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Abstract

We consider generalized production functions, introduced in Zellner and Revankar (1969),
for output y = g(f) where g is a monotonic function and f is a homogeneous production function. For
various choices of the scale elasticity or returns to scale as a function of output, differential
equations are solved to determine the associated forms of the monotonic transformation, g(f). Then
by choice of the form of f, the elasticity of substitution, constant or variable, is determined. In this
way, we have produced and generalized a number of homothetic production functions, some already
in the literature. Also, we have derived and studied their associated cost functions to determine how
their shapes are affected by various choices of the scale elasticity and substitution elasticity
functions. In general, we require that the returns to scale function be a monotonically decreasing
function of output and that associated average cost functions be U- or L-shaped with a unique
minimum. We also represent production functions in polar coordinates and show how this
representation simplifies study of production functions' properties. Using data for the U.S.
transportation equipment industry, maximum likelihood and Bayesian methods are employed to
estimate many different generalized production functions and their associated average cost
functions. In accord with results in the literature, it is found that the scale elasticities decline with
output and that average cost curves are U- or L-shaped with unique minima.

*Research financed by the National Science Foundation and by income from the H.G.B.
Alexander Endowment Fund, Graduate School of Business, University of Chicago. We thank two
referees and the Co-Editor, John Geweke for helpful comments.




Alternative Functional Forms for Production, Cost and
Returns to Scale Functions

Arnold Zellner and Hang Ryu*

Revised January 1996
(this version 1/6/97)

Abstract

We consider generalized production functions, introduced in Zellner and Revankar (1969),
for output y = g(f) where g is a monotonic function and f is a homogeneous production function. For
various choices of the scale elasticity or returns to scale as a function of output, differential
equations are solved to determine the associated forms of the monotonic transformation, g(f). Then
by choice of the form of f, the elasticity of substitution, constant or variable, is determined. In this
way, we have produced and generalized a number of homothetic production functions, some already
in the literature. Also, we have derived and studied their associated cost functions to determine how
their shapes are affected by various choices of the scale elasticity and substitution elasticity
functions. In general, we require that the returns to scale function be a monotonically decreasing
function of output and that associated average cost functions be U- or L-shaped with a unique
minimum. We also represent production functions in polar coordinates and show how this
representation simplifies study of production functions' properties. Using data for the U.S.
transportation equipment industry, maximum likelihood and Bayesian methods are employed to
estimate many different generalized production functions and their associated average cost
functions. In accord with results in the literature, it is found that the scale elasticities decline with
output and that average cost curves are U- or L-shaped with unique minima.

*Research financed by the National Science Foundation and by income from the H.G.B.
Alexander Endowment Fund, Graduate School of Business, University of Chicago. We thank two
referees and the Co-Editor, John Geweke for helpful comments.



1. Introduction

In this paper, we relax two commonly used assumptions in formulating the functional form of
a production function namely, the constant returns to scale and the constant elasticity of substitution
assumptions. In general, the scale elasticity, which we equivalently call the returns to scale (RTS)
function, may be a function of output and the input mix. Fare, Jansson, and Lovell (1985) introduced
ray=homoﬂwtic production functions which permit scale economies to vary with the rate of output
and the input mix. Zellner and Revankar (1969) linked the definition of a RTS function with Euler's
theorem and McElroy (1969) generalized Euler's theorem to derive classes of production functions
for which the scale elasticity depends either on output alone or or; factor proportions alone. However,
for simplicity of exposition, we utilize a homothetic assumption in this paper so that the RTS
function is a function of output and the substitution elasticity a function of input combinations as has
been done in Revankar (1971), Shephard (1u973), and Zellner and Revankar (1969). Based on the
generalized production function approach, Avishur (1994) considers the efficiency effect of the
privatizgﬁon of British telecom and Kumbhakar et al. (1991) estimated determinants of inefficiency
in U.S. dairy farms.

Frisch (1965) considered a production function with a decreasing scale elasticity and several
other researchers have introduced various functional forms for the scale elasticity. For given RTS
functions, Zellner and Rcvankar [ZR (1969)] indicated that a differential equation can be solved to
obtain generalized production functions that have prespecified RTS properties. Nerlove (1963) and
Ringstad (1967), NR, introduced a linear function of the logarithm of output for the reciprocal of the
scale elasticity. Ringstad (1974) suggested using a translog function or 2 combination of one of ZR's
functions and NR's function denoted by, RG. Since the translog function is not a quasi-concave

function, it does not satisfy the neoclassical properties of a production function unless further side




conditions are imposed In this paper, we introduce a Box-Cox type RTS function that is very flexib.
and rich in representing the RTS function. In this approach, we can derive various RTS functions as
special cases.

If technical change is incorporated in the production function, certain a priori hypotheses
have to be made if technical change is to be distinguished from the returns to scale effect. Sato
(1980) has introduced the concept of a "holothetic technology" for this purpose. The separate
estimation of technical progress and returns to scale will be possible if the production structure is not
holothetic; see Avishur (1994) for an example. Furthermore, Calem (1990) indicated how
misspecification of the underlying technology can result in inappropriate, though seemingly reliable,
estimates of technical progress and a returns to scale function using one of the ZR RTS functions and
a quadratic time trend.

For the substitution elasticity, we show how to estimate RTS functions when we use a unit
elasticity of substitution function (Cobb-Douglas), a constant elasticity of substitution function
(CES), and a variable elasticity of substitution (VES) function suggested by Revankar (1971). As a
generalization of this approach, we introduce a polar coordinate representation for a homogeneous
function so that it can be separated into a radial part and an angular part. As will be seen, with the
proper choice of a function defining the isoquants' slope, we can represent CD, CES, VES, or more
general functional forms.

