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R. lintroducti

In this pa r, we relax two commonly us; I' assump tons in formulating the functionI form of

a production function namely, the constant returns to scale and the constant elasticity of substitution

assumptions. In general, the scale elasticity, which we equivalently call the returns to sc e (RTS)

function, may be a function of output and the input mix. Fare, Jonsson, and Lovell (1985) introduced

ray-homothetic production functions which permit scale economies to vary with the rate of output

and the input mix. Zenner and Revankar (1969) linked the definition of a RTS function with Euler's

theorem and McElroy (1969) generalized Euler's theorem to derive classes of production functions

for which the scale elasticity depends either on output alone or on factor proportions alone. However,

for simplicity of exposition, we utilize a homothetic assumption in this paper so that the RTS

function is a function of output and the substitution elasticity a function of input combinations as has

been done in Revankar (1971), Shephard (1973), and Zenner and Revankar (1969). Based on the

generalized production function approach, Avishur (1994) considers the efficiency effect of the

privatization of British telecom and Kumbhalcar et al. (1991) estimated determinants of inefficiency

in U.S. dairy farms.

Frisch (1965) considered a production function wiH a decreasing sc e elasticity and several

other researchers have introduced various functional forms for tHe scale elasticity. For given RTS

functions, Zeliner and Revankar [ZR. (1969)] indicated that a fferential equation can be solved to

obtain generaii p viuction functions that have prespecified RTS properties. Nerlove (1963) andc

ngstad (1967), NR, introducr a linear function of the logarithm of output for the reciprocal of the

scale elasticity. Ringstaci (1974) suggested using a translog function or a combination of one of Z

functions and NR's function denot to1 by, Pr.G. Since the transRog function is not a quasi-concave

function, it does not satisfy the neoclassical properties of a production function unless further side
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conditions are imposed In this paper, we introduce a Box-Cox type RTS function that is very flexib,

and rich in representing the RTS function. In this approach, we can derive various RTS functions as

special cases.

If technical change is incorporated in the production function, certain a priori hypotheses

have to be made if technical change is to be distinguished from the returns to scale effect. Sato

(1980) has introduced the concept of a "holothetic technology" for this purpose. The separate

estimation of technical progress and returns to scale will be possible if the production structure is not

holothetic; see Avishur (1994) for an example. Furthermore, Calern (1990) indicated how

misspecification of the underlying technology can result in inappropriate, though seemingly reliable,

estimates of technical progress and a returns to scale function using one of the ZR RTS functions and

a quadratic time trend.

For the substitution elasticity, we show how to estimate RTS functions when we use a unit

elasticity of substitution function (Cobb-Douglas), a constant elasticity of substitution function

(CES), and a variable elasticity of substitution (VES) function suggested by Revankar (1971). As a

generalization of this approach, we introduce a polar coordinate representation for a homogeneous

function so that it can be separated into a radial part and an angular part. As will be seen, with the

proper choice of a function defining the isoquants' slope, we can represent CD, CES, VES, or more

general functional forms.

As in ZR (1969), we consider output, denoted by y to be given by y = g(f) where g is a

monotonically increasing function off and f = f(K,L) is a homogeneous function of degree u with

capital (K) and labor (L) inputs and thus g(f) is homothetic. Our objectives are threefold: (1) to

establish a globally quasi-concave production function with convex isoquants; (2) for this production

function to have the RTS function be a decreasing function of output and to have an increase in all
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ut; and (3) to obtain an AC function that is U-shaped (or L-shap

ese issues in what follows.

Si We shall

In constructing a produc on function, tie homo eticity restriction on g(f) is a useful

simplifying assumption but is not a required property. Christensen and Greene (1976) derived a RTS

function based. upon a translog cost function and compared the effect of imposing homotheticity,

homogeneity, and unitary elasticities of substitution restrictions. The interesting question of testing

the validity of the homotheticity assumption will not be discussed in this paper. Alternatively, under

the homotheticity assumption, we discuss properties of various production functions, compare the

parametric functional forms with the flexible functional forms, and interpret some empirical results.

Other interesting issues such as models with dynamic effects will be considered in future work.

An overview of the paper is as follows. In Section 2, we review how parametric production

functions can be derived from given RTS functions. Various fixed functional form choices of the

RTS and the homogeneous parametric functions, denoted byfiK,L) above, are considered. A polar

coordinate representation is introduced for the homogeneous function, f. In Section 3, sernipaiametric

approaches are introduced for both the RTS function and the homogeneous function, j(K,L). In

Section 4, maximum likelihos. and t ayesian es mation procedures for this class of models are

presented. En Sections 5 and 6, we apply our methods using data for the U.S. transportation

equipment industry. Estimates of alternative returns to scale functions are presented in Section 5 and

estimates of input substitution effects are presented in Section 6. A summary and some concluding

remarks are presented in Section 7.
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2. Mathematical Description of Alternative Models

In this section, after reviewing the properties of a production function, we construct various

generalized production functions, using a homotheticity assumption, that is y = g(f) with g() a

monotonic function andflK,L) a homogeneous function. We introduce specific functional forms for

the returns to scale function,denoted by a(y), and the homogeneous function f = ef(K ,L). In particular,

we introduce a Box-Cox type RTS function because many well known RTS functions can be defined

as special cases of this function. Some of these well known functions are sensible production

functions with reasonable associated average cost functions (U-shaped or L-shaped). We also

generalize the homogeneous function f(IC 4), using a polar coordinate representation. CES and VES

functions can be derived with proper choices of the slopes of the isoquants.

