P5,

with posterior mean 6/7, the Laplace Rule of Succession result, and the modal value of the

posterior density is equal to 1. Thus if quadratic loss is used, the optimal point estimate is 6/7 =

.857, whereas if a 0-1 loss structure is used, the optimal point estimate is 1, the modal value.

Application of the MOM approach that does not require specification of a prior or likelihood

function yields the result that the postdata probability that P=1 is .871 and a postdata mean for P



is .944, slightly higher than the Bayes-Laplace posterior mean, 6/7= .857; see Zellner (1997a,b)

for discussion of this and other BMOM analyses and references to the literature. With the

complete posterior densities available in the traditional Bayesian and BMOM approaches, they

can be used along with a 2x2 loss structure to choose between the two alternatives in such a way

as to minimize expected loss.

Last, in connection with dichotomous random outcomes, e.g. shoot bogey or below

versus shoot above bogey, with associated probabilities, P and 1 —P respectively, it is very

possible that P does not remain constant from trial to trial because of a variety of factors that are

not kept constant that affect play, namely, weather, condition of course, health, age, etc. Thus, as

in models for dichotomous random variable models, e.g. logit or probit models, we assume

P = P(x(t)'b), t = 1,2,...,T, where x(t) is a vector of measurable input variables and b is a vector of

parameters with unknown values. See Judge, et. al (1985), Zenner and Rossi (1984), and Albert

and Chib (1993) for Bayesian and non-Bayesian analyses of logit, probit and other models for

dichotomous random variables. Zellner and Rossi (1984) implement the Bayesian approach to

such models using importance function Monte Carlo integration techniques to compute exact

finite sample results and compare them with approximate large sample Bayesian and non-

Bayesian results with the finding that the large sample approximate results are not very good in

small to moderate-sized samples. Albert and Chib (1993) employ data augmentation and

Markov Chain Monte Carlo (MCMC) techniques to analyze this class of models as well as more

general models. Thus, finite sample Bayesian procedures are available to compute exact

posterior distributions for the coefficients of the input variables and predictive probability mass

functions.
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In the traditional ayesian and ML approaches, it is necessary to choose a "link function,"

e.g. normal for the probit model, 1Qgistic for the logit model, Of course, posterior odds can be

computed to compare an or combine models using different link functions, e.g. normal, logistic,

Student t, etc. Further, diagnostic checking using realized error terms, as in lbert and Chib

(1993), Hong (1989), Chaloner and I.rant (1988), Zenner and Moulton (1985) and Zellner (1975)

can reveal outlier, non-independence, functional form and other problems. It is also possible to

investigate the possible effects of past performance on current performance by including

measures of past performance in the input variables. If such effects are present, they may

indicate that there is some truth to the "hot hand" or better in the present context, "hot club"

hypothesis. Last, modelling annual average scores using regression or time series transfer

function models is possible. Let = 3/29 • • • 9 yT) be a vector of annual average scores for

years 1, 2.. . T, and X be a Txk matrix of rank k on k input variables, e.g. age, health status, etc.,

and y = Xi3 + u be the relation linking input variables to y where p is a kx1 vector of parameters

and u is an Tx1 vector of realized error terms. For given y and X, we can write y = XE13 + Eu,

where E = subjective expectation operator given the data and models. If we assume X' Eu = 0,

that is that the columns of X are orthogonal to the vector Eu, we have ,a = = EP +

( XX )' X' Eu = E. Thus under the above orthogonality assumption, the least squares estimate

fi is equal to E13, the "post data mean of V that is an optimal estimate relative to a quadratic

loss function. With a second assumption regarding the form of the covariance matrix for the

realized error term vector u, given and discussed in Zellner (1994, 1997), Green and

Strawderman (1996) and Tobias and Zellner (1997), the post data covariance matrix for p,

denoted by Var(P) = E (16 — ft) (f3— ;13 =( )1s2, where s2 = Xftl(jv X13)044
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Then the maximum entropy density for 13 given the data and the two assumptions above is

NU 3A , (XJ( )-1s2 ], a multivariate normal density with mean fi and covariance matrix

y1s2. See, e.g. articles in Fomby and Hill (1997) and in the American Journal of

Agricultural Economics, August 1999 for comparisons of the Bayesian method of moments

(BMOM) approach to the traditional Bayesian approach and to the generalized maximum entropy

(GME) approach of Golan, Judge and Miller (1996).

