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Abstract

Bioprospecting has been touted as a source of finance for biodiversity conserva
tion. Recent

work has suggested that the bioprospecting value of the "marginal unit" of gene
tic resources

is likely to be vanishingly small, creating essentially no conservation incent
ive. This result

is shown to flow specifically from a stylized description of the research proce
ss as one of

brute-force testing, unaided by an organizing scientific framework. Scientific mo
dels channel

research effort towards leads for which the expected productivity of discover
ies is highest.

Leads of unusual promise then command information rents, associated wit
h their role in

reducing the costs of search. When genetic materials are abundant, infor
mation rents are

virtually unaffected by increases in the profitability of product discovery,
 and decline as

technology improvements lower search costs. Numerical simulation results suggest that,

under plausible conditions, the bioprospecting value of certain genetic 
resources could be

large enough to support market-based conservation of biodiversity.
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Biodiversity prospecting, the search for valuable compounds from wild organisms, has

been touted as a potential source of finance for biodiversity conservation. An open question

is whether, or under what conditions, revenues from bioprospecting could be large enough

to offset the opportunity costs that host institutions may have to incur in order to preserve

genetic resources. A recent paper by Simpson, Sedjo and Reid (1996) (SSR) argues that the

returns to holding genetic resource assets are unlikely to be large enough to create significant

conservation incentives. The claim is based on a model of the research process in which firms

sample without replacement from a large set of research leads, incurring a fixed cost per draw.

Two features of the process are key. The first is uncertainty: it is unknown, prior to testing,

whether a given lead is good or bad, whether it will or will not generate a discovery. The

second essential feature concerns the potential for redundancy amongst the leads. A lead that

enables an innovation may not do so uniquely, just as caffeine can be found both in coffee and

in tea. Assuming that a given discovery can be made only once, multiple copies of a "potential

discovery" are, in this sense, superfluous. The authors pose the question: supposing that

each lead carries a fixed probability of yielding a breakthrough, how much would a private

firm be willing to pay to prevent the collection of leads from becoming slightly smaller? In

other words, what is the value of the marginal research opportunity, in this R&D process?

Formal analysis confirms what intuition suggests: if the original collection is sufficiently

large, then one additional lead is likely either to be infertile (if the per-test probability of

success is very low) or redundant (if the success probability is sufficiently high). Given that

the number of species in the world is very large indeed, the expected research return to the

"marginal species" is likely to be vanishingly small. It will, then, exert no genuine incentive

towards conservation, in the context of a market for genetic resources. Extensions to cases
It

in which discoveries vary in quality, or in which success rates covary according to an average

degree of genetic distance (Polasky and Solow 1995), generate somewhat higher values, but

do not alter the substance of this conclusion.

The result is intriguing. We argue in this paper, however, that it flows specifically from

a .stylized description of the research process as one of brute-force testing, unaided by an

organizing scientific framework. Given the progress of biological and ecological science, the
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realism of this assumption is suspect. While exceptions can be noted, it is a powerfully
general rule that no one ever searches for anything by examining large collections of objects
in random order. The essence of efficient search is the identification of clues that allow
the universe of potential leads to be narrowed down. Expensive tests are then conducted,
ideally, only on that handful of prospects that show special promise. In research targeting the
development of innovations, the clues that identify these prospects are provided by scientific
models—maps of the world that highlight areas where the productivity of research effort is
likely to be highest. The ability of models to point out rich veins of ore explains exactly
why applied researchers acquaint themselves with basic theory. It is substantially from this
ability that the human capital of an applied research scientist derives its value. Brute-force
search—the sequential testing of large numbers of leads in no particular order—is by contrast
a nearly cost-maximizing approach to discovery. It is deployed, if at all, only as a back-stop
technology, when all possibilities for directed search have been exhausted.

Theory, in other words, partitions collections of potential research projects into cate-
gories of greater and lesser expected quality. A useful model thereby converts leads from
commodities into differentiated products. The market for research opportunities shifts from
a purely competitive to a monopolistically competitive structure. This change has profound
implications for the valuation of leads and, therefore, for the incentives surrounding their
production or conservation. In particular, leads of unusual promise can be shown to com-
mand information rents associated with their role in reducing search costs. A private firm
will be willing to pay a premium for access to a bin of promising leads in order to avoid the
cost of picking through the mass of low-quality prospects, even if the latter are available at
bargain prices.

The point is clarified by pursuing the metaphor of applied research as an extractive
industry. Imagine that technologies are mined from a landscape marbled, unevenly, with
patentable discoveries. Innovations could, in principle, be uncovered by digging without
pattern or purpose, just as oil could be sought by sinking wells at randomly-chosen sites.
Provided the domain of exploration is large enough, undistinguished areas will not, for this
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purpose, he a scarce resource: one site is about as good as any other.

3

In practice, of course, the right to drill for oil can command large rents. These rents

depend partly on the price of oil, and are partly a function of the prior information available

about the stake. If oil has been found nearby, or if the geological structures are promising,

then this intelligence raises prospectors' willingness to pay. Indeed, if the market for extrac-

tion services is competitive, then the rent accruing to the high-quality site should reflect,

approximately, the amount of search and processing costs a firm avoids by focusing there,

rather than on an inferior "average" site.

When genetic materials are viewed as candidate sources for new products, this image can

be applied to bioprospecting. In this endeavor, leads of unusual promise are distinguished.

with the aid of scientific information gleaned from fields such as ecology and taxonomy,

Researchers can, and do, draw on rich bases of publicly-available data describing the location

and properties of plants, animals and microbes, their evolutionary history, their survival and

reproductive strategies. These data, when filtered through a model that makes sense of them,

can serve to tag those creatures most likely to display economically valuable characteristics.

Just as a catalog helps a library patron to focus quickly on those few volumes that are most

likely to contain information she desires, so can an ecological model parse the living world

into categories suggesting potential use.

Through product differentiation, scientific understanding generates information rents: if

a particular lead, is believed to show promise as an aid to a lucrative research discovery, a

rational investigator will be willing to pay an access fee. This principle is fundamental to

understanding how genetic resources will be, or should be, valued in the market place: In

particular, it is central to an analysis that identifies conditions under which bioprospecting

creates effective market-based financial incentives for biodiversity conservation. Rents accrue

to the owners of leads as they absorb part of the knowledge spillovers generated by publicly

available science.

To structure this theme formally, we present a model of applied research in which leads
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are differentiated by their expected quality, and then tested sequentially. A complete char-

acterization is developed of the relationship between the costs and benefits of research, the

degree of product differentiation, and the value of options on research leads. The value of a

lead is shown to be driven almost entirely by its probability, relative to alternative options,

of generating success, and by the costs of search. Surprisingly, the value is largely insensitive

to the size of the payoff from a successful discovery. This payoff does, of course, affect the

overall value of the search project to the researcher. However, so long as the jackpot is large

enough to make the project a viable undertaking, additional increases have almost no effect

on the rents accruing to research leads. Furthermore, a technology shock that lowers search

costs actually decreases these values: since the amount of a lead's rent reflects what it con-

tributes, in expectation, to reducing the costs of research, a drop in the price of brute-force

testing shrinks the benefits of guidance.

Four sections comprise the balance of the paper. Section 1 examines evidence on the

pivotal question of whether bioprospecting benefits from scientific prior information. The

biological literature and the behavior of industry actors are shown to support the claim that

bioprospecting takes generous advantage of a significant base of useful scientific guidance.