The properties of a production function, stated in Fuss et al. ( 1978) for a single output y and

n inputs (x1, ...,x) are

1) Domain. y = w(xl,...,xn) is a real-valued function of (x1, ...,x) defined for every non-negative

input (x1 0 for all i = 1,2,...,n) and it is finite if (x1, ...,x) is finite; w(0,...,0) = 0.

2) Monotonicity. An increase in inputs cannot decrease production.

3) Continuity.

4) Concavity. w is quasi-concave over every non-negative input (xi 0 for all i =

In what follows, we impose the following two additional conditions:

5) Homotheticity. w is a homothetic function.

6) Decreasing RTS. The RTS is larger than one at small output levels and decreases monotonically

below as the output level increases.



Conditions 5) and 6) are in
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tion 6) leads to average cost (A C) functi

a homothe c production function is defin as

don 5) is a useful simplifying assumption and

ns having a unique minimum. As explain

y = g (t)

a tve,

(2.1)

where g is a monotone transformation function and f f(K,L) is a homogeneous function of degree

The RTS function a(y), is defined as follows,

dYIYa(y) = 11 -
dflf

(2.2)

and is related to Euler's theorem in McElroy (1969) and ZR (1969). The relationship between

properties of the RTS function and of associated AC functions is derived in Hanoch (1975) and in

Sandler and Swimmer (1978). Based upon their results, we can state:

Lemma 2-1. If the RTS function is greater (smaller) than one, then the slope of AC curve is negative

(positive) or equivalently if the slope of AC curve is negative (positive), then the RTS function is

greater (smaller) than one. If RTS.1 at some output level, then the AC curve has a unique minimum

at this point provided that the TS fu ction is decreJ7, sing functio of y.

In what follows, we shall review one of ZR's (1969) generalized production functions, and

then consider extensions of this m*AIel.

'Without loss of generality, we could takep= 1; however, we shall use the standand definition
of homotheticity.
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2.1 Generalized Production Functions.

ZR (1969) introduced a neo-classical production function f(K,L) of homogeneity p and

considered a monotonic transformation of this neo-classical production function y = g(f). Defining

the RTS function, a(y) , as in (2.2), and taking a particular parametric functional form for a(y), they

solved the differential equation in (2.2) for output as a function off. By choosing a functional form

for f, the shapes of the isoquants are determined. The function f can be a CD, CES, or any other

homogeneous function. They considered several forms for a(y), and we shall use one of them

namely,

WY) -
1 + ey

(2.3)

with 0<0<0., where p is the degree of homogeneity off. Substituting (2.3) in (2.2) and solving the

differential equation, the result is:

logy + ey = logf. (2.4)

If we assume 1 <p and 0 <0, then the RTS function in (2.3) decreases monotonically below one as

the output level increases and the AC curve will have a unique minimum. In addition to the RTS

functions in (2.3), ZR considered two additional RTS functions and their associated production

functions. Other RTS functions are shown below.

22 Analysis of Several Returns to Scale (RTS) Functions

Several RTS functions are given below:

Zellner-Revankar (ZR): al (y) = P 
I + 01y

Nerlove-Ringstad (NR): a2(y) =
+ 2y ogy

(2.3)

(2.5)



ngstad •:G): a3(y) =

ox-Cox C): u4(y) =

Combined ZR and BC (CB): a5(y) =

I 4- eg 2y2logy

11

1 vi
I A

-1

1 e3y v21Y12 11
.)

2

(2.6)

(2.7)

(2.8)

where ZR corresponds to one of Zellner and Revankar's models, NR denotes the Nerlove (1963) and

Ringstad model (1967), RG denotes that of Ringstad (1974), BC corresponds to use of e Box-Cox

transformation, which we introduce in this paper, and CB is a combination of ZR and BC. We have

introduced the Box-Cox transformation on y because it is very flexible. It is clear that (2.3), (2.5),

(2.6), and (2.7) are special cases of (2.8). For example, if X2 0, we get the RG RTS function in

(2.6).

