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WELFARE ANALYSIS WITH DISCRETE CHOICE MODELS

1. INTRODUCTION

A major accomplishment in recent years has been the development of sta-

tistical models suitable for the analysis of discrete dependent variables.

This has enabled economists to study behavioral relationships involving purely

qualitative variables which are not amenable to conventional regression tech-

niques. In Amemiya's [1981] terminology, the multiresponse qualitative re-

sponse (MRQR) model involves a dependent variable taking N distinct values,

y = 1, 2, ..., or N, which is related to vectors of independent variables, .,

and parameters, • by some functions of the general form
Ll

1.0

Trj E Pr{y = j} = yyl, ..., WON) j = 1, ..., N.

Specific examples are the polychotomous probit model (Daganzo [1979]),

(1.2) Tri
W -W +c17.

• • •

W -141N8N+elf 1 1 n(ei,
• • • c •N' 0, Z) del, • • • ,

where n(.) is a multivariate normal density with zero mean and covariance ma-

trix fa, and the generalized logit (GEV) model (McFadden (1978, 1981)],

Ili , ITa' alTr e 4e
Gj • • • , e 

iv-N
) G(e

W113
1, • 0 • ,

W-8
e 

pr/s1)-1

de
N'

= 1, ..., N,

whereGisapositive,linearhomogeneousfunction,and.denotes its par-G

tial derivative with respect to the 10 argument.
2



These statistical statistical models have been used to analyze many types of economic

behavior. Aitchinson and Bennett [1970] and McFadden [1974] have offered a

theoretical derivation of these models which applies whenever the eve ts whose

probabilities are given by (1.1) represent the outcome of a decision by a

maximizing agent. Suppose an agent is choosing among N courses of action and

nj = Prilth act chosen}. Assume that the payoff or utility associated

with the ith. act, - is a random variable with mean W. Equivalently,uj, 
J

LI=14143.4-e.where e, is a random variable with zero mean. The agentJ' J
chooses that act which has the highest utility. This yields a wp. model of

the form (1.1):

(1.4) it. = PriW.a. e. > 
— 

w.a. e., all 0 E H. (w1 a ..., WA)j 3 l'

=1, ..., N.

Let fl(J) = (flii, n, -) where n. E C. e.. It fol-

lows from (1.4) that:

(Ls) njoyl, wolsd = Fo)(wiai wia1 0 o o

- 0 0 9 N,

whereF(j) is an (N - 1) dimensional joint cumulative distribution function

associated with the random vector 
ri(j)* 

As Daly and Zachary (1970) have

shown, the converse is also true. uy MRQR, model (1.1) in which the proba-

bility functions -(o) can be cast in the form of an (N - 1) dimensional

joint cumulative distribution function as in (1.5) is derivable fro a utility

maximization choice model such as (1.4). For this reason, a 14,

satisfying (1.5) is said to be a randov utility maximization (

t

111114el

LTA model.
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This link between statistical models for discrete dependent variables and

the economic concept of utility maximization is potentially very valuable

because it raises the possibility of applying the conventional apparatus of

welfare theory to empirical models of purely qualitative choice. Suppose the

statistical model satisfies (LS) and some subset of the variables in W.

represents attributes of the ith discrete choice. Can one derive from the

fitted model an estimate of the effect on the agent's welfare of a change in

these attributes analogous to the compensating and equivalent variation mea-

sures of conventional utility theory?

This issue was first raised in connection with RUM models of transporta-

tion mode choice by Domenich and McFadden [1975], Williams [1977], and Daly

and Zachary [1978] but, until recently, it has received relatively little

attention in other branches of applied economics. An exception is the papers

by McFadden [1981] and Small and Rosen [1982] which explore the relationship

between RUM models and conventional deterministic models of consumer be-

havior. However, both of these papers impose special restrictions on the

underlying random utility function which have the effect that the discrete

choice probabilities are independent of the consumer's income. Not only does

this limit the applicability of their analysis, but it also obscures some

important distinctions between alternative approaches to welfare measurement

in the random utility context that happen to vanish when there are no income

effects. When income effects are present, there are at least three distinct

ways to formulate measures of compensating variation for RUM models (and three

ways to formulate measures of equivalent variation) that can differ signifi-

Cantly in numerical value. In this paper I explain these different approaches

to welfare measurement and analyze the relationships among them. I also
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provide formulas for computing the welfare measures, together with some nu-

merical examples. Furthermore, I show that the same approaches to welfare

measurement carry over to RUM models involving mixed discrete/continuous

choices of the type analyzed by Dubin and McFadden [1984] and Hanemann [1984a].

The paper is organized as follows. Sections 2 and 3 focus on the most

common type of logit and probit models involving what I will call an addi-

tively random utility function and purely discrete, budget-constrained choices.

In section 2 I analyze the relationship between this type of RUNE model and the

more conventional, deterministic model of consumer choice. In section 3 I

explain the alternative approaches to measuring welfare changes in the random

utility setting and investigate the relationships among them. In section 4

this analysis is extended to other forms of RUM models including those with a

more general stochastic structure and those involving mixed discrete/continuous

choices. Section 5 deals with the practical problems of calculating the wel-

fare measures and analyzes their properties in the case of some simple price/

quality changes. The conclusions are summarized in section 6.

2. BUDGET-CONSTRAINED DISCRETE CHOICE

2.1. Deterministic Utility Models. The general setup of a purely dis-

crete choice model is as follows. An individual consumer has a quasi-concave,

increasing utility function defined over the commodities xl, xN, and z,

where z is taken as the numeraire. In addition, the individual's utility nay

depend on some other variables, ql, which he takes as exogenous;

these are, for example, quality attributes of the nonnumeraire goods.
3 

He

•

chooses (x, z) so as to maximize



(2.1) U = u(x xN, qi, z)

subject to a budget constraint,

(2.2) Epixi z = y,

and two other constraints which introduce an element of discreteness into his

choice. First, for logical or institutional reasons, the x's are mutually

exclusive in consumption,

(2.3) x.x. =0 all i

Secondly, the x3 's can only be purchased in fixed quantities,

(2.4) x. =5E. or 0 j = 1, ..., N.
.1

Anexamplemightbewherethe xj's are different brands of an indivisible

durable good, and the consumer needs only one of these brands. Since the

quantities of the xi's are limited by (2.4), the choice among them is a

qualitative choice. Moreover, although the numeraire is inherently a divis-

ible good, once one of the xj's has been selected the quantity of z is fixed

by the budget constraint (2.2).4 Thus, the model (2.1)-(2.4) represents a

purely discrete utility-maximizing choice.

To obtain the demand functions implied by this model, first suppose that

the individual has selected good j. His utility conditional on this decision,

denoted by uj, is

(2.5) uj = u(0, ..., 0, 0, 0, (11, ..., y piy

v.(ct y-N 3



urherexrisirmresi.ngj.n(y-p-x.),Iwj.11refertothe vj.N's as condi-
.) 

tional indirect utility functions. At this point it is common to make an ad-

ditional assumption about the utility function (2.1) that the consumer does

not care about the attributes of a good unless he actually consumes that good,

(2.6)
aux.