Section 2 presents the model, analyzing the effect of product differentiation on the 'value

of research leads. Section 3 addresses the empirical question of whether information rents

associated with genetic resources might be large enough to play a significant role as a source

of finance for biodiversity conservation. Numerical results indicate that, under plausible

assumptions concerning the demand for discoveries and costs of testing in the pharmaceutical

industry, high-quality leads could command rents large enough to tilt land use decisions

toward conservation. A concluding section addresses the implications of the argument for the

design of intellectual property rights and other institutions governing the market in genetic

materials. Mathematical proofs, and an analysis of the model's robustness, ,are presented as

appendices.
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1 Availability of Prior Information for Bioprospecting:

Evidence From Biology and Economic Behavior

A market in genetic resources will only appear if the expected benefits of conservation exceed

the opportunity costs of holding these assets. While costs can be measured more-or-less

directly (as a function of forgone logging profits and the like), benefits must be estimated

using indirect methods. Theoretical approaches to valuing natural intellectual capital have

been investigated by Brown and Goldstein (1984) and Heal (1995). The R&D option value of

biodiversity has also been addressed at the microeconomic level of single species by Weisbrod

(1964), and Arrow and Fisher (1974). Nonetheless, few empirical estimates have appeared

in the formal economics literature.

Studies that find low values for genetic resources in situ share in common an assumption

that the materials are, in their role as inputs to the innovation process, essentially fungible.

Every "unit" of biodiversity is viewed as making an equal marginal contribution to the

success of the bioprospecting enterprise; one species is about as good as any other. We claim

that this assumption matters. Do bioprospectors actually treat different types of genetic

materials as perfect substitutes for one another? This factual issue is most appropriately

resolved by specialists in biology and in related technology industries.

In the published writings of these specialists, the economic utility of organisms appears

as a topic of lively discussion, attracting contributions from ecologists, systematicists, evolu-

tionary biologists, and ethnobotanists. Their findings occupy several journals, including such

titles as Economic Botany, Journal of Ethnopharmacology, and Journal of Natural Products.

One active line of inquiry concerns how the evolutionary histories and survival strategies of

species relate to the kinds of useful compounds they may produce. Plants, for example, ap-

pear in general to be more chemically creative than animals. Unable to respond to predatory

attacks by fleeing, plants have instead developed a wide array of complex chemical means

of defense. These strategies are especially well-developed in deserts, rainforests and coral

reefs—zones of "biological warfare" where biotic and environmental stresses are particularly
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acute (Myers 1997). Such observations can be valuable: a fern that prospers in a region

richly populated with insects may have evolved pest-control solutions that would impress

the research staff at an agrochemicals firm. Other useful environmental indicators can be

quite taxonomically specific. Frogs, lacking a hard defensive shell, make themselves unappe-

tizing by secreting toxins prolifically. Abbot Laboratories reportedly has a project underway

to synthesize a painkiller based on a toxin from the threatened Ecuadorian poison dart frog

(Sawhill 1998). In another case, an anti-coagulant approved for human trials was developed

after screening venom from only seventy species of snakes (Pollack 1992). Natural-products

researchers are moving to organize known ecological and taxonomic indicators of utility into

comprehensive models, in order to provide systematic guidance to the drug discovery pro-

cess (Dreyfuss and Chapela 1994). Pursuing this approach, Novartis Pharmaceuticals is

reportedly spending several million dollars in the attempt to identify observable factors that

correlate with biochemical "creativity" of micro-organism, i.e. their fertility as sources of

molecules that could form the basis for new drugs (Moeller 1996).

Clues based on general biological observations and formal models can be supplemented

by indications gleaned from the historic record of product discovery. Many natural-products

scientists hold that classes of organisms which have proven useful in the past are relatively

likely to provide similar compounds for related uses (Phillips and Meilleur 1998). The rosy

periwinkle, a flowering plant native to East Africa, has already produced two anti-cancer

drugs, vincristine and vinblastine (Reid, Laird, Meyer, Gamez, Sittenfeld, Janzen, Gollin

and Jurna 1993). The Himalayan yew tree is now the primary source of another anti-cancer

drug, taxol, that was originally sourced from its North American cousin, the Pacific yew.

Indeed, some firms base their entire product discovery programs on leveraging the experience

of traditional healers concerning the therapeutic properties of plants used in herbal medicine.

Such historical clues need not be based only on tax-onomic similarity. Certain geographic

regions have particular prominence as sources of valuable research leads, functioning as

ecological Silicon Valleys. Traditionally cultivated varieties of domesticated crop plants and

their wild relatives, which are especially important sources of agronomically useful genes,

are for example not distributed uniformly on the globe. Instead, they are concentrated in
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relatively compact "centers of diversity," usually mountainous areas where species adapt

locally to a fragmented set of agroclimatic conditions (Chrispeels and Sadava 1994).

The suggestion that bioprospecting is a targeted, rather than haphazard, activity is

confirmed by the behavior of industry actors. If every organism was in fact an equally

promising source of any given compound, then we might expect to see search projects spread

more-or-less evenly across the globe. The industry's interest in the hot springs at Yellowstone

National Park provides a singular counter-example. The US National Park Service now

grants about twenty-five permits annually for the right to collect biological samples from

this ecosystem (Pennisi 1998), which is distinctive both for its link to PCR, and as home

to the most genetically diverse community of bacteria known to science (Pace 1997). This

degree of localized interest is apparently inconsistent with an hypothesis that natural product

potential follows a geographically uniform distribution (Polasky and Solow 1995).

If the hypothesis were nonetheless to be entertained, any observed clustering would have

to be explained by differentials in the cost of collecting and evaluating samples from different

regions. The location of collection site would be explained largely by variables such as

distance to the firms' R&D labs, ease of access, and so on. In addition, we would expect the

market for samples to be almost purely competitive, with all rents accruing to the innovating

firms. These outcome do not appear to obtain in practice. Bioprospecting firms have shown a

durable willingness to mount expensive collection efforts in remote but ecologically distinctive

locations, including underseas. To gain admittance to these areas, they are now commonly

compelled to spend a great many staff hours negotiating access contracts with host-country

governments and their agents. Under these agreements, firms routinely forfeit shares in the

profits arising from their product discovery efforts. The firms, one presumes, believe they are

getting something in return for these resources. Their behavior cannot readily be explained

by a model that assigns equal promise to every species and region.
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2 A M..e1 for Valuin esearch

In sum, the claim that bioprospecting is always conducted in brute-force fashion in an
impoverished informational context does not appear to withstand close scrutiny. It remains
to be shown whether this simplification is benign, or leads to a fundamental misspecification
of the value of genetic resources in their role as research options.

The theory of valuing search options seems to have received little attention in the eco-
nomics literature, particularly in the context of technology development. Search theories
developed within economics (Lippman and McCall, eds 1979) and elsewhere (Stone 1975 De-
Groot 1970) have focused on the identification of optimal selection and stopping rules
(Weitzman 1979), and on how these rules are affected by changes in various parameters (the
probability distributions of rewards, agents' appetites for risk, time preferences, Bayesian
updating, etc.). Further, much of this work is based on an assumption that per-trial rewards
are identically distributed, or that the number of search opportunities is unlimited (Kohn
and Shavell 1974). Interactions between the size of the search space and the degree of quality
differentiation amongst search opportunities have apparently not been investigated.