We require the RTS be larger than one at low output levels, and decrease monotonically below

one as the output level increases. For output level 1 y +.0, we need, p> 1. We restrict the output

range be larger than or equal to one so that the denominators of (23)-(2.8) are positive and increase

monotonically as the output level increases. In addition, we impose 8, > 0 and 1 +81 <p for ZR, yi

> 0 for NR, 62 > 0, 1 02 < p, and y2 > 0 for RG, vll > 0 and Xi 0 for BC, and 63 > 0, 1 -F. 63 < p,

v2 > 0, and A.2 0 for CB. We note these conditions are sufficient conditions for the RTS function

to have the above properties.2

Solving the differential equation (2.2) using the RTS functions in (2.3)-(2.8), we obt,d4m:

ZR: = logy + 61y (2.9)

2
]et RTS = ,a/D(y). The uired properties for the RTS function can trr satisfied if xii)(y)/

> 0 and D(y) <p at y 1. These conditions are satisfi,* if the parameters satisfy the conditions
shown in the text and D(y) >0.
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NR: logf = logy + y (logy)2

RG: log/ = logy + y2(logy)2 + 02y

BC: logf = logy + v1Z-- - 1
)4 xi

CB: log/ = logy + 03y +—Y log Yi

A2

The RHSs of (2.9)-(2.13) are increasing functions of y and the transformations from y to f are unique.

In (2.12) and (2.13), we assume Xi, X2 > 0.

For the homogeneous function f in (2.9)-(2.13), we can use a Cobb-Douglas unit elasticity of

substitution function (CD), a constant elasticity of substitution function (CES) or a variable elasticity

of substitution function (VES)3 suggested by Revankar (1971), as shown below:

Cobb-Douglas (CD): logf = bo b logK + b2logL, (2.14)

Const. Elas. of Subst. (CES): logf = bo - (p/p)log[oK + (1 - 8)L CI] (2.15)

Var. Elas. of Subst. (VES): log/ = bo + bllogIC + b2log[L + (p - 1)1C] (2.16)

The form of an AC function's dependence on output does not depend upon the choice of the

homogeneous function/ but only on the degree of homogeneity, p, and the transformations involving

y in (2.9)-(2.13). The total cost function, denoted by C(y) = yAC(y), is obtained as follows for a

given RTS function a(y): 4

3Revankar's VES model is defined by

log/ = logyo + p(1 op)logK + pop log[L + (p - 1)1C]

where the parameters can be denoted by: bo = logyo, bi = p(1 Op), b2 = pop.

4Find an extremum of the Lagrangian expression, L = n., wixi + ef(x At

the optimum, C = n., wixi- pre*

Since X* equals marginal cost, we get (2.17).



Co:.
._AC(Y) c=.

Ma(y) 
logC(y) = Constant -0-

The C cums can exhibit symmetric 111-H

for w ch the TS function is ual to one. Shown

of the RTS functions in (2.3)-(2.8):

c shapes each wiU'a minimum at an auLir

(2.17)

ut level

low are L1C C functions associated with use

(1 - p)logy + 01y
ZR: logAC 7 logC, +  

(1 p )logy + y (logy)2
NR: logAC = logC2 +  

RG: logAC logC3 +

BC: logAC z logC4 +

CB: logAC = log C5 +

(1 p)logy + y2(logy)2 + eg

(1 -p)logy +
2

IogY

12
(1 - Ology + 03y + logyi

(2.3')

(2.5')

(2.6')

(2.7')

(2.8')

where CI, C2,C3,C4, and C5 are constants depending on the choice of the homogeneous function

f(K,L) but not upon the choice of the RTS function, and X19).2 > O. We now turn to provide

generalized forms of the homogeneous function f(K,L).

2$ Generalized VES Function

In describing a homogeneous function, we are free to use any coordinate system. ecognizing

this fact, we show how CD, CES, and VES functions can be Represented in a polar coordinate system.

The motivation for using this coordinate system comes from the simplicity of the functional forms
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which permits us to write a bivariate function as a product of two univariate functions. The

usefulness of this system is further discussed in section 3.2 where we impose a convexity condition

on the isoquants. Suppose we rewrite capital and labor inputs in polar coordinates.

K = r cos 4) and L = rsin 4) where . 0 s 4) s n/2. (2.18)

Lemrna5 2-2. A function is homogeneous of degree /4 if and only if

f = f(K,L) = rPcb(4)). (2.19)

As Clemhout (1968), Sandler and Swimmer (1978), and others have pointed out, a class of

homogeneous production functions can be derived if the slopes of isoquants are specified everywhere,

-dUclIC = ofiamafiaL). For example, a CES function is derived by Cletnhout (1968) using this

method. In this paper, we shall generalize Clemhout's method using the polar coordinate

representation defined in (2.18). For a two input homogeneous function f = f(K,L), we define the

functional form off by specifying the slope of the isoquant in terms of a polar angle 4) = arctan DK,

dL =  afiaK _ h(tan4)).
- dK afia

If we define f E rP(1)(tan4)), then

if = prP-lcos4)(1) - r1 'sin4)04,
aK

-cif . pe-lsin4)(1) + r"cos4)04)
aL

where (I) = a ()ia 4). Then0

5The proofs of all lemmas are available on request to authors.
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  aim K p  . . =
dK afRL i.1 tan

1,1

. a va tan

Since

...

e elasticity of substitution is

- tan I"

i4)

(1 + tan

(1 4' tn2

)(V 
(4,1)0'

o - 
dlog(LIK) _  dlog(tan4)) = 1

dlog(f Klf d d log h(tan 4)) dlog h(tan 4)) 

dlog(tan 4))

(2.20)

a unit elasticity of substitution can be obtained by choosing the slope of the isoquant as

hi(tan4)) = c tan 4). A constant elasticity of substitution different from one can be obtained by

choosing the slope of the isoquant as h2(tan4)) = d(tan4))' *P, and a Variable elasticity of substitution

can be obtained by choosing the slope of the isoquant as h3(tan4)) = A + B tan 4). This VES model

has elasticity of substitution a = 1 + (NB tan 4)) which is equivalent to (2.2) of Revankar (1971).