As in ZR (1969), we consider output, denoted by y to be given by y = g(f) where g is a
monotonically increasing function of f and f = f(K,L) is a homogeneous function of degree u with
capital (K) and labor (L) inputs and thus g(f) is homothetic. Our objectives are threefold: (1) to
establish a globally quasi-concave production function with convex isoquants; (2) for this production

function to have the RTS function be a decreasing function of output and to have an increase in all
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inputs not decrease output; and (3) to obtain an AC function that is U-shaped (or L-shaped). We shall
take up these issues in what follows.

In constructing a production function, the homotheticity restriction on g(f) is a useful
simplifying assumption but is not a required property. Christensen and Greene (1976) derived a RTS
function based. upon a translog cost function and compared the effect of imposing homotheticity,
homogeneity, and unitary elasticities of substitution restrictions. The interesting question of testing
the validity of the homotheticity assumption will not be discussed in this paper. Alternatively, under
the homotheticity assumption, we discuss properties of various production functions, compare the
parametric functional forms with the flexible functional forms, and interpret some empirical results.
Other interesting issues such as models with dynamic effects will be considered in future work.

An overview of the paper is as follows. In Section 2, we review how parametric production
functions can be derived from given RTS functions. Various fixed functional form choices of the
RTS and the homogeneous parametric functions, denoted by AK,L) above, are considered. A polar
coordinate representation is introduced for the homogeneous function, f. In Section 3, semipa'rametric
approaches are introduced for both the RTS function and the homogeneous function, fAK.L). In
Section 4, maximum likelihood and Bayesian estimation procedures for this class of models are
presented. In Sections 5 and 6, we apply our methods using data for the U.S. transportation
equipment industry. Estimates of alternative returns to scale functions are presented in Section 5 and
estimates of input substitution effects are presented in Section 6. A sﬁmmary and some concluding

remarks are presented in Section 7.




2. Mathematical Description of Alternative Models

In this section, after reviewing the properties of a prodilction function, we construct various

generalized production functions, using a homotheticity assumption, that is y = g(f) with g(*) a
monotonic function and AK,L) a homogeneous function. We introduce specific functional forms for
the returns to scale function,denoted by a(y), and the homogeneous function f = fIK,L). In particular,
we introduce a Box-Cox type RTS function because many well known RTS functions can be defined
as special cases of this function. Some of these well known functions are sensible production
functions with reasonable associated average cost functions (U-shaped or L-shaped). We also
generalize the homogeneous function f(K.L), using a polar coordinate representation. CES and VES
functions can be derived with proper choices of the slopes of the isoquants.

The properties of a production function, stated in Fuss et al. ( 1978) for a single output y and

ninputs (x,,...,x,)are

Domain. y = w(x,,...,x,) is a real-valued function of (x,,....x,) defined for every non-negative
input (x; > 0 foralli=12,..,n) and it is finite if (xp,....x,) is finite; w(0,...,0) = 0.
Monotonicity. An increase in inputs cannot decrease production.
Continuity.
Concavity. w is quasi-concave over every non-negative input (x, 2 0 for alli = 1,2,...,n).
In what follows, we impose the following two additional conditions:
Homotheticity. wis a homothetic function.
Decreasing RTS. The RTS is larger than one at small output levels and decreases monotonically

below as the output level increases.




Conditions 5) and 6) are introduced because condition 5) is a useful simplifying assumption and
condition 6) leads to average cost (AC) functions having a unique minimum. As explained above,

a homothetic production function is defined as

y =8 .1

where g is a monotone transformation function and f = f{K,L) is a homogeneous function of degree

p'. The RTS function (), is defined as follows,

o) = 1 %}y; ~ 2.2)

and is related to Euler's theorem in McElroy (1969) and ZR (1969). The relationship between
properties of the RTS function and of associated AC functions is derived in Hanoch (1975) and in

Sandler and Swimmer (1978). Based upon their results, we can state:

Lemma 2-1. If the RTS function is greater (smaller) than one, then the slope of AC curve is negative
(positive) or equivalently if the slope of AC curve is negative (positive), then the RTS function is
greater (smaller) than one. If RTS=1 at some output level, then the AC curve has a unique minimum

at this point provided that the RTS function is a decreasing function of y.

In what follows, we shall review one of ZR's (1969) generalized production functions, and

then consider extensions of this model.

‘Without loss of generality, we could take p = 1; however, we shall use the standard definition
of homotheticity.




2.1 Generalized Production Functions.

ZR (1969) introduced a neo-classical production function fiK.L) of homogeneity p and
considered a monotonic transformation of this neo-classical production function y = g(f). Defining
the RTS function, a(y), as in (2.2), and taking a particular parametric functional form for a(y), they
solved the differential equation in (2.2) for output as a function of . By choosing a functional form
for f, the shapes of the isoquants are determined. The function f can be a CD, CES, or any other
homogeneous function. They considered several forms for a(y), and we shall use one of them

namely,

ay) = —F 2.3)
1+6y

with 0 < 8 < =, where p is the degree of homogeneity of f. Substituting (2.3) in (2.2) and solving the

differential equation, the result is:
logy + By = logf. (2.4)

If we assume 1 <p and 0 < 6, then the RTS function in (2.3) decreases moanonically below one as
the output level increases and the AC curve will have a unique minimum. In addition to the RTS
functions in (2.3), ZR considered two additional RTS functions and their associated production

functions. Other RTS functions are shown below.