To address the question, we analyze a simple model of the applied research process.
Research opportunities appear as lottery tickets, each characterized by a price (the cost of
testing), a probability of winning, and a jackpot that is paid in the case of a lucky draw.
The investigator rank tickets by quality, then draws them one at a time until she either wins
the prize, Or exhausts her supply. The focus is on the investigator's willingness to pay for an
additional ticket of a given quality. Formally, the model generalizes that of SSR by allowing
success probabilities to differ across leads. The model also echoes the representation by
Evenson and Kislev (1976) of applied research as an act _of repeated sampling from a known

distribution, the parameters of which can be changed through basic research.
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2.1 The Model

An investigator conducts a search for a compound that will make possible the development

of a new product. Research is conducted by testing "leads." There are a large number N of

leads available, each of which embodies some potential to yield a discovery. Data are available

that describe leads in several dimensions: to each lead n = 1, N, there is associated a

vector xn E X, where X is a space of characteristics. The investigator filters these data

through a model, represented• by a function P: X --+ (0, 1), to estimate the probability that

a test of a lead with a given set of characteristics will generate an enabling discovery. Both

the theory and the data are available freely, as public goods. (The investigator's cost of using

these resources to formulate her beliefs are considered to be small, relative to the costs of

testing leads and the potential benefits of a discovery.) The collection of leads is then treated

as a set of N Bernoulli trials, in which the rith lead carries probability pn = P(x) of yielding

a success, or "hit." Without loss of generality, leads are labeled in order of decreasing hit

probability, so that pi > > pN. The hit probabilities of different leads are assumed to be

statistically independent. It is not assumed that the collection of leads contains exactly one

discovery; it is also possible that the discovery is present in multiple copies, or not at all.

The investigator tests leads sequentially, at a cost c per test, where c is a positive constant.

When a test is successful, a payoff R is realized. It is assumed that a discovery need be

made only once; multiple hits are redundant. The sole behavioral assumption is that the

investigator selects the order in which she tests leads so as to maximize the expected payoff

to the project.

Given our assumptions about the incentives facing the bioprospecting firm, its behavior

is characterized by the following result, a simple application in the theory of search.

Proposition 1 An optimal search program involves testing, at each stage, a lead with max-

imal hit probability amongst those not yet examined. Search terminates either when a hit

is reached, or when no leads remain for which testing promises a non-negative return in
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expectation.
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In other words, optimal search involves checking the most promising leads first—an intuitive

and well-known result (Weitzman 1979).

Proof: all proofs are included in an Appendix.

In light of the result, the probability ordering (pi, p2, ...,pN) determines the sequence in

which leads are examined.' The stopping rule implies that leads for which 73, < c/R are

never tested under any'conditions, and have no effect on search behavior or payoffs. Without

violence to our results, therefore, we assume in what follows that pn > c/R for all n.2

Given optimizing behavior, a value function can be derived that gives the expected payoff

of the search at each stage, conditional on results at previous stages. Let Vn denote the ex

post expected value of continuing the search, after n-1 leads have been tested unsuccessfully.

Applying Bellman's Principle of Optimality, this continuation value is characterized by the

recursive relationship

, n = 1, N (1)

where 17N+1 -a-- 0. The equation can be interpreted as follows. With probability pn, the nth

test is successful, a payoff R is realized, and search terminates; with probability 1 — pn, the

test is a failure, and search proceeds to the n + 1st lead. The "consolation prize" in case of

failure is the opportunity to continue the search with the n + ist lead, the value of which is,

by definition, 1'n+1. In either event, a cost c is incurred for the test. Solving, the expected

payoff to the search at its outset is given by

= Ea,. (pn (2)
n=1

'More exactly, the probability ordering determines the search queue up to a permutation of leads with
equal hit probabilities. Such permutations have no effect on lead values, or on aggregate returns to research
(Corollary 3).

2Alternatively, the stopping rule can be interpreted as defining endogenously the effective number of
available leads. If N denotes the total number of potential leads, then N < N can be defined as the largest
integer such that pN > cl R.
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where a„
7

.

/ -1

(1 - Pi) is the probability that the search is carried to the nth stage, i.e.7=1

the probability of failure in each of the first n 1 tests; and p„R c is the expected return

to a test of the nth lead. Here, anp„ is the probability that search terminates with a success

at the nth lead. If we treat the event "the project fails" as an N + 1 lead, then the vector

< •••, aNPN, aN+1 > forms a probability distribution over the set {1, ..., N, N + 1}, with

associated payoffs < R c, R — 2c, ..., R — Nc, — Nc >. Specifically, this is a truncated

nonhomogeneous geometric distribution, where Erii aipi = 1 — an+1 gives the cumulative

probability distribution. This relation can be used to express Vi as a difference between

expected benefits and costs:

= anpnR anc = (1 — aNAR Tc
n=1 n=1

The first term denotes the ex ante expected benefit of the project: the probability 1 — aN+1

of a successful conclusion, times the payoff R in case a hit is scored. The second term denotes

the ex ante expected cost, expressed as the expected number T = E an of trials carried out,
times the per-trial cost c.

(3)

Using equation (2), an expression can be derived for the expected incremental contribu-

tion of the nth lead to the overall value of the search. Define 1/1„ as the expected value of

the search process, for the case in which the nth lead is skipped:

n-1

= E ai (PiR c) + an, Vn+i (4)

The incremental value of the nth lead, denoted vi,, is defined as the difference between these

two terms:

Vn 171 = an{p7,(R — Vn+i) (15)

The value vn can be viewed as the maximum a firm will be willing to pay at the start of

a search project for a call option on the nth lead. The option insures that the lead will be

available if it should be needed, i.e. if all tests of more promising leads end in failure. The

formula is interpreted as follows: With probability an, the first n 1 tests are unsuccessful

and search proceeds to lead n, which is tested at cost c. With probability pn, this test is

successful, a reward R is realized, and search terminates. The effective payoff in this case
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is. however, net of the continuation value V,±1 that would have applied if the search had
instead been forced to skip the nth lead. That is, since multiple discoveries are redundant,
a success at the nth stage destroys the value associated with the opportunity to continue
searching.

Because a portfolio of leads may contain multiple copies of a given potential discovery,
the expected value of the project does not equal the sum of the values of the leads. Indeed,
E Vn E anpn Vn+1 ; the sum of lead values equals the expected value of the project,
less the expected "redundancy cost" that a discovery at one lead imposes on the others. The
latter term is analogous to the social welfare cost associated with redundant R&D programs
In patent races.

2.2 The Value of Research Leads: Scarcity Rents and Information
ents

If a lead might merely duplicate another one in the portfolio, how does it add value to a
research project? For leads that are unusually promising, early, high-probability options
contribute more than the others to the chance of an eventually successful outcome for the
project. As repeated failures push investigators to pick through lower-grade "ore," it becomes
increasingly unlikely that a hit will ever be scored. More importantly, the opportunity to
focus initial research effort on the high quality leads increases the chance that a discovery
will be made early in the process. In case of an early discovery, the costs of continued search
are avoided. If high quality leads are removed from the menu of search options, the shift to
low-quality sources implies an increase in the expected number of trials-to-discovery.

Intuition behind the argument can be strengthened by examining equation (3). Deleting
a lead from the search queue raises aN+1, the probability that the project ends in an ex-
pensive failure. In addition, removal of a high-quality lead can increase the expected length
(hence, cost) of the search, an effect represented by an increase in T. Both effects are more
pronounced for leads early in the search queue. This holds because these leads, if available,
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are more likely to be tested. Removal of leads toward the back of the queue has an effect on

search payoffs only in cases in which all early tests end in failure.

in sum, when search procedures are optimized to incorporate useful prior information,

high-probability leads command information rents associated with their unusual contribution

to the chance of success, and to the avoidance of search costs. These infOrmation rents apply

in addition to any scarcity rents resulting from a limit on the total number of leads. This

distinction between scarcity and information rents is formalized in the following proposition,

which characterizes completely the relationship between the costs and potential benefits of

search, the quality of available information, and the value of differentiated search opportu-

nities. Here, a lead Ti is referred to as marginal if its hit probability is equal to that of the

lowest-quality viable alternatire, i.e. if pn = pN = min{pilpiR c 0,i = 1, ..., N}.