To derive the homogeneous function from the slope function of the isoquants, h(x), both Revankar

(1967) and Clemhout (1968) solved differential equations. Revankar used a linear functional form

for h(x), h(x) = A + Bx, while Clemhout considered more general forms for h(x).
,

As an application of Clemhout's method, let us consider a combination of CES and VES by

I

introducing the following general form for the slope of the isoquant,

h4(x) = d(A ' 1.P + [A + ( - 1)x] where x::-.- LI K =

Following Clemhout's procedure,6 define

(x)

and then by inte • ration, the result is:

6Clemhout consider(7 kiii
homogeneous function of de

1

x + h cl(A 1 *P + (A

a homogeneous function of de
! r C C P.

'1411- e e

x
(2.21)

one, whereas we are considering a

L
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P
f(K,L) = KPexpipf ilf(x)dx] = Ki  

(A +Bx) 

d(A + B x)P +

where ec is a constant of integration, or

(2.22)

logf(K,L) = p logK - 2--log[d +(A +Bx)-Pi + C. (2.23)
pB

A CES function or a YES function can be obtained from (2.23) by choosing A, B and p appropriately.

That is, we get a VES function for p = -1, (d + A) = (p/- 1)/Opi,B =1/8p/ and a CES function for

A = 0, B =1, d= 8/(1 -8). Here p and p/ are two different parameters.

3. Use of Semiparametric Functions

3.1 Semiparametric Homogeneous Functions

To generalize the fixed functional forms used in the previous section for the homogeneous

functionf, we use a semiparametric approach.
7 
However, we need the convexity of isoquants to have

the resultant functions be production functions.

Clemhout (1968) also suggested using a semiparametric expression for the homogeneous

function, but it was not clear how to impose the convexity restriction on the isoquants with respect to

the origin. In the following, we shall establish a necessary and sufficient condition for this restriction

to hold.

7
We note that the RTS function a(y) can also be represented semiparametrically, e.g.

N(N
a(y)=u / A- F nay" , which when inserted in (3.2) leads to A logy + 1 any' = log f.

n=1 I n=O
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0Theorem 34. The determinant of Hessian matrix for a homogeneous functioi of degree one is zero.

That is, for a two input homogeneous function, f(K, L),

det
fKK 4,,

fix ILL
= 0. (3.1)

To impose concavity on a two input homogeneous function of degree one, we need to check

1111 0 = fix < 0 because 1112I = ficla - fi2a, = O. If f(K,L) = 14(4), then a necessary and

sufficient condition for the concavity restriction on f is

For [

fAx
_ sin2 40  (0 + 4) 04,) < 0.

r
(3.2)

e serniparametric representation of the homogeneous function, Clernhout (1968)

suggested a functional form in which the logarithm of output is a function of the input combination

ratio, tan 4),

logf = logL + Eiv„.0 cn(tan cti)". (3.3)

Alternatively, we may use a functional form based upon the homogeneity of de ee p technology.

For these functions, output can be decomposed into a scale effect (r) and an input characteristic pan,

OW

and similarly,

f = rPOP(4)) = rPexp[ )] = rPexp[

f - 00 — rPexpET(4))] = 7

where tri,, and e, n....- 0,1,2,... we parameters. To im 111,*

n=0 I (3.4)

c(41)1 (3.5)

se concavity on (3.4) and (3.5), we use theorem

L
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3-1 and require that p + 4120/11 + T <0  for W = rn.o dn(tan4))4 or 11 = E 0 e n(s4))" .

There is a tradeoff in establishing a general functional form. By introducing generality in the

homogeneous function as in (3.4) and (3.5), we can impose concavity with ease but the substitution

elasticity will be in a complicated form. Alternatively, by introducing a general form for the

substitution elasticity, the derived homogeneous function is in a complicated form and imposition of

the concavity condition is difficult.

There is an alternative way, introduced by Barnett et al. (1988) to derive a concavity-restricted

homogeneous function. Based upon Clernhout's method stated in (2.22),

f(K,L) = K Pexp[ II pir(x)dr] (3.6)

where tir(x) = 1/(x + h) and h = -dLIdK. Therefore if we choose ii(x) = /(x)/E(x) where E(x) is

a concave function, then an explicit form can be obtained, namely

f(K,L) = KPV(x). (3.7)

The required convexity condition of an isoquant with respect to the origin is satisfied because h =

-aldK = lltif - x = VEI -x is a monotone increasing function when ah/ax = -Ull/(02 > 0 for a

concave Z. Since the sum of two concave functions is another concave function, introduce a sequence

of concave functions, g1, ..., gN and let E . g1 + ... + gN . Then we get f = KP[gi(x)+ ...