3 
= 0 => 1q. =0 j =1, ..., N.

This assumption was introduced by Maier [1974], who named it "weak complement-

arity." Given (2.6), the conditional indirect utility functions (2.5) take the

special form[5

(2.7) = y Piy j

The solution to the consumer's problem can be represented by a set of binary

valued indices, di, ..., (SN, where 6j E 1 if xj > 0 and aj E 0 if xj = 0.

These indices are related to the conditional indirect utility functions by

(2.8) ó.Cp, q, =
if vj(cij, y pjii) 2.vi(qi, y piTed all i

0 otherwise.

Accordingly, the unconditional ordinary demand functions associated with the

utility model (2.1)-(2.4) can be expressed as

(2.9) q, y) 6(p, q, yrie j 1, ..., N.xj(109
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Substitution of these demand functions into the direct utility function (2.1)

yields the unconditional indirect utility function,

(2.10) v(p, q, y) = max kycli, y vNNN, y -

This purely discrete choice model may be compared with the conventional

utility maximization model where (2.1) is maximized subject only to the budget

constraint (2.2) and a nonnegativity constraint on x and z that is assumed not

to be binding. The point to be emphasized is that all the constructs of con-

ventional, continuous choice models--the ordinary demand functions, the in-

direct utility function, and consumer's surplus--carry over to the dicrete

choice model. Duality relationships also carry over, including Roy'S Identity

(see Small and Rosen [19811) and the duality between expenditure minimization

and utility maximization (see below). The discrete choice model serves to

provide a theoretical underpinning for the statistical Nalqp. model. However,

in order to generate the statistical model, it is necessary to add a sto-

chastic element and introduce the notion of random utility.

2.2. Random Utility Models. A, random utility model arises when one as-

sumes that, although an individual's utility function is deterministic for

him, it contains some components which are unobservable to the econometric

investigator and are treated by the investigator as random variables. This

combines two notions which have a long history in economics--the idea of a

variation in tastes among individuals in a population and the idea of un-

observed variables in econometric models. These components of the utility

function will be denoted by the random vector e, and the utility function

will be written u = u(x, q, More specifically, throughout the



remainder of this section I assume that the random elements enter additively

as follows:6

(2.1')
Pftt

u(x, q, z, e) = u(x, q, z) 00- ZZ(x) e.,
J

wilterecOy-lifx->Oand c(xj-)-- 0 otherwise. For the individual consumer

, eN is a set of fixed constants (or functions); but for the investi-ej

gator, it is a set of random variables with some joint cumulative distribution

function, Fe(el, cu), which induces a distribution on u.'

In the budget-constrained random utility discrete choice model, the indi-

vidual is assumed to maximize (2.1') subject to the constraints (2.2)-(2.4).

In addition, I will assume that the nonstochastic component of (2.1') satis-

fies (2.0. This maximization yields a set of ordinary demand functions and

an indirect utility function which parallel those developed above except that

they now involve a random component from the point of view of the econometric

investigator. Suppose that the individual has selected good j. Conditional

on this decision, his utility is uj where, from (2.1'), (2.2), (2.3), (2.4),

and (2.0,

(2.7') y = 1, 000„ N,

the nonstochastic component being identical to (2.7). The discrete choice

indices,

PC,

(2.80) 6( q,
JL if vo(cio,y p.i.)+ co > v.(q. ,y piid+ ci all i

6. - .p, y, J JJ 3-11
J JO otherwise,
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are now random variables. Their mean, ffi, is given by

...
(2.11) Tri = Priv.(q., y - p:R.) + ej > vi(cli, y - all 0 piX-i) + e.

3 3 3 3 1
= 
F(3)3 

. [v.(q
' 
. y - p .5i.) - vi(cli, y - pl , i1) ..., vj(qj, y - pi,7))
3 3 3

- vN(qN, y - pl‘-liN)],

whereF(j) is the joint cumulative distribution function of the (N - 1) dif-
, ,

ferences.i = c. - ei. When v (.) can be cast in the form v = w.a. (2.11)ni 1 i 3 3'
constitutes a RUM as defined in (1.5). I refer to it as a budget-constrained

W3discretechoiceaMbecauseoftherestrictionsontheregressors.and co-

efficients implied by (2.7'), namely, that the variables y and pi enter in

the form (y pixj) and that v., is increasing in this term.8

The requirement that the arguments of F(j) in (2.11) take the form of

utility differences may be regarded as the analog of the integrability con-

ditions in conventional demand theory. It provides a criterion for deter-

mining whether a given statistical NKR. model is compatible with the economic

hypothesis of utility maximization. In addition, it offers a practical pro-

cedure for specifying a statistical model in empirical applications: First

postulate some parametric function for vi(cli, y pixj), j 1, N, and

then form the differences vj vl, vj - and substitute them into Fj.

Another analog with conventional demand theory is worth mentioning. Suppose

that the utility function (2.1') is replaced by some monotonic transformation,

u(x, q, z, e) = T[u(x, q, z) T' > 0. The discrete choices indices

(2.8') and, hence, the discrete choice probabilities (2.11) are invariant with

respect to this transformation since



(2012) v.(q. y ) e > v
J 9 ) x j nip v - -ci<=>  11 1

y pjTy ;j]

y pLi) A. ;Jo

Thus, when one estimates the WQR model (2.11), he recovers the underlying

utility function (2.1') only up to an arbitrary monotonic, increasing

transformation.9

The unconditional ordinary demand functions associated with the budget

constrained discrete choice RUM model are

(2.9') x...x3.(13,c1,y,0=6.(ps,c1,y,0)7.j..= 1, N,

andtheexpectedquantityclemandedisix.1= ff.Z. Substituting the demand
)

functions (2.9') into the discrete utility function (2.1') yields the uncondi-

tional indirect utility function

(2.10') u = v(p, q, y, e) E max [v10:11, 37 - + el,

vN(cIN' PN7cN) ENL

• • •

Recall that v(*) gives the utility attained by the individual maximizing con-

sumer when confronted with the choice set (p, q, y). This is a known number

for the consumer; but for the econometric investigator, it is a random vari-

able with a cumulative distribution function Fv(w) 
E!r {v(p, q y c) < w}

derived fron the ssumed distribution F( o)by a change of variables

(2.13) Fv(.1)) =Fc v19 0009 w vN).
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In section 3 I show how the unconditional utility function is used to measure

the welfare effects of a change in p or q. But first I identify a special

family of utility models in which this welfare analysis is considerably

simplified.

2.3. The Case of No Income Effects. Dual to the above utility maximiza-

tion is an expenditure minimization problem: minimize Epixi + z subject to

(2.1'), (2.3), and (2.4). This generates a set of compensated demand func-

tions and an expenditure function which, like the ordinary demand functions

and the indirect utility function, involve a random component from the econo-

metrician's viewpoint. Suppose that the individual has selected good j. As-

suming that his utility function satisfies the weak complementarity condition

(2.6), his expenditure conditional on this decision is ej = u ej) +

pixj, where g(e) is the inverse of vi(*) in (2.7'), i.e., til E t.