2.2 Analysis of Several Returns to Scale (RTS) Functions

Several RTS functions are given below:

Zellner-Revankar (ZR):  «,(y) = —% (2.3)
1+8y

Nerlove-Ringstad (NR): ~ &,(y) = ——b—— @2.5)
1 + 2y, logy



Ringstad (RG): = P 2.6
ngd RO): - &0) = gt (2.6)
Box-Cox (BC): @) = ——F— 2.7)
1+ vl(y : "“}
lﬁ

Combined ZR and BC (CB): e (y) = H - (2.8)

1+ 8y + vy y -l

AZ

where ZR corresponds to one of Zellner and Revankar's models, NR denotes the Nerlove (1963) and
Ringstad model (1967), RG denotes that of Ringstad (1974), BC corresponds to use of the Box-Cox
transformation, which we introduce in this paper, and CB is a combination of ZR and BC. We have
introduced the Box-Cox transformation on y because it is very flexible. It is clear that (2.3), (2.5),
(2.6), and (2.7) are special cases of (2.8). For example, if A,=0, we get the RG RTS function in
6.

We require the RTS be larger than one at low output levels, and decrease monotonically below
one as the output level increases. For outputlevel 1 <y < +e, we nch., p > 1. We restrict the output
range be larger than or equal to one so that the denominators of (2.5)-(2.8) are positive and increase
monotonically as the output level increases. In addition, we impose 6, >0and 1 + 0, <p for ZR, v,
>0forNR,0,>0,1+6,<p,andy,>0forRG, v,>0and A, > 0 for BC,and 6, >0,1+6, <p,
v, >0, and A, > 0 for CB. We note these conditions are sufficient conditions for the RTS function
to have the above properties.’

Solving the differential equation (2.2) using the RTS functions in (2.3)-(2.8), we obtain:

ZR: logf = logy + 0,y (2.9)

’Let RTS = wD(y). The required properties for the RTS function can be satisfied if dD(y)/dy
> 0 and D(y) < p at y = 1. These conditions are satisfied if the parameters satisfy the conditions
shown in the text and D(y) > 0.




NR: logf = logy + y,(logy)? (2.10)
RG: logf = logy + y,(logy)* + 6,y 2.11)

A
BC: logf = logy + vl[-’—; - lﬁ;z} (2.12)
Al 1

A
CB: logf = logy + 6,y + vz[’:: - '-%‘;l] (2.13)

The RHSs of (2.9)-(2.13) are increasing functions of y and the transformations from y to f are unique.

In (2.12) and (2.13), we assume A ,A, > 0.

For the homogeneous function f in (2.9)-(2.13), we can use a Cobb-Douglas unit elasticity of
substitution function (CD), a constant elasticity of substitution function (CES) or a variable elasﬁcity

of substitution function (VES)’ suggested by Revankar (1971), as shown below:
Cobb-Douglas (CD):  logf = b, + blogK + b,logL (2.19)
Const. Elas. of Subst. (CES):  logf = b, - (n/p)log[6K " + (1-8)L ] (2.15)
Var. Elas. of Subst. (VES):  logf = b, + b,logK + b,log[L + (p-1)K] (2.16)

The form of an AC function’s dependence on output does not depend upon the choice of the
homogeneous function f but only on the degree of homogeneity, p, and the transformations involving
y in (2.9)-(2.13). The total cost function, denoted by C(y) = yAC(), is obtained as follows for a

given RTS function a(y):*

3Revankar’s VES model is defined by
logf = logy, + n(1-3p)logK + pdploglL + (p-1)K]

where the parameters can be denoted by: b, = logY,, b, = p(1-5p), b, = pdp.

*Find an extremum of the Lagrangian expression, L = Y ., wx; + Aly - glf(x....x ). At

the optimum,
C* = E}q wXx; = A‘g/z:}qf;' X = P)".g{f.

Since A°equals marginal cost, we get (2.17).




. ACO) _ - . Y
a(y) = W logC(y) = Constant f — (2.17)

The AC curves can exhibit symmetric and asymmetric shapes each with a minimum at an output level

for which the RTS function is equal to one. Shown below are the AC functions associated with use

of the RTS functions in (2.3)-(2.8):

_ (L-m)logy + By
B

= logC,

(1-plogy + y,(logy)?
B

logAC = logC, +

(1-p)logy + y,(logy)* + 8.y
p

logAC 3 logC, +

A
(1-p)logy + vn[’—' - gy
lZ

logAC = logC, '
p

(1-plogy + Oy + v,{

logAC = logC;

B

where C,,C,,C,,C,, and C,are constants depending on the choice of the homogeneous function
fIK,L) but not upon the choice of the RTS function, and 1,,12 > 0. We now turn to provide

generalized forms of the homogeneous function f(K,L).

23 Generalized VES Function
In describing a homogeneous function, we are free to use any coordinate system. Recognizing
this fact, we show how CD, CES, and VES functions can be represented in a polar coordinate system.

The motivation for using this coordinate system comes from the simplicity of the functional forms
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which permits us to write a bivariate function as a product of two univariate functions. The
usefulness of this system is further discussed in section 3.2 where we impose a convexity condition

on the isoquants. Suppose we rewrite capital and labor inputs in polar coordinates.