Proposition 2 Let {pn} ibe the sequence of hit probabilities on a collection of leads, in-

dexed in order of decreasing probability. Let the incremental value vn of the nth lead be

defined as in (5) above. Then vn can be decomposed into components vn = f)n vN, where

vn
aN

1 — pn

-N
(n PN) R +[13 

i=n+ 1 1 — Pn 
(Pn Pi )1 c

ai
(6)

and where vN --= aN (pArR — c) is the value of a marginal lead. We refer to these components,

respectively, as the information rent and the scarcity rent of lead n.

A lead's scarcity rent can be interpreted as the expected amount it would contribute to

the value of the project if it were undistinguished from the mass of other leads and was,
it

therefore, a perfect substitute for any other marginal lead, ex ante. Scarcity rents can be

positive if the project is constrained by a technical bound on the number of feasible research

opportunities—that is, if N is finite, and if marginal leads carry a positive expected return

(pNR c> 0), so that random screening is, in expectation, profitable.

The information rent captures the degree to which a distinguishing prior increases a

lead's expected incremental value. The expression for f)n. can be interpreted with the aid
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of a thought experiment. Suppose that a researcher who is seeking a treatment for muscle

spasms learns that people of a particular location, when thus afflicted, boil the roots of a

certain plant to make a tea that is locally renowned for its soothing powers. Although she

had planned to visit the area eventually to conduct random screening of samples, she had

previously thought it unpromising for her purpose, assigning it the lowest probability, pN.

On hearing the news, she raises her expectation that the region will provide what she seeks,

increasing her prior to A, > pN. She also rearranges her search queue so that the area now

occupies the prominent nth position on her itinerary, where n < N. What effect does the

change in her prior entail for her expected return to the research project?

There are two effects. First, there is an increase in the expected probability that she will

find what she seeks before exhausting all her leads. The amount of the consequent rise in

expected benefits is represented by the first term in the expression for f),.„ the probability

aN/1 —ion that no other lead contains the discovery, times the increase in the expected benefit

of testing this remaining lead. Second, if this nth test is successful, then she will have avoided

the cost of visiting at least some of the leads that now occupy positions n +1, N —1. The

second term in the expression for represents the drop in her expected costs of search.

As the discussion makes clear, the magnitude of the information rent associated with a

given lead depends not only (or even, primarily) on the lead's own hit probability, but also

on how this value compares with those of other leads. This is because a lead's hit probability

determines not only the chance of a successful test, but also its position in the search queue

and, therefore, the probability that it will ever be tested at all.

2.3 Resource Abund nce,
source VaRue

ese rch Costs and Payoi''s9 and

Under what conditions are information rents large enough to carry significant weight in

land use and conservation decisions? In particular, can genetic resources have significant

value, in their role as bioprospecting search opportunities, even when genetic materials are
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abundant? The characterization of information and scarcity rents allows several general

results to be proved that bear on these questions. It is shown that when research payoffs

are large, and resources are abundant, conservation incentives are driven almost entirely by

the magnitude of search costs and the quality of available information. They depend only

weakly on the potential returns to the research project. In these cases, the size of the payoff

will be important for a firm undertaking the research, but will have little effect on that firm's

willingness to pay for access to resources. It has, therefore, little bearing on conservation

decisions.

Inspection of the formulae in Proposition 2 shows that scarcity and information rents

have non-negative values (vN > 0, and /6, > 0 for all n), and that marginal leads command

zero information rents. More importantly, it confirms the claim advanced earlier that leads

of unusual promise have strictly greater value than do their less promising neighbors.

Corollary 3 For all m,n = 1, ..., N, if pn = pm, then vn = vm, and if pn > pm, then

vn > vm. Hence the sequence {v,} is monotone decreasing. In particular, information rents

are everywhere zero if and only if all priors are equal.

The intuition is straightforward: since a lead's incremental value is defined as the difference

in expected returns with the lead and without it, the removal of any two leads with equal

probability will yield the same effect on project returns.

The comparative static effects on lead values of changes in the parameters describing

search benefits and costs can also be examined. To facilitate the discussion, let Bni,

(pn — PN) R, the first, "benefit-increasing" term in equation (6). Note that the payoff

R from a success enters into the expression for vn only through vN and Bn and that both

these terms are linear in aN, the probability of reaching the last lead in the search queue.

Since pn > R for all n, aN is bounded above by (1 — c/R)N-1, which becomes small as N

grows large. Hence, the size of project rewards has only a limited effect on lead values, a

claim formalized in the following result.
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Corollary 4 The effect on lead values of a change in research payoffs R is given by Dv/3R

aN+1 (T2=0 . Hence, avnlaR is strictly positive, and is independent of R and c. For

pr, < 112, it is bounded above by aN+1, the probability of project failure.

Interpreting the expression for avnlaR, an increase in project rewards raises a lead's value

only in proportion to the probability that the lead contains the discovery uniquely (i.e. in

proportion to pn, the probability of success at lead n, times aiv+1/1-73„, the probability that

tests at all other leads would result in failure). In particular, when the expected probability

of an eventual discovery is high (aN+1 0), lead values are largely insensitive to changes

in the project payoffs. This result may seem counter-intuitive; one might expect that large

increases in potential project rewards would generate substantial increases in the value of

a chance to realize those rewards. To understand the result, it is important to distinguish

sharply between the project's overall value 171, and the incremental contribution to that value

of any one lead. By equation (3), the overall value of the project increases linearly with R.

The share of this surplus accruing to the leads is affected, however, by the potential presence

of duplicate discoveries in the portfolio. In an extreme case, the space of viable options

may be sufficiently large that eventual discovery becomes virtually certain. In this case, the

firm assurance of realizing the discovery is unaffected by the loss of any single lead. If the

project's payoff increases (e.g., if demand for a target drug rises), the associated increase

in surplus accrues to the firm's research capacity, not to the leads. The precise value of a

lucrative discovery has, then, little bearing on incentives to conserve the resource.

N-1
Note, however, that the "cost-reducing" term E (pn — pi) c in (6) remains positive

i=n+1

even if there are many viable leads. Indeed, this term is increasing in N: as the haystack

grows, information on the whereabouts of the needle becomes increasingly valuable. This

observation is fundamental to the relationship between search costs and lead values.

Corollary 5 The effect on lead values of a change in search costs c is given by avnlac =
N-1

E - pi) - aN. This rate of change is independent of research costs c and payoffs

R. Furthermore, an increase in search costs makes the nth lead more valuable if and only
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if pn > 1/71,, where T =E ai/a„ is the expected number of trials conducted after n
1=n

failures.
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Roughly speaking, the condition in the last sentence applies whenever a lead is "much better"

than those in a large pool of alternatives. It suggests a second surprising result. Intuitively,

we might expect that the value of a search opportunity to decrease with any rise in the unit

cost of search effort. Such a change, after all, decreases the expected return to any trial.

However, for the relatively promising leads, there is a second, counter-veiling effect. As shown

in Proposition 2, a large fraction of the value of these leads is associated with their potential

help in avoiding the costs of resorting to low-quality alternative sources. Conversely, as unit

search costs decline, the value of this "competitive advantage" is eroded: brute-force search

becomes an increasingly viable alternative to directed search. Hence, an improvement in

search technology increases (weakly) the value of the lowest-quality leads, but can reduce

the value of high-quality leads.3

As viable search opportunities become increasingly abundant, these counter-intuitive

features of the value function become dominant. To show this, consider the case in which

there are a relatively small number of leads known to be specially promising, and a larger

number that share an "average background" probability of making a discovery at a lead

sampled at random from a large pool of potential sources. Concretely, let M << N be given,

and suppose that pm = pm+1 = = pN = p, where p is a constant such that pR— c > 0; and

suppose that pn' > p for all n = 1, ..., — 1. We refer to leads 1,..., M— 1 as "promising,"

while leads M,...,N are called "marginal," as above. The following proposition characterizes

the value of genetic materials as marginal leads become abundant, i.e. as N grows witlhout

bound.