The unconditional compensated demand functions can be written as )(pp, q, u, e) =

d.(p, q, u; e) x., where

- 1 if g.(q., u e.) + < g.(q., u - e.) + all i
(2.14) 6.(p, q, u, e) = 3 3 33-11

O otherwise,

and the unconditional expenditure function is

(2.15) e = e(p, q, u, c) = min Ni(cti, u el) +

gN(qN, u EN) Pls.1)70'
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An important class of utility models, to which Small and Rosen [1982] and

McFadden [1981] have drawn attention, is that for which the unconditional or-

dinary and compensated demand functions coincide. In the pendix the follow-

ing result characterizing this class of utility models is proved:

PROPOSITION. The unconditional ordinary and conditional demand functions 

coincide iff the direct  utility function (2.1') is some monotonic transforma-

tion of 

(2.16a) U = h(x, q) yz 2Z(x) ej

for some function h(e) and positive constant Assuming that h(.) satis-

fies (2.6), the corresponding form of the conditional indirect utility func-

tion is 

(2.16b)
Ole aw•I

u = hi () + yy ypi +e

where _- ..., 0, q).y) 

In order to motivate the proof of this proposition, it is useful to in-

troduce an alternative method of representing the unconditional ordinary and

compensated demand functions. Consider the demand for the first good. Given

pN, q, y), one can write the ordinary demand function as a step

function

(2.17)

/-
. if pi .

x (p y e) =d

/ c otherwise,



where the the switch price, pi, is a function of (p2, pN, q, y, e). Suppose

that the actual price of the good is p7; accordingly, the utility attained

by the consumer is u° = v(p7, p2, pN, q, y, e). The compensated demand
-function evaluated at uo is also a step function

(2.18) x1(p'q, u° e) =

-**

if p1 ?- 131
otherwise,

* 0.•

where the switch price, p1 ' is a function of (p2' ..., pN, q, u, e). By

-oconstruction, x1(1)7, p2, pN, q, y, e) x1 (p1, p2, pN, q, u , e).

However, the entire graphs of the two demand functions coincide,

xl(pi, p2, pN, q, y, e) E xl(pi, p2, pN, q, u
o 

e), for all pl if

and only if pi = pl . In the appendix I show that this occurs nontrivially

only when the direct utility function takes the form in (2.16a). The asser-

tion about the conditional indirect utility functions (2.16b) follows directly

from (2.16a) by application of (2.5).

There is an important corollary to this proposition which enables one to

test whether an empirical MRQR model satisfies (2.16). Observe from (2.15a)

that the income variable drops out of the utility differences

(2.19) u. u = h(q) h1(q) - y(p:i. - p.Z) e. e..j

Since it is these utility differences that enter into the formula for the dis-

crete choice probabilities (2.11), it follows that the choice probabilities

are independent of the consumer's income when the utility function satisfies

(2.16)--there are no income effects.
10
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The utility function in (2.16a) satisfies the quasilinearity property that

one finds when there are no income effects in conventional, continuous choice

models--for example, see Katzner [1970, p. 93]. As will be shown in the next

section, it has the same implications for welfare analysis in discrete choice

RUN! models as in conventional, continuous choice models, namely, that the

compensating and equivalent variations concide and can be measured by areas

under ordinary demand functions.

3. COMPENSATION MEASURES

In this section I show how one can perform welfare evaluations with sta-

tistical MRQR models that satisfy the integrability condition (2.11) and,

hence, are derivable from the utility maximization model (2.1')-(2.4). Sup-

pose that the set of prices and qualities available to the individual changes

(po, og) tofrom , (11). Thus his utility changes from u° 
E 

v(p°,
 go, y,

--1 1to u a v(p
1 
, q, y, 2). By analogy with welfare analysis in conventional,

continuous choice models, this utility change could be measured in money units

by the quantity C which satisfies

(3.1) v(pl, ql, y C, e) v(p°, q°, y, -e)

or the quantity E which satisfies

(3.2) 1 -v(p1  q, y, e) = v(p°, q°, y E, e).

The problem in the R
1.9

context is thatCadEare random variables since they

depend on e. Although the compensation required to offset the price/quality

change is a fixed number for the individual consumer, for the econometric
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investigator it is a random variable since the individual's utility function

is known only up to a random component. How then to obtain a single number

representing the compensating or equivalent variation for the price/quality

change?

In fact, the existing literature contains hints of up to three different

approaches to welfare evaluation in the random utility context, but the con-

ceptual distinction between these approaches does not appear to have been re-

cognized. One approach is to derive the probability distribution of the quan-

tity C and calculate its mean, e E {C}. As shown below, this calculation is

sometimes difficult because of the complexity of the distribution of C. A sec-

ond approach is to employ the expectation of the individual's indirect utility

function, V(p, q, y) E{v(p, q, y, 0} and define the compensating variation

in terms of this function (Table I).
11 

The resulting welfare measure C
J.

satisfies

(3.3) 1/(pl, ql, y C.) = Igp°, q°, y).

The distinction between e and C. is subtle but important. e is the ob-

server's expectation of the maximum amount of money that the individual could

pay after the change and still be as well off as he was before it. By contrast,

C is the maximum amount of money that the individual could pay after the

change and still be as well off, in terms of the observer's expectation of his

utility, as he was before it. The third welfare measure is derived as fol-

lows. One might want to know the amount of money such that the individual is

just at the point of indifference between paying the money and securing the

change or paying nothing and foregoing the change. For the observer, this

could be taken as the quantity C* such that



TABLE 1

Formulas For V E {max [v
 '1' 

o.. E 11
1 1' " N N

le Generalized extreme value

—e
1

FE(Ci, CN) = exp -G e , p -EN
000) '1/40

1= in G e , e
vN
 0.57722

2. Independent logit

Fe(el, • 0 •

—C

EN) = exP -se

v.;
= in Ze if 0.57722

3. Probita

= E), = 13

a. Binary probit, N = 2

vi v2
V2 = (v1 - v2)(I) v22 (0  K2 K

2

/ 2 #„2K E all w22

1/2

ntinued on next page.



Table 1--continued.

b. Trichotomous probit, N= 3

V - v3 V2 
-

V3 7. (V - v3) (I)   + v3 +
K
3 K

3

2 2 2+ -K
3 - 033 S2 2S,3

1/2

v v2 2S
2,3 

E. 0' 
2 3 

+ a2 - a2 
1 2

(I)
13 23 K

2

S2 
= 2 ,2 2 ,2 , v226 

vi

- v2 + -22 4. v1 4-'11 - '2 - -22 - K
2

vl v2 2
(v1 v2) K2 4) - V2K

2

aci) and (I) are, respectively, the standard univariate normal probability density
function (p.d.f.) and cumulative distribution function (c.d.f.).



(3.4) {v(pi, ql, y e) v(po, go, y, . 0.5,

i.e., there is no more than a 50:50 chance that the individual would be will-

ing to pay C* for the change.