This technique of adding several concave functions to establish a flexible concave function can be

applied using, e.g., the Miintz-Szatz series expansion and others. However, imposition of the global

constraints severely reduces the flexibility of the chosen complete set expansion. For example,

if we restrict the expansion coefficients of the Miintz-Szatz approximation to be positive to

approximate a concave function, then such imposition of sufficient conditions for the concavity

restriction reduces the flexibility of the series expansion. The critical issue is whether a
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semip etric estima form wi out concavity restrictions impo is or is not si;ificantly

erent from the restricted function, an empirical proposition at can tested.

this subsection, we have established a relationship tween he homogeneous f ction

1

and the slope of an isoquant In particular, we have shown how to derive a homogeneous function

of degree one from the given slope of the isoquant using Clemhout's (1968) method. In the next

section, we shall estimate Clemhout functions of a polynomial of degree 2 as shown in (4.16)-

(4.20) in Table 1.

4. Estimation of Models

Below we shall consider maximum likelihood (ML) and Bayesian (B) estimation of the

production functions described above and shown in Table 1. With respect to B estimation, we

have just as yet estimated a subset of the functions in Table 1 using a finite sample B approach.

Large sample B results are available for all the functions in Table 1.

4.1 Maximum Likelihood Estimation

In this section, we use the maximum likelihood method to estimate production functions'

parameters. Various combinations of RTS functions and homogeneous functions are considered and

listed in Table 1.

For a general representation of a model and maximum likelihotiparameter estimation, we

follow the procedures of Zenner and Revankar (1969) and Greene (1991). The models listed in (4.1)-

(4.20) of Table 1 are conveniently written as

z(yi,t)= h(K1,L1. )+ui (4.21)

where t d 8 denote parameters associa wi the TS functions and homogeneous functions,

respectively and Ki and L are regardti,11 as exogenous input variables, as in Winer, Drew and Kmenta
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(1966).a The subscript i deno s variables pertaining to t I ,e 1 L 1 1 unit (1 . 1,2,...,T) and the idi's are

random error terms which are assumed norms. y and independently i stributed each wihi mean zero

and common variance a2. The logarithm of the likelihood function is given by

logL, = - i log 27r - I log 024- logf - .2°12. Er.i {z(yi, E) - h(IC i, L 09)}2 (4.22)

where .1 is the Jacobian of the transformation from the ui's to the yi's

J = Iri 
aui_
ay, = MI Ji (4.23)

Differentiating (4.22) partially with respect to a2 and setting the derivative equal to zero, we
obtain a2 =  1 { zi(yi, t) - h(K i, L pe)}2 . Substituting this conditional maximizing value for a2 in
(4.22), we obtain the "concentrated" likelihood function,

logL ' = constant +logJ- flog[ri:i fzi(yi,) - h(K i, L 08)}1 (4.24)

Since unconditional maximization of the concentrated likelihood function is not easy, we apply the

conditional maximization method employed in ZR (1969) and Zenner (1971, p.177ff.). A subset of

the parameters, e.g. bo, b1 and b2 in (4.4) in Table 1, are estimated by least squares conditional on

various given values of v1 and 11 and for each pair the conditionally maximized log 1: is evaluated.

The values of the parameters for which log!] is maximized are the ML estimates. Alternatively, log

L.: can be maximized by use of nonlinear numerical optimization routines. In addition, log 1: can be

maximized subject to inequality constraints mentioned in connection with (2.3)-(2.8).

An estima of the asymptotic covariance matrix of the maximum likenho(6) 4} estimators can

be obtained by inverting the estimated information matrix. However, the Berndt et al. (1974) estimate

0 t t- 61gThe problems ,socia with the possible endogeneity of input variables and measurement
errors in the input variabks will not be treated herein. See, e.g. Tybout (1992) for consideration of
these issues and references to the literature.



18

is easier to compute, as noted by Greene (1991). To estimate the variances of the estimated RTS

functions, we apply the delta method which is explained in Goldberger (1991) and other

textbooks; see also, Anderson and Thursby (1986). Of course, these asymptotic methods may not

produce reliable results in small samples.

4.2 Bayesian Estimation of Parameters

When the sample size is large, the posterior density of a model's parameters is asymptotically

normal centered at the ML estimate—see, e.g. Jeffreys (1967), Hartigan (1983), Heyde and Johnson

(1979), and Chen (1985). However, since the exact finite sample posterior density can be computed,

there is in general no need to rely on asymptotic approximate results in the Bayesian approach. If a

sample is not large, computed posterior densities will not generally be normally shaped. In fact such

a finding is an indication that asymptotic results are not appropriate. Below, examples will be

provided to illustrate this point.

For Zenner and Revankar's RTS function and the Cobb-Douglas homogeneous function given

in (4.1) of Table 1, Zenner (1971) pursued a Bayesian analysis to estimate the model's parameters.