Of course many variants of the above regression model can be considered. For example,

the parameter vector p might not be constant over a life cycle. Then for each of the sub-periods

of the life cycle, we may assume a relation Ya = X a P a+ ua, a= 1, 2, • ° . m sub-periods.

Similarly we may want to utilize observations relating to different seasons, e.g. spring, summer,

autumn and winter and have a specific regression for such seasonal scores rather than just use

seasonal dummy variables in the overall regression mentioned above. As is well known,

Bayesian posterior odds can be employed to choose among alternative models and/or combine

them. See Judge et al (1985) for discussion of various models selection procedures and Min and

Zellner (1993) for Bayesian model selection and combining techniques and their application.

To return to the first problem considered in Table 1 in which we had 6 possible outcomes

for each choice of club, obviously such a problem can be modelled using a multinomial model.

Then past sample and current prior information can be combined using Bayes' theorem to yield a

posterior probability mass function for the underlying probabilities, the p's and q's shown in

Table 1. With such posterior probability mass functions available, it is possible to use them to

solve the club choice problems considered above. In addition, it is possible to go beyond

multinomial or polytomous (or "polychotomous") constant parameter models to multinomial
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logit or probit or polytomous random variable models with covariates. See Judge, et al. (1985),

McCulloch and Rossi (1991) and Albert and Chib (1993) for ayesian and non- ayesian

procedures for analyzing this class of models. For non-Bayesian analyses, it is usually difficult to

get exact finite sample results and thus users generally rely on asymptotic approximations in

contrast to tayesian analyses that yield finite sample results, See Zellner and ossi (1984) and

Albert and Chib (1993) for some comparisons of finite sample and asymptotic results.

3. Selected Economic Models of Golf

In this section we consider some canonical economic models of golf. First we take up an

analysis of some problems facing a professional golfer and then turn to consider a consumer

model for non-professional golfers, such as George Judge, who play golf for pleasure.

Table 3 provides information relevant for a professional golfer who is to play in a

particular tournament. Some possible outcomes are that he or she finishes first, second, third,

etc. or out of the money. Also shown in Table 3 are the probabilities that the professional golfer

associates with each possible outcome along with the winnings for each outcome. Then, net

expected winnings, NEW, associated with participating in this tournament are given by NEW =

EpiWi — Expected Costs, where expected costs include equipment, time, travel, lodging and other

expenses associated with participation in this particular tournament. Knowing the value of NEW

will help a golf pro to decide whether to participate in this particular tournament. Further, if the

decision facing the golf pro is whether to participate in tournament or tournament 9 he or she

can compute NEW for each tournament and participate in the one with the larger value of NEW.

Finally, calculation of NEW for each of the tournaments in which a pro participates during a year
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and summing such values over the tournaments provides an estimate of annual net earnings that

may be useful for income tax purposes.

As a component of an optimizing model for a professional golfer, assume that score,

denoted by S is given by S = gx, 9, u), where x is a vector of inputs, e.g., practice time,

equipment, instruction time, psychological consultation, etc., 0 is a vector of parameters and u is

a stochastic error term. Then let W(S) denote winnings, here assumed just a function of score, S.

Then, net expected winnings (NEW) is given by NEW = EW (S) a'x, where a' is a vector of

input prices and a'x is the total cost of the inputs. Not that the expectation of W(S) can involve

use of a prior or posterior density for 0 and parameters of the density for u, the random error in

the score function above. Then by maximizing NEW, the optimal input vector, x* is obtained,

which when substituted in the function for NEW gives the optimal NEW. Also, summing the

x* 's over golf pros for given factor prices, provides demand functions for golf inputs such as

balls, clubs, instruction, etc. Empirical and theoretical work is needed to determine an

appropriate functional form for the score function, the probability density function for u, and a

predictive density for S. Given these inputs, the above, one period optimization problem can be

solved. Further, multi-period problems can be formulated and solved using a multi-period

predictive density function for S and anticipated future factor prices.

As regards a model of a "consumer" golfer who plays golf for entertainment, the

following version of the Becker consumer model, as elaborated by Verma (1980) to take account

of informational inputs and by Marsh and Zellner (1996) to incorporate random shocks in

production functions to produce an economic random utility model (ERUM) may be useful in

modeling and predicting the behavior of consumer golfers. Let such a consumer's random utility

function be given by U[c(1),c(2). . . , c(m)] where c(i) is a random consumption "characteristic",
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assumed generated by c(i) qx(i),u(i)], the stochastic production function for the ith

consumption characteristic where x(i) is a vector of input variables, time, information, market

goods, e.g., golf balls, etc., and u(i) is a stochastic error term for i = 1, 2, . . m. Then it is

possible to maximize EU wi I i respect to the elements of the x(O's subject to the usual budget

and time constraints (even though some golfers seem to violate the time constraint in a mystical

way) to obtain the optimal x's, the market demands of an individual consumer which, when

aggregated over consumers, provides the market demands for the elements of the x vectors and

the "optimal" total time that golfers spend on courses playing golf given market prices for inputs,

the price of time, income, etc.