Although these three welfare measures are conceptually distinct, several

relationships can be established among them. First, it is simple to show

that, while e is the mean of the distribution of the true but random cam-
,'

pensation C, C* is the median of this distribution.12 Thus, if the distri-

bution were symmetric, e and C* would coincide. In practice, however, this

may not occur: the distribution of C may be highly skewed, and its mean, C+,

may be an order of magnitude different from its median, C*. Some

circumstances in which this can occur are described in section 5.

The second point is that, whereas e and C* are both invariant with

respect to a transformation of the utility function, the welfare measure C.

is not invariant. As noted earlier, the statistical MRQR model allows one to

recover the underlying utility function (2.1') only up to an arbitrary mono-
oa•

tone transformation. Consider the transformation u(x, q, z, e) E
Ps,

T[u(x, q, z, T' > 0, introduced in connection with (2.12), and let
Pfto

v(p, q, y, e) E q, y, c)]. Then

(3.5) v(pl, 1
ct - E, . v(p°, q°, y, ;) <=> 

;(p

1

, 0:11

. v(0, go13 , y, ;).

• y E, -e)

It follows that C and, therefore, both e and C* are unaffected by the utility

transformation. This is not true for 00 because, if one defines C° by

(3.6)
O.&

{v(pl„ 0:11, y C°, e)} -";.{v(q°, q°, y, ;)},
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• •in general C does not also satisfy (3.3). Thus, C# C. In effect, the wel-

fare measure C. implies a cardinal concept of utility.

This general result notwithstanding, there are some circumstances in which

• C is invariant with respect to a utility transformation. The most important

is when there are no income effects. In this case, from (2.16b) the uncondi-

tional indirect utility function takes the following form:

(3.7) v(p, q, y, c) = yy + max [111(q1) - + el, ..., h(q) - /pNxN +

yy s(p, q, ;).

Hence

(3.8) q, Y) = YY q, ;)} E YY S(P, q),

and, from (3.3)13

(3.9) C. 1 '-'
p 
1 
, J 

1- _ s(po, go)].LS( 

However, on substituting (3.7) into (3.1), one obtains

(3.10) -C = [s(p1 , q1, c) - s(p°, q°, c)/y.

It follows, therefore, that when there are no income effects14

(3.11) e E {̂C-} =

What about measures of equivalent variation? By working with (3.2) rather

than (3.1), one obtains three alternative measures of equivalent variation,

which I denote E+, E*, and E.15 These are related to one another in the same
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way as e, Cg, and C Moreover, it follows directly from (3.7) and (3.8) that,

when there are no income effects, E = C
co- 

E* = C*, and E = 
C0

'
In Iien there

are income effects, however, the corresponding equivalent and compensating

variations differ. The similarity with welfare analysis in conventional, con-

tinuous choice models is evident.

Another result that carried over from coventional, continuous choice mod-

els is the relationship beween compensation measures and areas under ordinary

demand curves when there are no income effects. To show this, I need to em-

ploy the following result about V(.), which applies regardless of whether or

not there are income effects16

(3.12)

0.10

8V 3Amax [v.
1 
+ el, vN + 901

j = 1, N.

Now suppose that there are no income effects and, for simplicity, that the only

change is in pl and ql, with p2,

In this case, using (3.12),

(3.13)

...2 pN and c12, ...2 qv remaining constant.

1 1 1 (1)1D, (102 y)]

C 

= 

[VIP 2 q p Y)

vl
1 f 1 aV dv7i 1Y V° 1

1

v
(3.14)

v _"
i(vi, .00,

ITN) dvioJ7. 

In particular, if only 1.01 changes, (3.14) becomes17



(3.15)

1

$
P1

1 o Til(P1)
131

1
r..{x (p, Y, 41.0 1

pl

Thus, when there are no income effects, the expected compensating variation

for a price change is given by the area under the expected ordinary demand

function.

It may be useful to relate the foregoing analysis to the papers by McFadden

[1981] and Small and Rosen [1982], which also deal with welfare evaluations in

RUM models. Both of these papers focus on the case where there are no income

effects and employ the welfare measure C
•
.
18

Thus they do not consider the

distinction between C. and the other two welfare measures introduced above.

McFadden derives the formula for C. in (3.13) from the utility function (2.16),

and in his Theorem 5.1 he proves the converse: if the formula for C. is given

by (3.13), the utility function is (2.16).19 Small and Rosen obtain the formula

for C. in (3.15) but with some additional assumptions. However, their analysis

appears to be defective: given the additively random utility specification, the

no-income-effects utility function (2.16) is both necessary and sufficient for

(3.15) to hold.2°
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Ii IZATION MODELS

efficients Models. In the discrete &mice model studied in

sections 2 and 3, the random element representing differences in tastes among

individuals and/or unobserved variables was introduced in a very specific way,

namely, additively as in (2.1'). In some circumstances, however, this may seem

unduly restrictive, and one may prefer to introduce the random element in a

different manner. For example, one may wish to specify the no-income-effects

utility model (2.16a, b) as

(4.1a) u(x, q, z, c) h(x, q) + yz Wxj) ej

(4.1b) u.= h(q) + yy yp:i. +

where y is now a random variable, uncorrelated with el, ...,C, with a mean

of y and a variance of a2 Equivalently, y = y + c
o 
, where = 0 and

var icoi = a2. An interpretation of this formulation could .be that consumers

vary in the weight they place on the numeraire good, z, relative to the x's,

in addition, because of (our) errors of measurement or observation in the at-

tributes of the discrete choices, consumers appear to vary in their preferences

for individual x's. I will refer to any RUM model such as (4.1) where the

random element enters nonadditively via the slope coefficients as a "random

coefficients" model. This type of model was introduced into the NRIQR litera-

ture by Hausman and Wise E1978].21

Much of the analysis in sections 2 and 3 carries over to random coeffi-

cients models. Given so e direct utility function u(x, q, z, e), the condi-

tional indirect utility functions are
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AP

(4.2) uj = u(0, ..., 0, 3-ei, 0, ..., 0, q, y - pjij, e) E y -p3, e).

The discrete choice indices are

~
, if vi(clj, y - e) > 

- (q,
. y - e) all i- 1

(4.3) 6 - = 6 *(P' Y, ='J 0 otherwise,

and the discrete choice probabilities are

(4.4) nj = Pr y -pij, e) >v (q, y -P1k, e) all

Similarly, the unconditional indirect utility function is

(4.5) v(p, q, y, e) = max [vi(cti, y p11, e), vN(qN, y - pw-EN, e)].

Using this function, the welfare measures e, C*, and C. or e, E*, and E. can

be constructed along the lines indicated above for the additively random

utility model.