Following Box and Coax's (1964) argument, the prior pdf for the parameters of (4.1) was assumed to

be n(b0,b1,b2,cr, 0) cc 11.131ra where J is defined in (4.23), and he derived the marginal posterior

pdfs. We employed similar methods for the CD and CL models in (4.1)-(4.20). An alternative

approach is to obtain a prior density that provides maximal prior average data information relative to

the information in the prior distribution, the maximal data information prior (MD1P) approach. In

establishing the prior density, we restricted the parameter space in order to obtain U- or L-shaped

average cost curves. For example, the ZR RTS function requires 0, > 0 as previously indicated in

section 2.2. For other returns to scale functions, the restrictions on the parameters are discussed in

section 2.2. See Zenner (1977, 1991, 1993, 1995), Kass and Wasserman .( 1995) and Soofi (1996) for

discussion and applications of the MDIP approach.
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pplication of Models an Methods

We utilize 1957 U.S. annual survey of manufactures state iL.ta fLr the trans nation

uipment industry employed in calculations of ZR (1969). For each of 25 states (T 25), we have

observations of aggregate value added measured in millions of dollars, aggregate capital service flow

measured in millions of dollars, and aggregate man-hours worked measured in millions of man-hours.

By dividing these observations by the number of establishments, we put variables on a per

establishment basis. Across the states, the value added per establishment ranged from 0.193 to 7.18

with mean value 2.87 while the ratios of man-hours worked to capital ranged from 1.27 to 8.32 with

mean 3.26. Such large differences in value added and ratios of man-hours worked to capital are

useful in estimating the RTS functions and the homogeneous functions.

In Table 2, we report the results of maximum likelihood estimation of production functions'

parameters with asymptotic standard errors in parentheses. For 7R-CD model, 0=0.107 and an

approximate 95% confidence interval for 0 extends from -0.0474 to +0.261 which is rather broad and

the usual approximate, asymptotic test of 0, implying a non-U shaped AC, is not very powerful.

The estimated parameters 1)1 = 0.350,b2.-- 1.09 and bi b2= = 1.44 are reasonable and indicate

increasing returns to scale for low output per establishment. In Figure la, the RTS function is

evaluated using 6 = 0.107. We have 1.41 for Florida and 0.816 for Michigan. The RTS for

Kentucky is estimated to be 1.01. In Figure 2, we report estimates of average cost, 1.68 for Florida,

0.930 for Michigan, and 0.879 for Kentucky. The minimum point of the AC curve coincides wi

RTS = It as shown by the RTS and AC estimates for Kentucky.

In Figure 3, we report the posterior probability density of the ZR-C, parameter 09 f(0 )

where D sum for data and prior information, bas

shape (solid line) is non-nonnal, skew 4

4 on a diffuse MD

to the right with a long fat tail

density, n(8,5,0).1/o. The

ving evidence that the sample

•



20

size is not large enough to produce a normal posterior distribution which would be the shape of this

distribution if the sample size were large. The approximate as)imptotic normal density, given by the

dotted curve in Figure 3, has mean value 0= 0.107 and standard deviation 0.0788. From the finite

sample posterior density, Pr(0 > OID) = 0.998 is evidence that 0 is probably positive. In Figure 5, we

report the restricted posterior probability density of 0, f(81D, 0>0). There is not much difference

between Figures 3 and 5. When the sample size is large, the McE estimated RTS and AC curves can

be considered as approximately equal to the posterior mean RTS and AC curves. For the RTS

function, 11 = µ/(1 + eyo), the Bayesian result is approximately AID) -M1 ma/(1-FemLE yo), Ô,12

2where 8 n is the approximate posterior 
variance. However, if desired, the exact posterior pdf for 11

can be computed. The same holds for the posterior density of the AC function. We interpret results

for other models in a similar way.

For the models (4.2)-(4.5) in Table 1, as shown in Table 2, the parameters of the transforma-

tions are not precisely estimated due to the small sample of observations (T = 25) and/or the large

"
number of parameters. For all cases, we have b1 t b2> 1. For NR-CD, the asymptotic confidence

interval for y is broad. However, the finite sample posterior pdf for y, shown in Figure 4, yields

Pr[y > 01D] = 0.992. The estimated RTS functions, plotted in Figure 1, are not much different for

models (4.1)-(4.5). They have minima in the range of output 4.03 to 5.22. The estimated AC curves,

shown in Figure 2, are more or less the same for the models (4.1)-(4.5). For (4.5), the estimate b 0

= 7.90x101° is rather large which is due to limxf.0y12/122- in (4.5). We have used an estimated

value, i2 = 0.000001 to estimate 120. As A. 2 approaches zero, the CB RTS function in (2.8) reduces

to the RG RTS function in (2.6) and the associated production function (4.3) in Table 1, the RG-CD.