4. Summary and Conclusions

It has been pointed out that the study of golf, as with any other topic, is a science if

scientific methods for learning from data, making predictions and solving decision problems are

employed, a general point made by Pearson (1938) and Jeffreys (1939) many years ago. Further,

to facilitate further work in this area, that will undoubtedly benefit George Judge, a canonical

decision problem involving club choice has been structured and solved using Bayesian decision

theory, and a de ee of reasonable belief definition of probability. Further, some models for

analyzing individuals' golf scores have been considered that probably will be useful in analyzing

past data on individuals' golf scores. Then too, the analyses of several professional golfers'

problems, as yet not too relevant for George Judge, and of consumer golfers' problems, have

been presented that may be of help to economists and business personnel in their analysis of the

professional recreational golf industries.' ith improved models and methods for the analysis of
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past data, prediction and decision-making, golfers and the golf industry will probably perform

better in the future.
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TabRe 2

Oute mes, Pr abilities IILS Utilities Ass
With Use of 3 or 7 ir n Tee Shot on A P‘.i it 4.,

dated
no 3 Hofie
41

Club
utcomes

1 2 3 4 5 6*
Expected Scores a

Utilities

3 Iron

Probabilities

Utilities

7 Iron

Probabilities

Utilities

Pi P2 P3 P4 p5 P6

U3(1) U3(2) U3(3) U3(4) U3(5) U3(6)

qi q2 q3 cy C115 C16

U7(1) U7(2) U7(3) U7(4) U7(5) U7(6)

*Any score higher than a triple bogey, i.e., a 6, is recorded as a 6.

6
ES3 = E p ii

1=1

6
EU3 = E p itI 3(0

1.1

6
ES7 = I q ii

1=1

6
ES7 = E q iti 7(0

1.1
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Table 2

Probabilities of Scores on Each of N Plays of a Given Hole

Trial

1

2

3

N

Scores
1 2  3 4 5 . . • . . J
Probabilities

P11 P12 P13 P14 P15  P IJ

P21 P22 P23 P24 P25  P2J

P31 P32 P33 P34 P35  P3J

PN I PN2 PN3 PN4 TN8 TNJ
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TOUTER

TabRe 3

emit Outcomes, Assodated Probabillffies End
ings for a Professionall Goilifer kl a Tountarment

Golfer's Place 1Se nd 3rd 4th 0 0 0 meth 1 t of money

Probabilities

Winnings

Pi P2 P3 P4

W2 W4

Pm

Wm

Po

Expected Winnings = E piwi=p
i=1

Net Expected Winnings = W — Costs
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Table 4

Tournament Outcomes, Associated Probabilities and
Winnings for a Professional Golfer in Two Tournaments

A. Tournament 1

Golfer's Place 1st 2nd 3rd 4th
• • m'th Out of money

Probabilities p11 P12 P13 P14 • • • Pim Plo

Winnings W11 W12 W13 W14 • • • Wlm 0

Expected Winnings

Net Expected Winnings

B. Tournament 2

Probabilities

Winnings

i=i

= Pi Wi Costs

P21 P22 P23 P24

W21 W22 W23 W24

Expected Winnings

Net Expected Winnings

• • 0

• • •

= E P21W21 = P2W2
i=1

= P2 W2 COStS2

P2m

W2m

P2o
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11 teoime Tree for Choke

Club for
Tee Shot

FfiguTe

etween a 3 ll©i awl a 7 km Tee Shot on a
Par 3 H olle

n green—,putts

A. 3 iron ff green

ater

B 7iro

ute LSJ es

on green —Oputts

ater
n green—,putts

ater
on green—Oputts

water
on green—Oputts

water

on green—Oputts

n green—putts

ater

on green—Oputts

Ereenc4pagas

w ter

° It is assumed that this green is completely surrounded by water. Futther, "putts" denotes the possibleoutcomes 09 19 29 3, ..., constrained by the condition that maximal score is 6.
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