However, depending on the precise form of the random coefficients specifi-

cation, some of the relationships among these welfare measures may no longer

hold. In particular, it is not necessarily true that e = C when there are

no income effects. In the case of the model (4.1), the discrete choice proba-

bilities are independent of the consumer's income since they take the form

(4.6) n. = Pr {h(q) +w. > h.(q.) w. all1

emir ONO

where w. E e. e 
0 
p
J
:i., j = 1, ..., N. But, from (4.1b),

3 3 



(4.7) v(p, q, y, e) CV eo) y

hence,

(4.8)

while

(4.9)

C+

II, ax [h1(q1)

E (17 co) y s(p, q, w);

Pd,

co

w) 

0 01Is (7)) -
I, 67 col

Thus, e C. Similarly, although the relationships in (3.13) and (3.14)

still apply to C., the relationship in (3.15) no longer holds.22 Neverthe-
• •

less, it still follows from (4.7) that C+ = e", C* = E* and C = E in the

random coefficients, no model.

4.2. Nonbudget-Constrained and Mixed Discrete/Continuous Choices. The

budget-constrained discrete choice RUM model implies that the conditional

indirect utility functions have the form given in (2.7') or (4.2). This

imposes substantive restrictions on the manner in which the price and income

variables enter the formula for the discrete choice probabilities. However,

the literature contains many e

cons

8,irical exties of logit or probit models of

er choices that violate these restrictions. For ex le, one finds MRQR

models based on conditional indirect utility functions of the form



(4.10)

or

(4.11)

41,1P

13. = h(q) 0.p. + y.y +
.3 JJ J J 3

= 1, N

= 1, N,

which are clearly inconsistent with (2.7') or (4.2). How can such models

occur?

One possible explanation is that the consumer is not actually making a

purely discrete choice but rather what might be called a "mixed discrete/

continuous" choice. In this case, the utility maximization is not constrained

by (2.4); instead, the x's can vary continuously, subject to a nonnegativity

constraint. However, there is an element of discreteness in the consumer's

choices which arises either because the x's are mutually exclusive--i.e., the

constraint (2.3) applies--or because the consumer's preferences force a corner

solution in which some of the xis are not consumed (in effect, the various x's

are perfect substitutes). Thus, the consumer faces both a discrete choice--

which of the x's to select--and a continuous choice—how much to consume if he

selects x.. The discrete choice may lead to a statistical NKR. model which

satisfies (1.5), but the structure of the conditional indirect utility func-

tions is now different; they no longer satisfy (2.7') or (4.2).

Since these models are described in detail in Hanemann [1984], my dis-

cussion here will be brief. They typically involve a random coefficients

specification of the utility function rather than the additive formulation

in (2.1'). Suppose the consumer has selected good j. Maximization of

u.(x 
q" 
. z e) E u(0, ..., 0, x3,. 0, ..., 0, z E) with respect to x43 
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(now freely vari ble) and z subject to a budget constraint, p4x, z y,
2 J

yields a conditional ordinary demand function, x.(p., y, e), and a condi-

tional indirect utility function, v.(p. 
' 9 

y, e). The latter is quasi-
J J J 

convex and decreasing in pi and increasing in y, but it does not have the

same structure as (4.2)the coefficient of pj is no longer equal to minus 

the coefficient of y. Allowing for this difference, the consumer's discrete

choice indices are defined as in (4.3), and the discrete choice probabilities

are defined as in (4.4). Instead of (2.9'), the unconditional ordinary demand

function for the ith good takes the form: x.(p, q, y, e) 6.(p, q, y, e) x.

q, 
Y, 

E). Thus, the probability that one observes an individual who

selects, say, the first brand and consumes three units is

(p,q,y,E) = 3 and
Pr

(4.12)

= 
= 0, all i 

Pr xl(Pl'ql'Y'c) v1(131'cll°r'c)> 2 ,

2._ v. (p. q". y 0 all iI p1,q1,y,e)tvi(pi,cli,y,e) all

Substituting the unconditional ordinary demand functions into the direct

utility function yields the unconditional direct utility function which also

can be defined as in (4.5). From this, the welfare measures C
+ 

C*, or C

can be constructed in the same manner as for purely discrete choices.23

Thus, mixed discrete/continuous choices can give rise to formulas for the

discrete choice probabilities involving conditional indirect utility functions

that violate the restrictions implied in (2.7') or (4.2)--c.f., the second

probability statement on the right-hand side of (4.12). Hbwever, precisely

because there is also a continuous choice in these models, it is inefficient

to estimate the parameters of the utility model from data on the discrete



choices alone: the continuous choices contain information about the indi-

vidual's preferences that should not be overlooked. Accordingly, if one

really is dealing with a mixed discrete/continuous choice, the estimation

should be based on (4.12) rather than on (4.2) as in conventional MRQR

models. Once the model has been estimated, the three approaches to welfare

evaluation described in section 3 carry over directly.

Another explanation for MRQR models which violate the restrictions in

(2.7') or (4.2) is that the individual genuinely faces a purely discrete

choice but one that is not bound by the budget constraint (2.2). An example

where this occurs is discrete choices among actions with uncertain conse-

quences by a von Neumann-Morgenstern expected-utility-maximizing individual.

Suppose an individual has wealth y and a utility-of-wealth function whose non-

stochastic component is denoted by 4(y). The individual must choose among

Isf actions whose consequences depend on the state of the world, s = 1, ..., S.

Associated with act j are a vector of state probabilities, pj = (pip ...,

and a vector of monetary consequences, z, = (zip zjs). Using an addi-

tively random formulation, the individual's utility conditional on the choice

of act j is

(4.13) u. = + z. ) +
1 JS js

s

and the discrete choice probabilities are

"cr

(4.14) nj = Pr {Zpis + zjs) + ej
> 
Z pis + zis) + ei all

j = 1, ..., N,

which is a statistical mqp. model that differs from (2.7'). Given that

•



the individual has chosen optimally, his utility is v(p, z, y, ;)

a max [u
1, I. Solivose that the state probabilities and/or payoffs

N f1change from (p°, z°) j to z1). In order to measure the welfare effects of

this change, the quantities e, C*, and Ce or le, E*, and E can be constructed

from v(p, z, y, e) along the lines indicated above. For example, e =F3fC1,

where C satisfies v (Pi, zl, y c, c) = v(p°, z0, Y, E) and, similarly, with

the other welfare measures.24

5. ECONOMETRIC APPLICATIONS

In this section I show ,how one actually computes the welfare measures once

the parameters of the RUNE model have been estimated. For simplicity, I deal

with measures of compensating variation; but, with appropriate changes, every-

thing carries over to measures of equivalent variation. I will concentrate

mainly on the calculation of e and C*: the formulas in Table 1 should usu-

ally suffice for calculating the expected indirect utility function, V(.),

from which C can be obtained via (3.3). If there are no income effects, one

obtains a closed-form expression for C. [see (3.12) and (4.9)]. If there are

income effects, however, numerical techniques, such as Newton's method, will

be required to solve (3.3).25

In order to cover both additively random and random coefficient specifica-

tions, I write the conditional indirect utility functions as vi(pi, qi, y, c),

j - 1, ..., N, where c is a vector of all the random elements in the model,

with joint density function fc(0). I focus on the special case where there

is a change in the prices and/or quality attributes of only one good, say, xi.