As seen from Table 2, the estimates of the RG-CD parameters y2 and 62 are very imprecise. This

implies that it is difficult to distinguish among the RG-CD, NR-CD and the ZR-CD models with our

present sample of data.
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For the models (4.6)-(4.10) in Table 1, we used a CES homogeneous function rather than a

CD function, and the estimated parameter values are reported in Table 3. The estimated RTS

functions for ZR-CD and zR-cms are similar. However, sample standard errors are large indicating

that estimation is not precise. The location of RTS = 1 is in the range of output 4.5 to 6.5. For (4.9)

and (4.10) models, the 1)0 values are quite large due to small estimated values of XI and A,2.

For models (4.11)-(4.15) of Table 1, we introduced a VES homogeneous function rather than

a CD function, and estimated parameter values are reported in Table 3. The point estimates of 1)0, b1,

and b2 look reasonable, but again estimation is imprecise.

For the models (4.16)-(4.20), we introduced a CL homogeneous function rather than a CD

function, and the estimated parameter values are reported in Table 5. The numerical algorithm

produced the results for (4.11)-(4.15) and (4.16)-(4.20) shown in Tables 4 and 5. Note that the

asymptotic standard errors are very large, probably because of the small sample size, and thus it's

difficult to reach definitive conclusions. Unfortunately, other estimates in Tables 3 and 4 are subject

to the same reservations. More data are needed to reach firmer conclusions.

In Figure 6, two marginal posterior pdfs for 6 are presented, one based on the Box-Cox prior

density and the other on a diffuse MDIP prior density function. Following Box-Cox 's argument,

Zellner (1971) derived the marginal posterior pdf for 0, f(6ID) oc JvITI(s2ra. In comparison,

Pericchi (1981) introduced a slightly different prior it((3, o,6) ix 1/04 while our diffuse prior is

n(13,0, 0) 0, 1/a. The posterior pdf based on our diffuse prior pdf has a lower peak and a fatter right

WI compared to the posterior pdf based on the Box-Cox prior as shown in Figure 6.

In Figures 3-6, Bayesian parameter estimation was performed for a CD homogeneous function.

Extension of the Bayesian approach to apply to the nonlinear homogeneous functions such as CES and VES

has not as yet been done but results of Bayesian estimation for the CL homogeneous function are reported
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in Figures 740. When we chose the CL homogeneous function, Bayesian estimated peak points of

0 and y moved slightly to the left side compared to the CD homogeneous function cases. Besides

this, there seems to be no apparent difference between the Figures 3-6 and 7-10, and that the choice

of homogeneous function has a minor effect on parameter estimation of the RTS functions.

In Table 6, we report the RTS values for Florida, New Jersey, and Michigan for the 20 models

we have chosen. These states are chosen because of their extreme and central output levels. When

the functional form of the homogeneous function is general, the choice of RTS function mattered

little. For the CL homogeneous function, the RTS functions for NRCL, RGCL, BCCL, and CBCL

are more or less the same at all output levels. For the YES homogeneous function, we have results

similar to those associated with use of the CL homogeneous function. For the CD and CES

homogeneous functions, not enough flexibility is included in the homogeneous functions and different

choices of the RTS function produced different RTS values. In particular, the ZR RTS function

produced slightly smaller RTS values at all output levels. Since the RGCL and CBCL RTS functions

include ZRCL as a special cue, and the RTS values of NRCL, RGCL, BCCL, and CBCL were more

or less similar at all output levels, we believe that the ZRCL form may lack some flexibility.

The RTS estimates for New Jersey are quite similar across all forms ranging from 1.09 for the

NR-CD to 1.15 for the ZR-YES. Florida's RTS varies from 1.40 in the ZR-YES to 1.71 in the NR-

CD. The asymptotic standard errors of the estimated RTS, shown in Table 6 are rather large in a

number of cases, probably a reflection of our small sample size. However, the point estimates of the

RTS for Florida range from 1.39 to 1.72, for New Jersey from 1.09 to 1.15 and for Michigan from

.814 to 1.02 indicating a general decline in RTS as output increases.
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To summarize the empirical results, the methods we introduced are quite operational. There

is evidence that RTS vary with output and AC functions are U-shaped, but it is hard to differentiate

among different models with our small sample. In Figures 3-6, we have provided exact finite sample

posterior densities which are quite non-normal, an indication that large sample, approximate, normal

results, Bayesian or non-Bayesian are probably inaccurate. From the small eitimated values of the

parameter in the CB RTS function, there is an indication that the NR, RG or ZR RTS functions may

be adequate. Also, the results seem to indicate that an elasticity of substitution different from one,

the CD case, is required. Finally, our estimated AC curves are L-shaped with a distinct minimum in

every case.

6. Application of Models and Methods: Elasticity of Substitution Function

In this section, we estimate the elasticity of substitution at various labor-capital ratios for the

20 models tabulated in Table 1. We have used a CD function for the models (4.1)-(4.5) and a CES

homogeneous function for (4.6)-(4.10). The estimated parameter values are reported in Table 3. For

the ZR-CES function, the point estimate of p is i = 0.650, with a 95% approximate confidence

interval, 0.370 to 0.930, indicates that we probably have a CES function not a CD function. The same

conclusion holds for the models listed in (4.7)-(4.10).