K =rcos¢ and L = rsind where 0 < ¢ < m/2 (2.18)

Lemma® 2-2. A function is homogeneous of degree u if and only if

f = fIK,.L) = r*®($). (2.19)

As Clemhout (1968), Sandler and Swimmer (1978), and others have pointed dut, a class of
homogeneous production functions can be derived if the slopes of isoquants are specified everywhere,
-dL/dK = (3f/9K)/(3f/3L). For example, a CES function is derived by Clemhout (1968) using this
method. In this paper, we shall generalize Clemhout’s method using the polar coordinate
representation defined in (2.18). For a two input homogeneous function f = f(K,L), we define the
functional form of f by specifying the slope of &c isoquant in terms of a polar angle ¢ = arctan L/K,

—é = .ai/(?_K- =
K oL | an®).

If we define f = r*®(tan), then

af - -1 _ =143

x ur¥'cosp® - r* smcbd>¢ |
of _ -1 -1

I prelsing® + r'"'cosdp®,

where @, = 0®/d¢. Then

>The proofs of all lemmas are available on request to authors.
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_dL _ OffK _ p® - an¢(l +tan’ )P’
dX  OffL  puné® + (1 +wan’$)e’

where ®’ = 0®/dtan.

Since the elasticity of substitution is

_ dlog(L/K) _ dlog(tand) _ 1 (2.20)
dlog(f,/f,) dlogh(tand)  dlogh(tand)’
dlog(tan ¢)

a unit elasticity of substitution can be obtained by choo;ing the slope of the isoquant as
h/(tand) = ctand. A constant elasticity of substitution different from one can be obtained by
choosing the slope of the isoquant as h,(tan$) = d(tan¢)'**, and a variable elasticity of substitution
can be obtained by choosing the slope of the isoquant as h,(tan) = A' + Btan¢. This VES model
has elasticity of substitution ¢ = 1 + (4/Btan¢) which is equivalent to (2.2) of Revankar (1971).
To derive the homogeneous function from the slope function of the isoquants, £(x), both Revankar
(1967) and Clemhout (1968) solved differential equations. Revankar used a linear functional form
for h(x), h(x) = A + Bx, while Clemhout considered more general forms for A(x).

As an application of Clcmilout’s method, let us consider 2 combination of CES and VES by

introducing the following general form for the slope of the isoquant,
hy(x) = d(A+Bx)!*®* + [A+(B-1}x] where x = L/K = tand.

Following Clemhout’s procedure,® define

W) = —— - ! @.21)

x+h  d(A+Bx)'"® + (A +Bx)

and then by integration, the result is:

*Clemhout considered a homogeneous function of degree one, whereas we are considering a
homogeneous function of degree p.
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_ _ (A+Bx)P [oFB
KL = KpcxP{pf w(x)dx] ) Kp[d(A +Bx)°+1]m ¢

where €€ is a constant of integration, or
logf(K,L) = plogk - lBlog[m(A +Bx)®| + C. (2.23)
P

A CES function or a VES function can be obtained from (2.23) by choosing 4, B and p appropriately.
That is, we get a VES function for p= -1, (d+A) = (p’-1)/8p’,B=1/8p’ and a CES function for

A=0, B=1, d=8/(1-5). Here p and p’ are two different parameters.
3. Use of Semiparametric Functions

3.1 Semiparametric Homogeneous Functions

To generalize the fixed functional forms used in the previous section for the homogeneous

. . . 7 . .
functionf, we use a semiparametric approach.. However, we need the convexity of isoquants to have

the resultant functions be production functions.

Clemhout (1968) also suggested using a semiparametric expression for the homogeneous
function, but it was not clear how to impose the convexity restriction on the isoquants with respect to
the origin. In the following, we shall establish a necessary and sufficient condition for this restriction

to hold.

7We note that the RTS function &(y) can also be represented semiparametrically, e.g.

N ° N
a(y)= u/(A + Znany"), which when inserted in (3.2) leadsto Alogy + ¥ a,,y" = log f.

n=1 n=0
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Theorem 3-1. The determinant of a Hessian matrix for a homogeneous function of degree one is zero.

That is, for a two input homogeneous function, f(K, L),

fx T
fix fu

det = 0. G.1)

To impose concavity on a two input homogeneous function of degree one, we need to check
IH|| = fi < O because \H,| = fufy, - fo = 0. If fiK,L) = r®(d), then a necessary and

sufficient condition for the concavity restriction on f is

-2
fo = 20 +®,,) < 0. (.2)

r

For the semiparametric representation of the homogeneous function, Clemhout (1968)
suggested a functional form in which the logarithm of output is a function of the input combination

ratio, tan ¢,

logf = logL + Y w.oc,(tand)". (3.3)

Alternatively, we may use a functional form based upon the homogeneity of degree p technology.

For these functions, output can be decomposed into a scale effect (r) and an input characteristic part,

o),
f = rrO(@) = rrexpl¥(@)] = rPexp Yoo dandy] (3.4)
and similarly,

f = rPOP(§) = rexplB(@)] = rPexp Y neo €, (6] (3.5

where d, and e,, n = 0,1,2,... are parameters. To impose concavity on (3.4) and (3.5), we use theorem
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3-1 and require that p + ‘I’i/p + ‘Pw <0for¥ = 2’:,0 d (tand)” or ¥ = E:o e ()"
Thcré is a tradeoff in establishing a general functional form. By introducing generality in the
homogeneous function as in (3.4) and (3.5), we can impose concavity with ease but the substitution
elasticity will be in a complicated form. Alternatively, by introducing a general form for the
substitution elasticity, fhc derived homogeneous function is in a complicated form and imposition of
the concavity condition is difficult.
There is an alternative way, introducéd by Bamnett et al. (1988) to derive a concavity-restricted

homogeneous function. Based upon Clemhout’s method stated in (2.22),

fK.L) = Krexplp [ wooa] 3.6)

where Y(x) = 1/(x+h) and h = -dL/dK. Therefore if we choose Y(x) = E'(x)/E(x) where E(x) is

a concave function, then an explicit form can be obtained, namely
f(K,L) = KPE*(x). 3.7)