Furthermore, I assume t t the change is unambiguously a improvement, i.e.,



-1 . 1 1 o oul vi(pi, qi, y, c) >'Jo ul = vi(pi, qi, y, c). In addition to presenting

computational formulas, I will develop some bounds on the magnitudes of C
+

and C* and identify the circumstances in which C+ "%C*. When there are more

complex price/quality changes, the analysis becomes more complicated, but it

follows the same basic logic as that presented here.

To simplify the exposition, it is convenient to present the formulas for

the case when N = 3; however, with appropriate changes everything carries over

to the case of an arbitrary N >2. Define ui E vi(pi, qi, y, e), i = 2, 3, U0 _=

max C4, 112, u3], and ui = max [ul, u2, u3]. The trick in computing C+ in

this case is to recognize that there are five possible events which partition

the domain of f(.) into five disjoint regions. I denote these events (1/1),

(2/1), (2/2), (3/1), and (3/3) and the corresponding regions M1/1), A(2/l),

etc. The events are as follows. The first event (1/1) is that the individual

originally chose good 1; since good 1 improves but there is no change in goods

2 and 3, it follows that he continues to choose good 1. Alternatively, the in-

dividual originally chose good 2 and, after the change, he either still prefers

good 2 (2/2) or switches to good 1 (2/1). The last two events are that the in-

dividual originally chose good 3 and either still prefers that good after the

change (3/3) or switches to good 1 (3/1). The corresponding regions of c-

space are

A.(1/1) . ie I u. < uo

- -1 -A(2/2) = {c I u2 and u3 u2}

= 2, 31

A(2/1) = fe I u
3 

< u
2 
and Z° <U2 < Z11— 1 —— 1

~

- -1A(3/3) = ic ui u3 and u2 1131 A(3/1) = te I u2 u3 and ui u3
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The probabilities of the events are

Pr f1/11 =

(5.1) Pr {2/2} = 7r1 Pr {2/1}

Pr {3/3} = fffl Pr {3/1} . wo 1
3 173

where is the probability that the individual chooses the ith good either

before the change (t = 0) or after it (t = 1).

Observe that, if events (2/2) or (3/3) occur, the individual does not gain

from the improvement in good 1 because it is still dominated by some other

good; if events (1/1), (2/1), or (3/1) occur, he does gain and the improvement

in his welfare can be measured in money by the quantities C(1/1), C(2/1), or

C(3/1) where

(5.2a)

(5.2b)

(5.2c)

4,4g,

vi[pl, q, y - C(1/1), c] = uT

vi[pl, ql, y - E(2/1), = U2

vi[pl, ql, y - E(3/1), c] = U3.

Thus, the compensation C defined in (3.1) is given by

(5.3)

Hence,

2 if c - g2/2) or e g3/3)
C(1/1) if ;

C(2/1) if e A(2/1)

C(3/1) if e

(5.4) e = 5 E(1/1) f(c) de -0- f -6(2/1) f(e) de -0- 5 E(3/1) fe(e) de.
A(2/1) A(3/1)
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By virtue of the assumption that the change in (pl, (11) is unambiguously

an improvement,

(5.5) C(1/1) > 0.

/•.3 ^'When the event (2/1) occurs, since ul < u2 < ul, from (5.2) one has

1 1vi[pi, qi, y -C,(1/1), e] < vi[p (1 1c,l, 1, y - C(2/1), < v
1 
(pl

1 
ql y

1 1" c).

Because v(*) is increasing in y, this implies that, over the region where
ta

C = C(2/1), 0 < E(2/1) < F(1/1). Similarly, over the region where '6= Z(3/1),

0< -63,1)< aim. Hence, from (5.3),

(5.0 0 < C < C(1/1).

Since C> 0 with positive probability (as long as q > 0), and also

1 1C < C(1/1) with positive probability (as long as 72 + 73 > 0), it may be

deduced that

(5.7) 0 < e E < 2.-(C(1/1)1.

What about the welfare measure C*? It follows from (3.2), (5.1), and (5.3)

1 11that if 1T2 
+ ir 

3 m,
(1 - 1

) > 0.5, i.e., if ifi L0.5, then C* = 0. If1 --
1Ri > 0.5, C* can be determined in the following manner. Given any constant

C, define 111(C) a vl(pl, ql, y C, ii(C) E vi(p , C,i qi'

i = 2, 3,Irl'*(C) = max q(C), i4(C),i4(C)], and 7*(C) E Pr {72t(C) > 0̂i.

Then the welfare measure C* solves
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0.5 .n.*(cit)

Pr {u* (C*) > 0° and 12-7.(C*) 4.1

0.v ~

o 
AO Pt,

=Pr iu
2 

< uiu3=u. o *< l < ul(C*)}. i andu 

-o -*
+ Pr {u3 cc u

2 and n < u2 < u (C*)}1

-*-o+ Pr tu < ue. and u < u3 < ui(C*)}.2 —

These results apply to any RUM model. They can sharpen somewhat if one

focuses specifically on additively ramdon models in which
J J

q., y, C) =

1 1
q, 
. y) 

' 
j = 1, 2, and 3. In that case (5.2a) becomes vi[pi, y

J' J J 

V7i 47, Y) -1' 

-

-C(1/1)] + i(P!El = E or, canceling out el, vi[pl, qj, y C(1/1)]

= v1(q, q, y), i.e., C(1/1) is nonstochastic.26 Accordingly (5.4) becomes

(5.4') e = C(1/1) n° + f c(2/1) f(e) de + 5 Z(3/1) f(c) de.
I 2q2/1) g3/1)

Now, the quantity C(1/1) is the compensation measure that one might calculate

if he disregarded the random elements in the utility function, and it has been

employed by several authors. For example, Feenberg and Mills [1980] used

C(1/1) to measure the benefits from an improvement in the quality of a site

after they estimated an additively random logit model of discrete choices

among recreation sites. If we knew for sure that an individual would select

gbod (site), then C(1/1) would indeed be the appropriate welfare measure. In

the randolTl utility context, however, two adjustments must be made: C(1/1)

must be multiplied by 11(3)1 < 1, and the other terms on the right-hand side
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of (5.4') must be added which measure the gain to the individual if he

originally selected some other good (site) and then switched to good 1. The

net effect is that C(1/1) overestimates the value of C4 since, with C(1/1)

nonstochastic, (5.7) yields27

(5.7') 0 < C < C(1/1).

As for C*, it was already noted that, if < 0.5, C* = 0. Similarly, from

(5.2) and (5.3), if q > 0.5, then C* = C(1/1). If 77 < 0.5 <

C* can be obtained by saving (5.8) which, in this case, may be simplified to

(5.8')

0.5 = 7r*(C*)

N N

0

= Pr {u2 —< u°1 and u3 < u°1} + Pr {u3 < u2 and u < u2 < u~*(C*)}1 —  1

+ pr {u2 113 and u7 u3 iisic(C*)}

o o= 7
1 

r 
▪ ̀ Tr - T1 

• +12 2  3

* *
= 1 - (ir2 

+-IT3)

= Tr

where n1 E Pr tu2 < u (• C*) and u3 < u
*
(C*)}' 72 • = Pr 

{u(
 C*) i u2 and-- 1  -- 1

- ..* • ..,
U3 <
 u2} and 7r

* 
= Pr {u1  (C*) i u3 and u2 i u3}.3 -

As an illustration, consider the additively random model derived from the

conditional indirect utility functions.