3Some readers have questioned whether combinatorial chemistry, the massively parallel engineering of
drug candidates, constitutes a brute-force approach to discovery that renders bioprospecting obsolete. In
practice, combinatorial chemistry rarely involves a truly random search through the set of all possible
molecules; the set of configurations is simply too vast. Instead, the approach usually starts from a com-
pound that has shown some activity against a target disease, and looks for variations that generate superior
responses. Rather than supplanting bioprospecting, the technique's ability to refine the activity of naturally
produced compounds arguably complements the latter's potential role in the production of pharmaceutical
discoveries.
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Proposition 6 Let leads 1, ..., Al —1 be promising, and leads Al, N be marginal, as defined
above. Then for n= 1, ..., ill —1, the incremental value vn has a strictly positive lower bound,
given by the relation

[Al -1

Vn > 
ai
 pn (Pn +  am Pn —

i=n+1 1 — pn

Further, this relation becomes an equality in the limit as N goes to infinity.

Accordingly, a lead that is worth testing at all and is more promising than at least some
of its "competitors" commands a rent that is. strictly positive and bounded away from zero.
Note that the bound does not depend on the degree of resource abundance N. Nor does it
depend on the potential reward R, beyond a threshold level of project viability. The bound
can be interpreted as the ex ante reduction in search costs associated with the opportunity
to test the nth lead before moving on to the pool of less promising sources, a pool that
includes an infinite number of leads with hit probability p. Thus it depends only on search
costs and prior information. (Again,we assume away the trivial case in which one or more
leads contain the discovery with certainty.) The final claim of the proposition, concerning
the limiting behavior as N goes to infinity, implies striking results about the value of genetic
resources under conditions of abundance.

Corollary 7 Let leads 1, ..., M — 1 be promising, and leads M, N be marginal, as defined
above. Suppose that the payoff from a successful discovery is large enough to make ran-
dom sampling of marginal leads profitable in expectation (R > clp). Then as leads become
abundant (in the limit as N co), the following hold:

1. Marginal leads have zero value.

2. An increase in the potential profitability of product discovery has no effect on the

incremental value of any lead.

3. A technology improvement that lowers search costs induces a drop in the incremental
value of every promising lead.
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If search opportunities are in effectively unlimited supply, scarcity rents are negligible. In

this case, the value of a lead is, to a very good approximation, entirely a function of the

quality of information associated with it. The composite good (material plus information)

enhances the profitability of the project not so much by creating success, as by aiding the

avoidance of failure.

2.4 The Effects of Basic Scientific Research

Improvements in ecological, taxonomic, and ethnobotanical knowledge can change researchers'

beliefs about lead values. The next two proposition clarify the magnitude of this effect. In

particular, it is shown that lead values respond to changes in scientific information in a con-

tinuous manner. The avoidance of search costs provides, therefore, a robust criterion for the

valuation of research leads.

Proposition 8 The value of a lead is a piecewise linear, continuous, increasing, and weakly

convex function of its own hit probability. Furthermore, on the interval Pn-i > Pn > Pn+i,

the elasticity of vn with respect to pn is given by

a Vn Pn anC
• - = ±a pn vn vn

Interpreting the elasticity formula, the twin effects of value-enhancement and cost-reduction

are identified. A pair of analogous results characterizes the effect of changes in hit probabil-

ities for other leads.

Proposition 9 The value of a lead is a piecewise linear, decreasing function of the hit

probability of every other lead. For in n, vn is continuous in pm except where An = pn.

Furthermore, the following hold:

N Form = 1,...,n-1, on the intervals pm-i > Pm > Pm+1 the elasticity of vn with

respect to pm is given by
Vn pm Pm

=

a pm vn 1 pm



Valuing Bioprospecting Leads 20

(ii) For m = n + 1, N, on the interval prn_ i > Pm > pm+i, the elasticity of v„ with

respect to prr, is given by

a Vn Pin Pin  [
1 +a pm (an Pn

in

i=n+1

Ia,  c

P71) Vn 

The form of the equation in point (i) reflects the fact that, conditioned on the superiority

of lead m over lead n, a further increase in pm reduces the chance that lead n will ever be

tested. (Interestingly, this effect depends only on the magnitude of pm, and not on the

position of m in the list 1,..., n — 1.) For m > n, an increase in pm reduces the perceived

probability that, if the Tith lead provides a success, then it would have done so uniquely. It

also reduces the expected cost savings associated with the opportunity to test the 72th lead

before the mth.

The claims in Propositions 8 and 9 are conditioned on constraints in the ordering of the

search queue. It turns out that the qualitative results do not depend on this restriction. The

effect of improved scientific information on the value of research leads can be summarized in

a simple form.

Corollary 10 An increase in the hit probability of a lead induces a more-than-proportionate

increase in the value of that lead, and a decrease in the value of every other lead.

This corollary implies in turn that the bound described in Proposition 6 applies to all prob-

ability orderings (and not just in the special case for which hit probabilities are constant for

all but a few superior sites).

Corollary 11 Let {pn)I define a probability ordering for the bioprospecting problem, and

let p be a constant with 1 > p > pN Let M = M(p) =

n ...,

by

min{mipm < p}. Then for

1, the incremental value vn of lead n has a atrictly positive lower bound given

M-1

Vn >

i=n+1

ai am Pn P
 Wn + 
Pn 1 Pn P

C.
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Further, in the limit as N -4 00, the conclusions of Corollary 7 hold.

21

The inequality provides a bound on value that depends only on the first few elements
pi, p2 pAf_ i of the probability ordering, and on the search cost parameter c. In particular,

it does not depend on knowledge of the entire probability ordering, nor on the exact size

of the payoff R from a successful discovery. Apparently, this formula shows promise as the
basis for empirical valuation studies.

3 A Numerical Illustration

Could bioprospecting information rents be large enough, in practice, to affect land use deci-
sions? Uncertainties about relevant parameter values preclude definitive empirical estimation
of these value. Insight on this qualitative question can be gained, however, by revisiting
SSR's numerical calculations on the value of genetic resources as inputs to drug-discovery.
The exercise has two purposes. First, it demonstrates how the framework of Section 2 could
be used, in the context of suitable scientific information, as the basis for assigning economic
value to genetic resources. Second, it offers support for the claim that, under a range of
plausible parameter choices, such information could generate rents large enough to create
significant conservation incentives.

A set of N leads is partitioned into K classes of varying quality. For n = 1, ..., N, let k(n)
denote the index of the class containing lead n. Let ek be a measure of the quality of leads in
the kth class, for k = 1,..., K. Hit rates are proportional to lead quality: pn = p- • ek(n), where
75 is constant. Given financial parameters c and R, and assuming an optimal program of

search, the contribution vn of the nth lead to a single search project is given by equation (5).
A number projects are carried out per year, and future costs and benefits are discounted

using a constant interest rate r. The net present bioprospecting value of the nth lead is then

given by
00

E A(1 + rrtVn — Avn
t=o

(7)
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To compute these values numerically, decisions must be made about how the domain of

search should be characterized, how it should be parsed into individual "leads," and how

the quality of leads should be measured. These questions are the subject of extensive debate

in the natural-products literature. A thorough airing of the issues involved would go well

beyond the scope of this paper. We proceed by considering a particular case, addressing

briefly the possible sensitivity of our conclusions to these choices.