The required copilexity condition of an isoquant with respect to the origin is satisfied because h =
-dL/dK = 1/§ - x = E/E'-x is a monotone increasing function when oh/dx = -EE"/(E)* > 0 fora
concave £. Since the sum of two concéve functions is another concave function, introduce a sequence
of concave functions, g, ..., gy and let =g + ... + gy. Then we get f = K¥[g,(x) +... + gy,
This technique of adding several concave functions to establish a flexible concave function can be
applied using, e.g., the Miintz-Szitz series expansion and others. However, imposition of the global
constraints severely reduces the flexibility of the chosen complete set expansion. For example,
if we restrict the expansion coefficients of the Miintz-Szitz approximation to be positive to
approximate a concave function, then such imposition of sufficient conditions for the concavity

restriction reduces the flexibility of the series expansion. The critical issue is whether a
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semiparametric estimated form without concavity restrictions imposed is or is not significantly
different from the restricted function, an empirical proposition that can be tested.

In this subsection, we have established a relationship between the homogeneous function
and the slope of an isoquant. In particular, we have shown how to derive a homogeneous function
of degree one from the given slope of the isoquant using Clemhout's (1968) method. In the next
section, we shall estimate Clemhout functions of a polynomial of degree 2 as shown in (4.16)-
(4.20) in Table 1.

4. Estimation of Models

Below we shall consider maximum likelihood (ML) and Bayesian (B) estimation of the
production functions described above and shown in Table 1. With respect to B estimation, we
have just as yet estimated a subset of the functions in Table 1 using a finite sample B approach.
Large sample B results are available for all the functions in Table 1.

4.1 Maximum Likelihood Estimation

In this section, we use the maximum likelihood method to estimate production functions’
parameters. Various combinations of RTS functions and homogeneous functions are considered and
listed in Table 1.

For a general representation of a model and maximum likelihood parameter estimation, we
follow the procedgres of Zellner and Revankar (1969) and Greene (1991). The models listed in (4.1)-

(4.20) of Table 1 are conveniently written as
2(y,8)=h(K,L,8) +u, 4.21)

where € and © denote parameters associated with the RTS functions and homogeneous functions,

respectively and K; and L, are regarded as exogenous input variables, as in Zellner, Dréze and Kmenta
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(1966).2 The subscript i denotes variables pertaining to the ith unit ({ = 1,2,...,T) and the #;’s are
random error terms which are assumed normally and indepcndéndy distributed each with mean Zero

and common variance ¢>. The logarithm of the likelihood function is given by
logL =~ %log 27 - -g-log o’ +logJ - #Zﬁx {z(yi, &) -hK,L, 9)}2 (4.22)
where J is the Jacobian of the transformation from the u;’s to the y;’s
du;
J = HL 3)'7

Differentiating (4.22) partially with respect to o and seiting the derivative equal to zero, we

= T, 7, (4.23)

obtain & = % ,.T=] {zi(yi,vE) -hK,L, 9)}2. Substituting this conditional maximizing value for o® in

(4.22), we obtain the "concentrated” likelihood function,
. T T 2
logL " = constant +logJ - ;log{ izl {z,-()',-, &-hK,L, 9)} } (4.29)

Since unconditional maximization of the concentrated likelihood function is not easy, we apply the -
conditional maximization method employed in ZR (1969) and Zellner (1971, p.177ff.). A subset of
the parameters, e.g. by, b, and b, in (4.4) in Table 1, are estimated by least squares conditional on
various given values of v; and A, and for each pair the conditionally maximized log L" is evaluated.
The values of the parameters for which log L” is maximized are the ML estimates. Alternatively, log
L’ can be maximized by use of nonlinear numerical optimization routines. AIn addition, log L’ can be
maximized subject to inequality constraints mentioned in connection with (2.3)-(2.8).

An estimate of the asymptotic covariance matrix of the maximum likelihood estimators can

be obtained by inverting the estimated information matrix. However, the Berndt et al. (1974) estimate

®The problems associated with the possible endogeneity of input variables and measurement
errors in the input variables will not be treated herein. See, e.g. Tybout (1992) for consideration of
these issues and references to the literature.
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is easier to compute, as noted by Greene (1991). To estimate the variances of the estimated RTS
functions, we apply the delta method which is explained in Goldberger (‘1 991) and other
textbooks; see also, Anderson and Thursby (1986). Of course, these asymptotic methods may not

produce reliable results in small samples.

4.2 Bayesian Estimation of Parameters

When the sample size is large, the posterior density of a model’s parameters is asymptotically
normal centered at the ML estimate—see, e.g. Jeffreys (1967), Hartigan (1983), Heyde and Johnson
(1979), and Chen (1985). However, since the exact finite sample posterior density can be computed,
there is in general no need to rely on asymptotic approximate results in the Bayesian approach. If a
sample is not large, computed posterior densities will not generally be normally shaped. In fact such
a finding is an indication that asymptotic results are not appropriate. Below, examples will be
provided to illustrate this point.