(5.9) u. = q.) + y.p.,q) y + e. E V. + e.
J JJ J J J J

j = 1, 2, 3,

where y.(*) > 0, which is a generalization of (4.10) and (4.11). Applying

(5.2a-c), one obtains
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(5.10b)

(5.10c)
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1 o I o

C(1/1) 
4- Y(Y1 - 

1 ovi vi
 , z   

Ii Ii

1 1

C(2/1) =.E4'1 - *2 46 Y(Y1 - 12) 4' cl

Otir

vl v e
1 2 1 2 

1 1

Pat oaer

~ 
bP1 *3 4- y(Y1 - 3) e1 - e3 

v1 
 

V3-
 
+ E C 

11 3C(3/1) =
1

11 Y1

where 44 E 
11)1(pti, Cl),

 
4 E Y1(14.'

) and vl E1 + y, t = 0, 1. By

assumption, vl > v7.. Then, e is given by (5.4') where, for i = 2, 3

f c(il) f(e) de =
A(i/1)

(5.11)

 I 
vi 

(it? - 1J)' 1'

V.-i V
o v.-v.1 1 3 n1

4. f 1 f (n n., z) dni dn2-7 n 1, 
v. -v-1.-1 1

wheren = c. 
j

n = e c. j = 1, j i, and f() is the1 - 1 2 - 

bivariate density of (ni, 7:12). Similarly, assuming that 71-1) < 0.5 <

C* solves

.11 11- i-,-vx+ei
(5.12) 0.5 f 

vi 
yiC* 
" vyC*f " f(e c

2' 
e
3
) de

1 
de

2 
dc

3°..co

pose, specifically, t t fe(°) is the extreme value density so

that this is a standard logit model. The integr 1 in (5.11) can readily be

evaluated and, on substituting into (5.4') and simplifying, one obtains
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/ v
1

, 1 v2 v3
+e +e 

I ' o
Y1 v1 v2 v3

te + e + e

The corresponding formula for C* is

(5.14) C* =

Hence,

(5.15)

1 V 
2 

v
3if vi _< ln e + e

v2 v3,
V1 - in e + e v

2 
v
3 11  if v° < in e + e < vi1 1

Y1

1 o'vi v1 v2 v3.
if v°1 > ln e +e—

1 v + v
o
 v2 v31 ,C* - C+ as 1

2 
- ln e + e

Observe from (5.13) that C+ satisfies

(5.16)
1 1+ 1+ 1+
v1-y1C v2-y1C v3-y1 V1 V2 V3in e +e +e = ln e +e +e

By contrast, using (3.3) and the formula in Table 1, the welfare measure

C satisfies

1 1 • C
.

vi-y1C v2-y2 v3-y3C• V1 V2 V3
(5.17) in e +e +e = ln e +e

 
+e

• + 1 + 1Thus, C < C if yi < min (y2, 13) and C• > C if yi > max (y2, 13),

while C• = C+ if y1 = y 2 3' 
= • the last case corresponds to the no-income1 

effects utility model (2.16).
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In order to get a feel for these formulas, it may be helpful to resort to

1
a numerical ex.kile. Sli.pose that v2 = v3 = 0, yi = 1, 12 = 0.5, and 13 =

o . (.. vl
1.5. 1 consider three sets of values for v and vl (i) vo 2

° °1 1 1 , 1

= 0; (ii) q = 0, 14. = 2; and (iii) v = 2, vl = 4. Th s, in each case,

C(1/1) = 2. In the first case, rl < 0.5, so that C* = 0, while in the third

case 7 > 0.5 so that C = C(1/1). The corresponding values of C and C

are presented in Table 2. It will be seen that e and C. are both close in

value but differ from C As one would expect, in the first two cases the

quantity C(1/1) significantly overestimates all three welfare measures. The

last column in the table gives the values of Tr1 • 
C(1/1), the first term in

the formula for e (5.4'). It can be seen that this yields a very crude

approximation of the value of e, the quality of the approximation being

worse the lower ITI°

To what extent can these formulas be generalized? If N> 3 in the logit
./

model (5.9), the term (e 4 e 3) in (5.13)-(5.17) is replaced by

N v
e 3 .

2

This is when the change is restricted to good 1: When one is dealing with a

more complex change, the formulas are different; but they can readily be

developed by retracing the steps leading to (5.13)-(5.17). For example, if

there is an improvement in good 1, combined with a deterioration in good 2,

there are now six i..ssible events ich partition c-space--(1/1), (2/2),

(2/1), (3/3), (3/1), and (2/3), and
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TABLE 2

Welfare Calculations for the Logit Model (5.9)

no 71.1 
•

Case C(1/1) C* ° • C(1/1)
1 1 1T1

i 0.06338 0.33333 2 0 0.33999 0.35018 0.12676

ii 0.33333 0.78699 2 1.31 1.14093 1.17827 0.66667

iii 0.78699 0.96466 2 2 1.79643 1.81183 1.57397
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if ; rzliA(2/2)

if e EA(3/3)

otherwise.

Suppose the only change is in good 1 and the utility function is given by

(5.9), but this is a GEV (generalized logit) or multivariate probit model. In

the GEV case, the appropriate formulas are a straightforward extension of

(5.13)(5.17). In the probit case, however, numerical techniques would be

required to evaluate the integrals in the formulas for e and C*, (5.11)

and (5.12). If the RUM model is additively random but not linear in y, unlike

(5.9), this affects the formulas for C(1/1), C(2.11), and C(3/1) in (5.10) as

well as (5.11) and (5.12). Finally, if the RIM model is not additively

random, one has to work directly with (5.2), (5.4), and (5.8) and numerical

evaluation may well be required.



APPENDIX

Proof Proof of Proposition 

Here I prove that the consumer's preferences have the form given in (2.16a)

iff the switch prices p1 in (2.17) and p1 in (2.18) coincide. With no loss

of generality, I shall assume that N = 2 and = = 1. The switch price

pi = pi (p2, (11, q2, y, e) is defined implicitly by

(A.1)
-*

u(1, 0, ql, c12, y p1) + el = u(0, 1, ql, (12, y - p2) + e2.

Suppose that the actual price of good 1 is pT. By virtue of (h.1), one can

write

(A.2)

where Mc is defined by

-* 0 -*
pl= 131 -

(A.3) u(1, 0, q1, q2, y - p(1). + ;,) + ;1 =u(0, 1, ql, q2, y -,p2) + e2.