Following SSR, the search domain corresponds to a group of eighteen ecologically distinc-

tive ecosystems listed in Table 1, described in Myers (1988) and Myers (1990) as "biodiversity

hot spots." Single leads correspond to land parcels of a uniform area (1000 ha, or 10 km2),

where an investigator can collect biological samples. The quality of a parcel (or "site") as

a potential source of new drugs is proxied by the degree of endemism amongst higher plant

species. Specifically, for ecosystems k = 1, ..., 18, the quality index ek is defined as the den-

sity of endemic higher .plant species in that ecosystem, measured as the average number of

species per hectare.'

Other parameters on the drug discovery process are based those developed by SSR, who

draw on data from DiMasi, Hansen, Grabowski and Lasagna (1991) and Office of Technology

Assessment (1993). The probability that a test of a site in ecosystem k will yield a discovery

is /5 • ek, where p =1.2 x 10-5. The probability that a project will terminate unsuccessfully,

exhausting the available leads without yielding a discovery, is n1(1 
ek)Nk = 63%.

Here, Nk denotes the number of sites in ecosystem k (Table 1). To achieve a realistic yield of

ten new natural-source drugs per year therefore requires that projects be launched at a rate

of A = 26 per year. Each successful discovery generates a return of R = $450,000,000. Firms

discount future costs and benefits at r .10% per year. In the baseline case, costs are set at c

= $485 per test, at which level the formula (7) assigns negligible value to marginal sites in the

least promising ecosystem. (Alternative values of the cost parameter were also examined.)

Calculations of marginal bioprospecting values per hectare in each of the eighteen ecosystems

4A species is "endemic" to a region if it is found nowhere else. It must be emphasized that endemism is
not necessarily a realistic way to measure the quality of an area for drug-discovery purposes. Endemism is
used here, rather, as a stand-in for more sophisticated indicators.

s'c
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are presented in Table 1 and in Figure 1. The corresponding values generated in the SSR.
study are presented to facilitate comparison.°

Figure 1 shows the relationship between ecosystem size, hit rates, and value. Information
rents can be several orders of magnitude larger than scarcity rents, and can be substantial
even when scarcity rents are negligible. The values associated with the highest-quality
sites—on the order of $9,000/hectare in our simulation—can be large enough to motivate
conservation activities. Sensitivity analysis shows that these qualitative results are robust
with respect to the selected parameter values. In particular, a ten-fold increase in the cost per
test raises the net present value of the highest quality sites to approximately $1.1,000/hectare.

The computations reported in Table I are not designed to give rigorous empirical esti-
mates of bioprospecting values for the geographic areas described. The derivation of such
estimates will depend on the development of scientific and ethnobotanical bases for assigning
priors to search opportunities (better P functions and data sources), over a range of potential
natural products. In particular, we do not make the empirical claim that density of endemic
species is a good indicator of chemical creativity or site quality. The intended take-home
message is that whatever basis is used to differentiate leads by quality, those leads that are
marked as having distinctive promise will carry distinctive value, under plausible conditions
of market demand. There is no reason to believe a priori that the bioprospecting values of
all areas are so small as to play no role in land management decisions.

4 Summary and Conclusions

A sequential-search model of biodiversity prospecting has been analyzed. When search
procedures are optimized to take advantage of useful prior information, high-probability
leads command information rents associated with their contribution to the chance of success

'In SSR, tests are carried out on individual species. Values per unit area are derived from a (constant)value per species using a widely-accepted log-linear species-area relationship. This step is not necessary inour approach because the site itself is taken as the unit of testing. Hence, values per unit area are calculateddirectly.
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and, more importantly, to the avoidance of search costs. These rents apply in addition to any
scarcity rents arising from a bound on the total number of leads available for testing. The
magnitude of information rents depends on the degree to which ecological and taxonomic
knowledge turns leads into "differentiated products," creating a monopolistically competitive
market in research opportunities. Rents for high-quality leads can be significant even when
the aggregate supply of genetic materials is large. When biological resources are abundant,
an increase in the potential profitability of product discovery has virtually no effect on the
value of any lead, while technology improvements that lower search costs induce (weakly) a
decline in the value of every lead.. Numerical results suggest that bioprospecting information
rents could, in some cases, be large enough to finance meaningful biodiversity conservation.
These conclusions stand in opposition to those advanced in an earlier analysis by Simpson
et al. (1996), which argued that biodiversity prospecting holds out no hope as a meaningful
source of finance for biodiversity conservation. That result, it was shown, holds only in the
degenerate case in which no prior information is available to sort leads into categories of
differentiated quality.

Given the amount of attention that has been attached to this policy question, it is im-
portant to be clear about why the two studies draw such divergent implications. Nothing in
the present analysis alters the conclusion on truly "marginal" species. Species that exhibit
insignificant commercial promise in every known application will generate de minimus finan-
cial incentives for conservation. However, the observation that there exist species that will
not be conserved through a market-based scheme does not imply that all species will be sim-
ilarly condemned. The pivotal issue concerns whether every species—more generally, every
unit of biodiversity—can be considered equally "marginal." This is an empirical question
that cannot be resolved through a priori theorizing. Yet neither the biological literature nor
the behavior of industry actors lends clear support to the contention that natural products
prospecting proceeds on the basis of randomized search.

Viewed as inputs to the innovation process, genetic materials have the potential to become
genuine resources in the context of a suiii ciently rich set of complementary knowledge assets.
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The effective functioning of a market in genetic resources depends on these knowledge assets
just as much as, if not more than, it relies on a sound system of intellectual property rights
and a robust capital market. This suggests that attempts to estimate the value of genetic
resources should focus attention on how researchers form and update their beliefs. It also
suggests that the institutions regulating bioprospecting, including systems of intellectual
property rights, should reward the provision of helpful prior information, as well as the
conservation of the base biological material.

The analysis has examined the marginal social value of research options. A significant
question for further work concerns how firms' willingness to pay for research leads would
be affected by competition in the race to patent biologically-based innovations. As we have
seen, willingness to pay may be depressed by the potential for duplicative discovery—a given
lead may not be unique as the source of an innovation. As a firm considers how much to
bid, it must attend to the associated "redundancy cost" that the new lead imposes on the
firm's existing portfolio of research options. The firm does not, however, internalize costs
imposed on competitors. As the number of firms competing in a given patent race grows
large, redundancy costs become less important; the market price of genetic resources should
rise. Moreover, if firms bid against one another in the market to acquire research options, a
counter-veiling effect emerges: each firm has an incentive to acquire options defensively, to
keep them from the hands of competitors. When R&D firms compete both in the market
for leads, and in the race to patent commercial discoveries, they will be willing to pay a
premium for exclusive access to research options.

A Mathematical Appendix

Proof of Proposition 1: The proof of the first sentence, which relies on the independenceof the Bernoulli trials, involves a straightforward confirmation that no alternative searchsequence can improve payoffs in expectation; see Weitzman (1979). Given that multiplediscoveries are strictly redundant, the stopping rule is obvious. I

Proof of Proposition 2: Repeated application of the recursive relationship (1) yields
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the closed-form expression

Vn+1 =

(a, 
(AR

i=n+1 

)

an+i 
= 

aipi

i=n+1 n+1a

 l a,  1

-i=n+1 au+1
c.