For Zellner and Revankar’s RTS function and the Cobb-Douglas homogeneous function given
in (4.1) of Table 1, Zellner (1971) pursued a Bayesian analysis to estimate the model’s parameters.
Following Box and Cox’s (1964) argument, the prior pdf for the parameters of (4.1) was assumed to
be n(by,b,,b,,0,0) < 11 3o where J is defined in (4.23), and he derived the marginal posterior
pdfs. We employed similar methods for the CD and CL models in (4.1)-(4.20). An alternative
~ approach is to obtain a prior density that provides maximal prior average data information relative to
the information in the prior distribution, the maximal data information prior (MDIP) approach. In
establishing the prior density, we restricted the parameter space in order to obtain U- or L-shaped
average cost curves. For example, the ZR RTS function requires B8, > 0 as previously indicated in
section 2.2. For other returns to scale functions, the restrictions on the parameters are discussed in
section 2.2. See Zellner (1977, 1991, 1993, 1995), Kass and Wasserman (1995) and Soofi (1996) for

discussion and applications of the MDIP approach.



S. Appilication of Models and Methods

We utilize 1957 US . annual survey of manufactﬁres state data for. the transportation
equipment industry employed in calculations of ZR (1969). For each of 25 states (T = 25), we have
observations of aggregate value added measured in millions of dollars, aggregate capital service flow
measured in millions of dollars, and aggregate mafl-hours worked measured in millions of man-hours.
By dividing these observations by the number of establishments, we put variables on a per
establishment basis. Across the states, the value added per establishment ranged from 0.193 to 7.18
with mean value 2.87 while the ratios of man-hours worked to capital ranged from 1.27 to 8.32 with
mean 3.26. Such large differences in value added and ratios of man-hours worked to capital are
useful in estimating the RTS functions and the homogeneous functions.

In Table 2, we report the results of maximum likelihood estimation of production functions’
parameters with asymptotic standard errors in parentheses. For ZR-CD model, 6 =0.107 and an
approxirmate 95% confidence interval for 6 extends from -0.0474 to +0.261 which is rather broad and
the usual approximate, asymptotic test of 6 = 0, implying a non-U sha};ed AC, is not very powerful.
The estimated parameters 51 =0.350, I;z = 1.09 and f), + 52 = [i = 1.44 are reasonable and indicate
increasing returns to scale for low output per establishment. In Figure 1la, the RTS function is
evaluated using @ =0.107. We have 1.41 for Florida and 0.816 for Michigan. The RTS for
Kentucky is estimated to be 1.01. In Figure 2, we report estimates of average cost, 1.68 for Florida,
0.930 for Michigan, and 0.879 for Kentucky. The minimum point of the AC curve coincides with
RTS =1 as shown by the RTS and AC estimates for Kentucky.

In Figure 3, we report the posterior probability density of the ZR-CD parameter 6, f(6lD)
where D stands for data and prior information, based on a diffuse MDIP density, ®(8,8,6)e<1/5. The

shape (solid line) is non-normal, skewed to the right with a long fat tail giving evidence that the sample
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size is not large enough to produce a normal posterior distribution which would be the shape of this
distribution if the sample size were large. The approximate asymptotic normal density, given by the
dotted curve in Figure 3, has mean value 8 = 0.107 and standard deviation 0.0788. From the finite
sample posterior density, Pr(6 > bID) =0.998 is evidence that 0 is probably positive. In Figure 5, we
report the restricted posterior probability density of 8, f8ID,6>0). There is not much difference
between Figures 3 and 5. When the sample size is large, the MLE estimated RTS and AC curves can

be considered as approximately equal to the posterior mean RTS and AC curves. For the RTS

function, m=p/(1+6y,), the Bayesian result is approximately finlD) = N[{i M,_E/(l+é e Yo)» O f]]

where & f, is the approximate posterior variance. However, if desired, the‘exact posterior pdf for 1
can be computed. The same holds for the posterior density of the AC function. We interpret results
for other models in a similar way.

For the models (4.2)-(4.5) in Table 1, as shown in Table 2, the parameters of the transforma-
tions are not precisely estimated due to the small sample of observations (T = 25) and/or the large
number of parameters. For all cases, we have I;, + 'l;z > 1. For NR-CD, the asymptotic confidence
interval for y is broad. However, the finite sample posterior pdf for y, shown in Figure 4, yields
Pr{y > OlD] = 0.992. The estimated RTS functions, plotted in Figure 1, are not much different for
models (4.1)-(4.5). They have minima in the range of output 4.03 to 5.22. The estimated AC curves,
shown in Figure 2, are more or less the same for the models (4.1)—(4.5). For (4.5), the estimate - b
= 7.90x10" is rather large which is due to lim, _,y %A~ in (4.5). We have used an estimated
value, 3,, = 0.000001 to estimate 50. As A, approaches zero, the CB RTS function in (2.8) reduces
to the RG RTS function in (2.6) and the associated production function (4.3) in Table 1, the RG-CD.
As seen from Table 2, the estimates of the RG-CD parameters Y, and 6, are very imprecise. This

implies that it is difficult to distinguish among the RG-CD, NR-CD and the ZR-CD models with our

present sample of data.
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For the models (4.6)-(4.10) in Table 1, we used a CES homogeneous function rather than a
CD function, and the estimated parameter values are reported in_Table 3. The estimated RTS
functions for ZR-CD and ZR-CES are similar. However, sample standard errors are large indicating
that estimation is not precise. The location of RTS = 1 is in the range of output 4.5t06.5. For (4.9)
and (4.10) models, the I;o values are quite large due to small estimated values of A, and A,.

For models (4.11)-(4.15) of Table 1, we introduced a VES homogeneous function rather than
a CD function, and estimated parameter values are reported in Table 3. The point estimates of by, b,

and b, look reasonable, but again estimation is imprecise.