-** **
The switch price pl = pl (p2, ql, q2, u e) is defined by

(A.4)

or

( 
u 
-0 

cl' 
) 

Y1 =62'42' 
u0 e2) p2

-**-1 - -(A.5) pl = p2 + u-1(70 - -e210, 1, qi, q2) - u (uo - e111, 0, ql, q2),

where u-1(u1x/, x2, (11, (id is the inverse of u(xl, x2, (11, c12, z) with

respect to its last argument.



Observe t11,1
-* -** -*

t pi = pl trivially when pl > pl.,' then xl =0 from (2.17),

u
o
=u(0, 1, q29 y p2) e2, and so

(A.6) - -tou1 (u -el° 1 a a)D= • -

Substituting this into (A.5) yields

-**
4 

-0 -(N.7) pi = y u (u• 9.11, 0, ql, q2).

, The last two equations together imply

(A.8)
-**, -

u(1, 0, ql, (12, y pl ) + el =u(0, 1, q, (12, y - p2) ev

-* -**
and a comparison with (A.1) shows that pl = pi .

o -*Accordingly, I focus on the nontrivial case where pi < pi. In this case,

-* -**
uo = u(1, 0,

1
, q2, y po) + Cl and, in general, pl =.p1 . Since1

(A.9) u-1(u° l, °, c12) = P1'

(A.5) may be written as

(A.10)

where

-**
(A.11) A

-** -**
pl 131 - '
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-* -** -* -**It follows from (A.2) and (A.10) that pi. =p1 iff A = A . However, (A.1)

implies that

(k.12) u(l,O, ql, q2, y - pi) + el =u(0, 1, (11, q2, y p2 ) + c2.

From (A. 3) and (h.12), = A** independently of (q, p2, q1, q2, y) if and

only if the utility function has the quasilinear form given in (2.16a).



TNOTES

1
Throughout the paper a tilde will be used to denote random variables.

2
The standard independent logit model (McFadden [19741) is a special case

w.r- ---1

Ee 1 d
f3.L

N Trj

3For simplicty, :I innaat the qo's as scalars, but they could be vectors.

4I assume that y > max {pi] so that z > 0.

If u(-) is increasing in qj, vi(.) in (2.5) and (2.7) is increasing in qj.

°This additive specification is employed by Domenich and McFadden [1975],

Williams [1977], Daly and Zachary [1978], McFadden [1981], Small and Rosen

[1982], and many others. More general formulations of u(x, q, z, c) will be

considered in section 4.1.

7

8With no loss of generality, I assume that “cip = 0, all j.

91\nother restriction follows from the weak complementarity assumption,

(2.6), namely, that the elements of Wj include the attributes and price of

good j but not those of the other goods. Without this assumption,
Pet

uj = y piy -0- cj, and the vector W includes qi, iT

thecaseatheindependentlogitmodelwherethee's are independent extremecc]

value variables, the resulting discrete choice possibilities,

v(
q°°° il'"N' j- v (cIP°°°'ciN'Y-Piii -1

- a y-p

J
Esee

do not possess the Independence of Irrelevant Alternatives (ILA) property.

is is a version of what McFadden [1981] calls the "universal logit" model.)

Thus, there is some connection between weak c

property.

lementarity and the IIA



I

me marginal utility of income, y, can still be estimated because it

appears as the coefficient of the price difference term in (2.19). The point

is that income itself cannot appear as an explicit variable in a NINp. model

satisfying (2.16).

11Table 1 provides formulas for calculating lg.) for the GEV model, (1.3),

the independent log it model, and binary and trichotomous probit models.

12The median of the distribution of C, 
CM. has the property that

Pr {C < qo = 0.5. But, since v(p, q, y, e) is increasing in y,

~
C< CM v(pl, (11, y cm, ~c) v(pl, y - C, e) = v(p°, o, y, e).

From (3.4), C* = C.

13
For example, in the independent logit model, (3.9) becomes

14

1 y - C* p = Zv.(q° °-
J J Pixj).

S(p, q) can be constructed from the formulas given in Table 1. For ex-

ample, with the GEV model one obtains

vo vo 1 v1

C =ln G e 
1
, e - ln G e

v1 , e

while, with the binary independent probit model where Z is diagonalized and

normalized so that a = 1, one obtains

C= rA0,(6,0, voL. 4, 2
ge) - A14(11) v1

2 - gAl)],

where v. =y - t-
j 3 h(q) yy - vp.x.)and At t = 0, 1.p.x.) g t— 

= t vt,J - 1 2

15-,_ + . . r f 1 1rinan there are no income effects, C satisfies: Aiskp , q , e)

s(po, go, e) = 0.5.



1
e equivalent variation for a change from (pa, qa) to (pb b ) is equal

to the negative of the corresonding co

,change from Qp, 
b a a, 

J to J.

1 Altensating variation measure for the

17This is proved in Williams [1977], Daly and Lac ry [1978], and Sheffs

and • ganzo [1979].

18The second line follows from the fact that 3v1/ap1 = yi using (2.16b).

The third line follows from the fact that “Tql = 7171.

19
MtFadden [1981] and Small and Rosen [1982] interpret V(-) as the average

indirect utility function over a population of individuals and C. as the aver-

age compensation. I interpret V(.) and C. as the observer's expectation

of a single individual's utility function and compensation. I would calculate

C. (or C+ or C.) for each individual separately and then aggregate over the

entire population, perhaps using weights derived from some social welfare func-

tion along the lines in Milellbauer 1.
20McFadden [1981] actually derived (3.14) for a more general RUM model

involving continuous as well as discrete choices. This type of model is dis-

cussed further in section 4.2.

21In addition to assuming that there are no income effects, Small and Rosen

[1981] make two additional assumptions: (1) avi/ay is independent of pj and

q3
. and (2) 3v./aq. 4. 0 as pe + a). It can be shown that (2016) implies (1) but  J

precludes (2).

22 is has generally been restricted to probit rather than logit models be-

cause the normal distribution is closed under addition unlike the extreme value

distribution. This is less of a consideration if the discrete alternative-

specific random terms, ci,00 0em, are omitted from the m

the random slope coefficient(s); for an exaq.le, see 11.1

• el leaving only

nemann [1984c].
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23From (4.7) one obtains

1
p 1

C = [V(pl, (11, y) - Iqp°, q°, yn/ V = [C7 -93)/ 71.1 5CiX/(P, q, Y, 01 #1.
0

P1

It should be emphasized that these anomalies arise from the particular form of

the random coefficients specification in (4.1). They would vanish if the coef-

ficient of income were nonstochastic and any other slope coefficient in (4.1b)

were random--e.g., a coefficient in 11.N.

24 An example of an application of welfare analysis in a mixed discrete/

continuous choice RUM model is given in Hanemann [1982].

251n Hanemann [ ] this type of discrete choice model is employed to in-

fer the value of life (i.e., the value of changes in mortality probabilities

from data on individual risk-taking behavior.

26
Some formulas for approximating C. were presented in Hanemann [19831)]

and in an earlier draft of this paper (Hanemann [1982]).

2 7Bquivalently, C(1/1) satisfies

fxr (1)
1 

q
1 
, y C(1/1)] +

1
11 = ( q°, y) +1P1' 