For the models (4.11)-(4.15), we introduced a VES homogeneous function rather than a CD

function, and estimated parameter values are reported in Table 4. We have i = 0.592 for ZR-VES

and for other models with such large standard errors that it's difficult to reach a conclusion with

respect to VES vs. Cobb-Douglas forms. The point estimates of 14 b1, and b2 look reasonable, but

again estimation is imprecise. For the models (4.16)-(4.20), with a CL homogeneous function rather

than a CD function, estimated parameter values are reported in Table 5. Again, the asymptotic
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standard errors are very large probably because of the sm,111 sample size. Unfortunately other

estimates in Tables 3 and 4 are subject to e same resetvations. More dat4 are n ciied to reach firmer

conclusions.

We now consider input substitution for the models listed in (4.1.)-(4.20) in Table 1. The

elasticity of substitution functions are:

1) CD: a = 1.

2) CES: = 1/(1+p).

3) VES: Revankar (1971) showed9 that:

b2 Ka = 1 + (p 131)( 1 +— -7 =1 +-11
b,)

Since B is a constant either positive or negative and DK is positive, a will be below one or above one

depending on the sign of B.

4) CL:

a

dlog(filf) d log[H(4))]

where we define

dlog(L/K) = dlog[tanfl 

tan 4) = LIK an (4)) A/A

with f = r11111(40),

= pi cos cbtli - sin

= iu sin

9Rewrite Revankar's expression,

I 1
+COS

PL 0
1-8p L

to match our notation of eq. (4.11) by defining bo = logy, bi = p(1 -Op) and b2 = pop, so
that 1 - 8p =b1/(bi b2).
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where tiv = diFichk. Hence,

where

and

28

H  1
a -

cos4) sinck c11114

dH . d( A _ A /13 - AB '

64) dH B) B2

A” = -II (sin 4))111 + p cos Viii - cos VP} - sinct•Wil

B" = p (co s ()W +p sin 4)Wi - sin 4)W1+ cos 4:illill

For the CL homogeneous functions listed in (4.16)-(4.20), using a logarithmic function, we have

log W = bo + b24) + b34,2, V= (b2 + 2b3)11, and 'I'll= 2b3T + (b2 +2b24))V.

In Table 6, we report the elasticities of substitution for the states with extreme and mean

values of the labor-capital ratio, namely Michigan, Maine, and Kansas. When we use the CD

homogeneous function, the elasticities are one by definition. For the CES homogenous function, the

estimated elasticities ranged between 0.553 for NRCES to 0.606 for ZRCES. For the YES

homogeneous function, the elasticities should be either above or below one as indicated above.

Therefore the elasticities ranged between -0.151 to 0.844 for both NRVES and ROVES. In Table 4,

we noted that ROVES becomes identical to NRVES when 0 . 0. However, contrary to standard

economic theory, the substitution elasticity for Michigan is negative. This may be due to either the

small sample of observations or the homotheticity assumption that we made. For the CL

homogeneous function, the elasticities varied from -0.508 to 12.2 for CBCL.

In Figures 11-13, we show the estimated input substitution elasticities when we choose various

functional forms, combinations of the ZR, NR, and BC RTS functions and CD, CES, VES, and CL
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functions. We found that use of the CL homogeneous function pr

substi tion elasticities, but

uces large
•
1fferences in the input

e.CD, CES, and VES forms have very limited variability. Also we note

that the choice of a RTS function appears to be not very important for estimation of

substitution parameter.

t e inp

7. Summary and Concluding Remarks

We have estimated returns to scale functions and average cost curves using the generalized

production function approach without assuming fixed scale elasticities or fixed substitution

elasticities. The functional forms can be either parametric forms or flexible semiparametric forms.

For the parametric form approach, to generalize the returns to scale function, we introduced a Box

Cox type function and derived Zenner and Revankar, Nerlove and Ringstad, and Ringstad's returns

to scale functions as special cases of the Box-Cox type returns to scale function. To generalize the

homogeneous function, we introduced a polar coordinate representation, defined the substitution

elasticity as a function of an angular variable, and derived Cobb-Douglas, CES, and variable elasticity

of substitution functions. For a flexible functional form approach, we introduced a sequence of

polynomials for the reciproc of the returns to sc ie function and also for the angular part of the

homogeneous function. We called the polynomial expansion of tie homogeneous function a

Clemhout type function and showed how to impose convexity on the isoquants with respect to the

origin. We recognize that various model selection procedures can be employed to help choose among

ternative models and/or combine them.

Extension to many input generalized p uction functions is plann

choice of a returns to scale function does not cause any ad

the concavity restriction on the is4,111)

in future work. The

tionai complications but imposition of

uants of e homogeneous function will be difficult. We have



introduced a polar coordinate representation to separate a homogeneous function into a radial part and

an angular part, and explained that the determinant of Hessian matrix of a homogeneous function of

degree one is zero and thus the burden of imposing the concavity restriction is lessened in this

formulation. We expect that the decrease in dimension of the homogeneous function will provide

some simple rules for imposing the concavity restriction in a many input homogeneous function.
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