For the models (4.16)-(4.20), we introduced a CL homogeneous function rather than a CD

function, and the estimated parameter values are reported in Table 5. The numerical algorithm
produced the results for (4.11)-(4.15) and (4.16)-(4.20) shown in Tables 4 and 5. Note that the
asymptotic standard errors are very large, probably because of the small sample size, and thus it’s
difficult to reach definitive conclusions. Unfortunately, other estimates in Tables 3 and 4 are subject
to the same reservations. More data are needed to reach firmer conclusions.

In Figure 6, two marginal posterior pdfs for 6 are presented, one based on the Box-Cox prior
density and the other on a diffuse MDIP prior density function. Following Box-Cox’s argument,
Zellner (1971) derived the marginal posterior pdf for 8, f(BID) « J vTi(s2)°2,  In comparison,
Pericchi (1981) introduced a slightly different prior n(B,0,0) = 1/6* while our diffuse prior is
7(B,0,0) = 1/o. The posterior pdf based on our diffuse prior pdf has a lower peak and a fatter right
tail compared to the posterior pdf based on the Box-Cox prior as shown in Figure 6.

In Figures 3-6, Bayesian parameter estimation was performed for a CD homogeneous function.
Extension of the Bayesian approach to apply to the nonlinear homogeneous functions such as CES and VES

has not as yet been done but results of Bayesian estimation for the CL homogeneous function are reported
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in Figures 7-10. When we chose the CL homogeneous function, Bayesian estimated peak points of
6 ano v moved slightly to the left side compared to the CD homogeneous function cases. Besides
this, there seems to be no apparent difference between the Figures 3-6 and 7-10, and that the choice
of homogeneous function has a minor effect on parameter estimation of the RTS functions.

In Table 6, we report the RTS values for Florida, New Jersey, and Michigan for the 20 models
we have chosen. These states are chosen because of their extreme and central output levels. When
the functional form of the homogeneous function is general, the choice of RTS function mattered
litle. For the CL homogeneous function, the RTS functions for NRCL, RGCL, BCCL, and CBCL
are mofc or less the same at all output levels. For the VES homogeneous function, we have results
similar to those associated with use of the CL homogeneous function. For the CD and CES
homogeneous functions, not enough flexibility is included in the homogeneous functions and different
choices of the RTS function produced different RTS values. In particular, the ZR RTS function
produced slightly smaller RTS values at all output levels. Since the RGCL and CBCL RTS functions
include ZRCL as a special case, and the RTS values of NRCL, RGCL, BCCL, and CBCL were more
or less similar at all output levels, we believe that the ZRCL form may lack some flexibility.

The RTS estimates for New Jorsey are quite similar across all forms ranging from 1.09 for the
NR-CD to 1.15 for the ZR-VES. Florida’s RTS varies from 1.40 in the ZR-VES to 1.71 in the NR-
CD. The asymptotic standard errors of the estimated RTS, shown in Table 6 are rather large ina
number of cases, probably a reflection of our small sample size. However, the point estimates of the
RTS for Florida range from 1.39 to 1.72, for New Jersey from 1.09 to 1.15 and for Michigan from

.814 to 1.02 indicating a general decline in RTS as output increases.
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To summarize the empirical results, the methods we introduced are quite operational. There
is evidence that RTS vary with output and AC functions are U-shaped, but it is hard to differentiate
among different models with our small sample. In Figures 3-6, we have provided exact finite sample
posterior densities which are quite non-normal, an indication that large sample, approximate, normal
results, Bayesian or non-Bayesian are probably inaccurate. From the small estimated values of the
A parameter in the CB RTS function, there is an indication that the NR, RG or ZR RTS functions may

be adequate. Also, the results seem to indicate that an elasticity of substitution different from one,

the CD case, is required. Finally, our estimated AC curves are L-shaped with a distinct minimum in

every case.

6. Application of Models and Methods: Elasticity of Substitution Function

In this section, we estimate the elasticity of substitution at various labor-capital ratios for the
20 models tabulated in Table 1. We have used a CD function for the models (4.1)-(4.5) and a CES
homogeneous function for (4.6)-(4.10). The estimated parameter values are reported in Table 3. For
the ZR-CES function, the point estimate of p is p = 0.650, with a 95% approximate confidence
interval, 0.370 to 0.930, indicates that we probably have a CES function not a CD function. The same
conclusion holds for the models listed in (4.7)-(4.10).

For the models (4.11)-(4.15), we introduced a VES homogeneous function rather than a CD
function, and estimated parameter values are reported in Table 4. Wé have p = 0.592 for ZR-VES
and p for other models with such large standard errors that it’s difficult to reach a conclusion with
respect to VES vs. Cobb-Douglas forms. The point estimates of by, b,, and b, look reasonable, but
again estimation is imprecise. For the models (4.16)-(4.20), with a CL homogeneous function rather

than a CD function, estimated parameter values are reported in Table 5. Again, the asymptotic
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standard errors are very large probably because of the small sample size. Unfortunately other
estimates in Tables 3 and 4 are subject to the same reservations. More data are needed to reach firmer
conclusions.

We now consider input substitution for the models listed m (4.1)-(4.20) in Table 1. The
elasticity of substitution functions are:

1) CD:o=1.

2) CES: o =1/(1+p).

3) VES: Revankar (1971) showed’ that:
o=1+(p- 1)( 1 +§f-) X-1+B%,
Since B is a constant either positive or negative and L/K is positive, ¢ will be below one or above one

depending on the sign of B.