Substituting this into (5) gives

[Vn = anPn 1—
i=n+

r

an±i

aip,  1
n + an [Pn

i=n+1 an+1

—

Since a,+1 = a1(1. — pi), the identity ad), = a — a2±1 can be applied to simplify the first
expression in brackets:

where

Now,

and

Hence

aN+1

vn

N (ai ai+1)
[an 1 E  

i=n+1 an+i
= an [1 (an+i — aN-1-1) = aN-1-1

an+i — Pn

Hi=1 (1 — p,), the probability of project failure. Rewriting (8) yields
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Since the last term disappears, the proposition is shown. I

(9)

Proof of Coronary 3: Let m and n be given. Without loss of generality, assume n < m.

Consider first the case pn = PmE p. By Proposition 2, vn vm =(13 — 702) c. But by— p
i=n+1
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Proposition 1, p = p and pm = p implies pi = p for all intermediate i = m+1, m+2, ..., n-1.Hence the first claim is shown. For the case pn > pm, Proposition 1 implies n < 711. Hence

'Urn = (Pn PN Pm — PN 
R +Pn Pm i=n+1

N-1 (

ai Pn Pz Pm Ii
\

C.
i=m+.1 1 Pn — Pin

rn ai
(7)11 — pi) c

Pn

Since Pn > pm implies i_lpn >  , all three terms in the expression on the right hand sideare positive, and the second claim is proven. The last two sentences are then immediatefrom Proposition 1 and the definition of information rents. •

Proof of Corollary 4: Immediate from (9). •

Proof of Corollary 5: Immediate from (9). •

Proof of Proposition 6: It suffices to show that vn is decreasing, as a function of N,and converges to the specified lower bound in the limit as N goes to infinity. To prove thefirst claim, use (9) to express vn, as a function of N:

aN+1 IN Iai v(N) = 
1 — pn

pnR E  Pn — an C.
i=n+1 1 — Pn

(10)

Since aN+1 = (1 — .7*IN, we have

v(N) vn(N +1) = la N+ 131 pn(pR c) >

by the assumption pR c> 0. Hence vn (N) is decreasing in N. To prove the convergenceclaim, use the relation a2+1 = (1 — p)ai for i> Al to rewrite the formula in Proposition 2:

v(N) = vN (N) + f)n (N)

= am(1 p)N-m(pR c) + am(1 p)N-m (Pn P) R
1 — pn

N-1E
z=n+1 1 —
 (pn —pi) + E am(1 0:-N1 (Pn —P c

i=m 1 — P31
i-'n

N-1As N oo, (1 — p)N-Al 0, and E (1 — p)i-m -4 1
/ 
SO

P i=i1/

m-i
lim v(N) = IE
N-400

i=n+1

ai am  Pn   (Pn Pi) ± C.Pn 1 — Pn P
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Since convergence is monotonic, the expression on the right forms a lower bound for all terms

in the sequence. The bound is strictly positive for n < M. and zero for n >

Proof of Corollary 7: Claim (i) restates equation (11) for the case n = M, ...,N.

Claims (ii) and (iii) follow since limN, v(N) does not depend on R and is increasing in

C.

Proof of Proposition 8: To carry out the proof, we expand notation to allow for

variability in the ordering of the search queue. Let I = [c/ R, 1) be the interval of hit

probabilities on which leads are viable. Then each point p E IN corresponds to an assignment

of hit probabilities to an unordered collection of N viable leads. Let pi be variable, and let

p_ i =< p2,733, ,pN > be a fixed vector of the other hit probabilities. Without loss of

generality, label leads so that p2 > > pN. Now let Z be the set of all N! permutations

of the set {1, 2, ... N}. Let a rule s : I x Z for ranking the N leads into a search

queue be defined as follows: for leads with index n = 2, ... N, let the position sn(pi p-i)

be given by

sn(pi I P-1) =
n — 1 if pi < pn;
n if pi > Pn•

By exhaustion, this expression determines the position si (pi I 73_) of the lead with index 1.

Thus leads.are examined in the order 2, 3, 4, ... ,s1, 1, s1 + 1, , N. In particular, if si >

the lead with index si occupies the si 1St position in the queue, immediately preceding the

lead with index 1. Since, for n > 1, si > sr, if and only if Pi < Ai, this queuing rule satisfies

the optimality condition of Proposition 1.

Now let un (pi) vsn(p, )9_ 1) denote the incremental value of the lead with index n,

viewed as a function of pi. By Corollary 3, this value depends only on the magnitudes of

the components of p: any other queuing rule si(p) that satisfies the optimality condition of

Proposition 1 (i.e. any involving a permutation of equi-probable leads) will yield the same

incremental values. Hence un, is well-defined, for all n.

We can now prove the proposition. Rewriting (10) in terms of the new notation, the

value of the lead with index 1 can be expressed as a function of its own hit probability:

N i si

ui (pi ) = (1 — Pi) MR E (1 — pi) plc — H(1 - pi) c. (12)
i=2 i=si j=2 i=2

y inspection, ui is linear in pi on all intervals for which si is constant. Hehce, ui is

continuous on intervals of the form pr, > pi > pn+i for n = 2, ... ,N — 1, and on the interval

PN > Pi > c/R. In addition, since si > sn whenever p = pn, si is constant on intervals

Pi E [Pn — El pn} for E su ciently small. Hence u1 is continuous from the left at the finitely

many "switching points" at which pi = pn, for some n > 1. To prove continuity from the

n P1right, suppose that Pn—k > Pn—k+1 = • ° • = Pn > Then Si (P1 = p I -) = n, and for

positive E < Pn—k pn, S1(P1 = pn e I 73_1) = n k. Applying equation (12) yields

N

Ui(Pn E) Ul(Pn) = (1 Pi) E 11(1— pi) ez E
i=2 i=n—k j=2 i=n—k j=2

— Pi) Prac
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[71 n-k

+ (1 - Pi) - ( 1 - P )
i=2 i=2

Since Prz-k+1 = Pn-k+2 = = pn, the third and fourth terms cancel:
[

n-1 
n-k k-1E (1 pi) pnc H (1 - pi) E pn)i pnci=n-k j=2 i=2 j=0

z 

n-k

=

C.

i=2

[n-k

=
i=2 i=2

C.
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Hence ui(pn + 6) 2/1(19n) as E 0, and so u1 is continuous for all Pi E I. Equation(12) also implies that, on any open interval of arguments pi for which si is constant, 'al isdifferentiable, with

si) 
dpi

N i
= 1-1 ( 1 — pi) R + E(1— pi) c. . (13)i=2 i=81 j=2

Since the expression on the right is positive, u1 is increasing on each such open subinterval.Continuity then implies that u1 is increasing on the entire interval I. Further, since dui/dpiis monotone decreasing in si, and si is monotone decreasing in pi, u1 is weakly convex onI. Finally, (13) implies that

N i-1s1) 
Pi = (1 — pi) piR E H (1 — pi) pic = u1 + a„c

.1=2 i=s i j=2

siwhere, following our established conventions, a31 =ll (1 — pi) denotes the probability that
i=2the lead with index I. is tested. II

Proof of Proposition 9: Let n E {2,3, , NI be the index for a given lead. We usethe notation developed for the proof of Proposition 8 to derive a formula for un(p1), thevalue of the lead with index n, expressed as a function of pi. For arguments pi > pn (so thatsn = n> s1), this value is given by

N i n-1
Un(P11/31 > Pn) = (1 — Pi) PnR + H (1 — Ropnc H(1 — pi) c, 414)2=1 i=n .i=1 i=1j$71

SO Van is linear, and hence continuous, in Pi on the interval 1 > Pi > pn. Further, sinceun(PlIP1>Pn) = the elasticity relation claimed in point (i) is shown. For pi < pn (so
dpi 1—PI

that sn = n 1 < Si), the value is given by

s i Ar
Un(P1 im Pn) = (1 Pi) PnR

1=1 i=n j=2 
i=S1 j=1i*n j$n jOn

n-1

— — pi) c.