4) CL:
_ dlog(L/K) _ dlog[tand]
dlog(felf)  dloglH(9)] -

where we define

tand = L/K and H(P) = filf, =

t [ >

with f = r*¥(é),

A=pcosd¥ -sinp¥’

B=psind¥ +cos¢p¥’

*Rewrite Revankar’s expression,

els

to match our notation of eq. (4.11) by defining b, = logy, b, = p(1-8p) and b, = udp, so
that 1 - dp =b,/(b, +b,).




where ¥/ = d¥/d$. Hence,

I .
cospsing dH/dd

_ A'B-AB’

A’ = -p(sind)¥ +p cos P’ -cos G’ - sinpP”
B’ = p(cos)¥ +psindP’ -sinp¥’ +cospP”

For the CL homogeneous functions listed in (4.16)-(4.20), using a logarithmic function, we have
log¥=by+b,b+ b,b?, ¥'=(b,+2b,)¥, and P =2b,¥ + (b, +2b,$) ¥

In Table 6, we report the elasticities of substitution for the states with extreme and mean
values of the labor-capital ratio, namely Michigan, Maine, and Kansas. When we use the CD

homogeneous function, the elasticities are one by definition. For the CES homogenous function, the

estimated elasticities ranged between 0.553 for NRCES to 0.606 for ZRCES. For the VES

homogeneous function, the elasticities should be either above or below one as indicated above.
Therefore the elasticities ranged between -0.151 to 0.844 for both NRVES and RGVES. In Table 4,
we noted that RGVES becomes identical to NRVES when 6 = 0. However, contrary to standard
economic theory, the substitution elasticity for Michigan is negative. This may be due to either the
small sample of observations or the homotheticity assumption that we made. For the CL
homogeneous function, the elasticities varied from -0.508 to 12.2 for CBCL.

In Figures 11-13, we show the estimated input substitution elasticities when we choose various

functional forms, combinations of the ZR, NR, and BC RTS functions and CD, CES, VES, and CL
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functions. We found that use of the CL homogeneous function produées large differences in the input
substitution elasticities, but the CD, CES, and VES forms have very limited variability. Also we note
that the choice of a RTS function appears to be not very important for estimation of the input

substitution parameter.

7. | Summary and Concluding Remarks

We have estimated returns to scale functions and average cost curves using the generalized
production function approach without assuming fixed scale elasticities or fixed substitution
elasticities. The functional forms can be either parametric forms or flexible semiparametric forms.
.For the parametric form approach, to generalize the returns to scale function, we introduced a Box-
Cox type function and derived Zellner and Revankar, Nérlove and Ringstad, and Ringstad’s returns
to scale functions as special cases of the Box-Cox type returns to scale function. To generalize the
homogeneous function, we introduced a polar coordinate representation, defined the substitution
elasticity as a function of an angular variable, and derived Cobb-Douglas, CES, and variable elasticity
of substitution functions. For a flexible functional form approach, we introduced a sequence of
polynomials for the reciprocal of the returns to scale function and also for the angular part of the
homogeneous function. We called mﬁe polynomial expansion of the homogeneous function a
Clemhout type function and showed how to impose convexity on the isoquants with respect to the
origin. We recognize that various model selection procedures can be embloycd to help choose among
alternative models and/or combine them.

Extension to many input generalized production functions is planned in future work. The
choice of a returns to scale function does not cause any additional complications but imposition of

the concavity restriction on the isoquants of the homogeneous function will be difficult. We have
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introduced a polar coordinate representation to separate a homogeneous function into a radial part and

an angular part, and explained that the determinant of Hessian matrix of a homogeneous function of

“degree one is zero and thus the burden of imposing the concavity restriction is lessened in this
formulation. We expect that the decrease in dimension of the homogeneous function will provide

some simple rules for imposing the concavity restriction in a many input homogeneous function.
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Fig. le Returns to Scale Functions® Fig. 2 Average Cost Functions
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¢ Functions estimated are listed in Table 1. Plotting symbols are —e+ . — for ZRCD, — -+ —— -+ — for
NRCD, for RGCD, — — —— for BCCD, and ------ for CBCD models. The RTS functions for RGCD ( ) and for

CBCD (------ ) are so closely located that they are hardly distinguishable. In Fig. 2, we use the same plotiing symbols for
the S models.




Fig. 3 Posterior Densities of theta for ZR-CD*
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osterior Distribution

Fig. 4 Posterior Density of gamma for NR-CD®

Fig. 5 Posterior Density of theta for ZR-CD
( inequality constrained pdf)

v

0.1

gamma

Fig. 6 Posterior Densities of theta in ZR-CD Based
on Box-Cox Prior and Diffuse MDIP¢
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® The exact posterior density is based on a diffuse maximal data information prior (MDIP).
® The functional forms for ZR-CD and NR-CD models are as follows. See section 4.1.

Zellner-Revankar's (ZR) RTS with CD  :  logy + 81y = bo + by log K + by log L + uy

Nerlove-Ringstad’s (NR) RTS with CD

logy + 71(logy)® = by + by log K + by log L + u,
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® The exact posterior density is based on a diffuse maximal data information prior (MDIP).
® The functional forms for ZR-CL and NR-CL models are as follows.. See section 4.1.

Zellner-Revankar’s (ZR) RTS with CL
Nerlove-Ringstad’s (NR) RTS with CL

logy + 61y = bo + by log IC + balog L +u;
logy + 71(logy)? = bo + by log K + by log L + u3

¢ See Section 5 for explicit forms for the Box-Cox and maximal data information prior (MDIP).

(4.1)
(4.2)




Fig. 11 Sub. Elas. with ZR RYS ¢ Fig. 12 Sub. Elas. with NR RTS Fig. 13 Sub. Elas. with BC RTS
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