1 E II (1 —p3) + E IT (1 — /33) Pnc

i=2
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This function is linear, hence continuous, in pi on subintervals for which s1 is constant. On
each such subinterval, we have that

dun(pils > sr,)

dpi

1

1— Pi

1

1— Pi

N i

— Pi) P„R + E H ( 1 - pi) pnc
i=1 1=81 j=1

-1$n jAn

n-1 Si i

Un H ( 1 - pi) c E H ( 1 - pi) pnc
i=2 i=n j=2

jOn

(15)

which expresses the elasticity relation of claim (ii) in the new notation. That un is continuous
at points pi = pm, for pm < pn, follows from an argument analogous to the one used in the
proof of Proposition 8.

A similar argument shows that lim.,,oun(pn + E) < un(Pn), so un is discontinuous at

Pi = pn. To complete the proof, it must be shown that un is decreasing in pi. Equation (14)
implies that un is decreasing in pi on the interval 1 > /31 > pn. For Pi < pn, equation (15)
implies that un is decreasing on subintervals of [c/ R,pn] on which si is constant. But since
un is continuous on [cl R, N], this implies that un is decreasing on any interval not containing

pn. Finally, at the point of discontinuity pi = pn, we have lim,o un(Pn + E) < un(pn). Thus
un is decreasing for all Pi E I.0

Proof of Corollary 10: We showed in Proposition 8 that the elasticity of a lead's value
u1 with respect to its own hit probability p1 is greater than unity on subintervals of / for
which the search ordering is constant. The first claim of the• corollary then follows from
the fact that u1 is continuous, increasing and convex in pi. The second claim, that un is
decreasing in pi for n> 1, was proven in Proposition 9. •

Proof of Corollary 11: Consider a second probability ordering ipinInN_1 such that
pii for n < M, and p'n = p for n > Al. Let viz be the value of lead n with respect to

this ordering. Then for n < M,

n > — 

M-1

v 

1 

ai 
+

i=n+1 — Pn
kPn pi)  

Pn P

am Pn P

by Proposition 6, and vn = vni by Proposition 9. To prove the limit results, note that

tPn > c/ for all n implies aN < (1 cl Hence aN —÷ 0 as N -4 00. Then by
Proposition 2 and the above inequality, limN„.,„,, v(N) does not depend on  is increasing
in c for n < M(p), and is zero for n = N.

Mode -lobustness

, The model incorporates several salient features of bioprospecting, as well as applied generic

research: total costs increase with project duration, innovations are nonrival goods, and
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scientific knowledge gives direction to the effort overall. Nonetheless, parsimony requiresthat some considerations be treated in reduced form or swept aside. It is important toconsider whether the implications of the analysis are likely to be robust with respect topotential generalizations.

The model treated success probabilities for different leads as statistically independent.If hit rates are instead correlated, then the investigator can update her search itinerarybased on information revealed in the light of sequential test outcomes. The value of agiven lead then depends both on its own fertility as a potential source of a discovery andon what a test of it reveals about the likelihood of discoveries elsewhere. Since searchhalts after the first success, a test only affects the course of the itinerary when it results infailure. Knowing this, the investigator can map her entire itinerary in advance, using anappropriate backwards-induction procedure to determine the optimal sequencing of leads.She can then calculate ex ante the probability a, that her search will ever visit the 72th lead,and the value vn of a call option on the lead, using formulae identical to those derived here.The only change involves replacing the unconditioned probability parameters {73X1._.1 withcorresponding conditional probabilities. The central message—that leads have value insofaras they improve the productivity of search effort—would be unchanged, if not strengthened.
Research costs c and payoffs R were treated as constant across projects, and known inadvance. In practice, bioprospecting projects often involve multi-stage testing, in which sam-ples that show promise in an initial screening are subjected to more rigorous and expensivefollow-on investigation. Samples can thus differ with respect to their ultimate cost of testing.In this case, however, the researcher will not know ex ante which samples will require ad-ditional expense. For the purpose of modeling the researcher's incentives we can, therefore,treat c as a constant expected cost per test, and hit rate pn as the ex ante probability thatthe nth sample will clear all the stage-hurdles associated with research and development,leading ultimately to the marketing of a new product.

Likewise, the payoff R may be uncertain at the outset of a product-development pro-cess. The payoff ultimately realized will depend on the resolution of multiple contingenciesconcerning consumer demand, competition, etc. It is assumed, however, that the firm canformulate belief's about its payoffs over a rich set of contingencies and calculate R as anexpected value. If the firm is risk-neutral, its approach to the project will be the same ineither case, and the use of the reduced-form expression is justified. More generally, R can beviewed as the certainty equivalent of the payoff distribution under the objective function ofa risk-averse firm. If R varies across different projects (e.g. if a cure for cancer is worth morethan a cure for the common cold), conservation incentives can be calculated as the simplesum of the incremental values for each of the several projects.

The model incorporates no role for discounting during the life of an individual researchproject. Suppose instead that each test required some amount of time to carry out, and thatfuture costs and benefits were discounted at some (possibly variable) rate. In this setting, alead that enables rapid discovery is doubly beneficial: an early discovery not only reduces thedirect expense of testing, but also increases the present value of the payoff. Incorporating a
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role for in-project discounting would apparently strengthen the qualitative conclusions about
the importance of information rents.

In the numerical illustration, an individual "lead" corresponds to a parcel of land of a
certain size. Previous studies in the economics of bioprospecting have typically identified
leads with individual species. However, in pharmaceutical natural-products especially, the
objects tested are often complexes of micro-organisms, large and lumpy aggregates of living
material found in soil, leaf litter, and so on. The firm may not know, nor care about, the
identity of the species in a sample. The operative question is whether something in a biologi-
cal sample generates a chemical compound with desirable properties. From this perspective,
the individual species is merely an intermediate carrier of chemical creativity. Indeed, an
atomistic focus on species, in abstraction from ecological and environmental relationships,
can interfere with the discovery process. A plant may produce defensive chemicals, for ex-
ample, only in its stems or leaves, or only when under attack from insects. The identificationt
of leads with species presupposes an impoverished informational context. Several consider-
ations argue for a geographic definition of "leads." Data on species distributions and other
features of ecology and habitat are typically organized along geographic lines. More im-
portantly from the policy perspective, property rights, access agreements, and investment
decisions are generally location-specific.

Numerical results were based on the additional simplifying assumption that the hit rate
for a given lead is constant across different classes of research projects. In practice, this pat-
tern is unlikely to hold exactly: a mushroom that produces psychotropic chemicals may be of
no use against high blood pressure. If hit rates displayed no correlation across projects, then
a lead with high value in one application might have low value in others, and only modest
aggregate rent. To the extent that hit rates exhibit positive correlation across applications,
significant lead valuations become more likely. The degree to which organisms of potential
economic use are concentrated in certain biological taxa is an empirical issue that is far from
resolved. One of the few studies that attempts to address the question comprehensively
within a subset of US plant species (Phillips and Meilleur 1998) finds a substantial variance
across genera in the incidence of reported economic use, with certain taxa displaying uncom-
mon fertility as product sources. As noted i the text, certain environments (Yellowstone
hot springs, centers of crop diversity, areas rich in chemically creative microbes) appear to be
durably promising as sources of innovations in lucrative product areas. A pattern of positive
correlation could also be strengthened through path-dependent learning: as investigators ex-
amine an organism for use in one application, they may learn things about its sit. bility in
others. While the correlation question merits further study, a reasonable null hypothesis at
this point is that some biological leads are systematically superior as sources of innovations,
and embody potentially significant comthercial value. -
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