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Abstract

this paper we study the determination of optimal water storage

capacity in a region, taking into account that the supply of the re-

source, the flow into the reserve, is uncertain, that building the capac-

ity is costly, and that the commercial development of water resources

may entail also environmental costs. We find that water storage ca-

pacity in the long run is positively related to increases in uncertainty

if the marginal benefit of water withdrawal is convex, and that, for

the case of costly reversibility of investment, a range of inaction for

investment appears, and the stability of water storage capacity with

respect to changes in variance increases.

Key words: water resource infrastructure, water reserves man-

agement, stochastic control
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1 Introduction

Global climate change is likely to bring an increase in the uncertainty at-

tached to water supply in many regions (Karl, Knight and Plummer, [11]).

Part of this is an increase in the variability of precipitation. But it is also

related to a more subtle shift in patterns of precipitation. In regions like Cal-

ifornia, for instance, it is expected that more precipitation will fall as rain

than as snow, and that the snowpack will melt earlier in the spring (Gleick,

[8]). Both of these changes will in effect increase the varlae bility of water

flows since a late-melting snowpack evens out water flow over the course of

a year. The question considered in this paper is, what are the implications

for optimal water storage of an increase in uncertainty, in the sense of an

increase in the variance of water supply?

Although there is a substantial literature on uncertainty in water re-

source management, we have not found anything of immediate relevance

to this question. The literature is concerned primarily with the impact of

stochastic surface water flows on the value of additional stocks, either sur-
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f:ice reservoirs or oundwater aquifers, and on optim withcir als horn

these stocks. Tsur and Graham-Tomasi [17] show that the b i iFer v ue of

oundwater (to mitigate impacts from fluctuations in surface flow) is pos-

itive and, in an application to wheat farming in the northern Israeli Negev

region, significant in magnitude. Knapp and Olson [12] consider the rela-

tionship between socially optimal and common property withdrawals from

a groundwater stock. Relatively small gains from optim I management are

found in an application to Kern County, California. Tsur and Zemel [18]

study the impact of an uncertain irreversible event, such as pollution, that

may render groundwater resource unusable. A key fin4•Ing is that it does
.•

not pay to extract in excess of recharge, even though this would be beneficial

under certainty.

Not in the context of water resources, storage has been related to anal-

ysis of the firm's decisions under =certainty. The standard inventory con-

trol problem has focused on planning production under demand uncertainty

(Bertselcas, [5]). More recently, Scheinkman and Schechtman [15] and Stokey

and Lucas [16] have presented a competitive, partial equilibrium model with

stor

con•

ge under supply uncert inty that reflects approxim

tions of icultural commo• 1ties which re not tr

tely the production

ded intern tion



For nonrandom demand, they study the market equilibrium of a storable

commodity whose output each period depends on previous period effort on

production and a realization of a shock that affects all producers equally.

Although we too focus on supply uncertainty, our model presents two

new features. First, we connect the analysis with the theory of investment,

considering in an explicit way the cost of building the stock. We assume that

there exists some kind of complementarity between water storage capacity

and a capital stock of dams and canals, and that, therefore, a larger reserve

in the long run requires a larger capital stock. A second novel feature of our

model is the specification of possibly irreversible environmental Impacts asso-

ciated with the investment in water resources infrastructure. Here we develop

a more general approach that that of the earlier literature that introduced

the notion of irreversibility of environmental impacts (Arrow and Fisher [4],

Henry [10]). We consider the possibility of (costly) recovery of the natural

environment, studying the case of a reversible development where the cost

of disinvestment in development is the cost of removing water infrastructure

and restoring something like the original environment.

Our main results are: (1) With symmetric linear adjustment costs an

increase in uncertainty implies an increase in long-run capital stock if the
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ill

benefit function associated with water withdrawal is =vex. We

d that with convex margin benefits the net marginal value of the capital

stock is positively related to the instantaneous variance rate which charac-

terizes water flow as a stochastic process. Then an increase in variance shifts

upward the net marginal value function and leads to an increase in the opti-

mal capital stock. (2) The existence of asymmetric linear adjustment costs

reduces the variability of optimal investment in water infrastructure. The

asymmetry defines a range of inaction and increases the stability of the long

run capital stock with respect to changes in variance. (3) If there is no market

for water resource infrastructure, and if in ad.!7tion environmeneal restoration

is costly, changes in variance again do not affect the optimal level of reserves.

In this case, the range of inaction is larger, suggesting an interpretation of

the earlier literature on project investment with irreversible environmental

impacts. Irreversibility can be considered an economic phenomenon, related

to the cost of disinvestment: the range of inaction is increasing with the cost

of disinvestment.

The paper is organized as follows. In Section 2 we set up the model as a

stoch ,stic control problem of maximization of the expected present value of

net social well..re from w ter reserves man gement and investment in storre



capacity. In Section 3 we obtain the expected dynamics of water consumption

which allows us to characterize the long-run equilibrium capital stock, and in

Section 4 we discuss the effects of an increase in =certainty on the equilib-

rium. In this first part of the paper we assume a symmetric adjustment cost

function in order to focus on the effects of uncertainty. In the second part,

Section 5, we incorporate into the model more realistic assumptions about

the reversibility of investment, looking first at asymmetric purchase and sale

costs of capital, and then at costly reversibility of investment. Conclusions

are restated in Section 6.

2 The model

We now present a formal description of the model: let W and w repre-

sent stochastic water resources and water withdrawal respectively. We as-

sume that W is an Ito process, which evolves through time according to the

7



stochastic 11, 1fferenti :L I equation':

dW = (W,t)dt+b(W,t)dz, W(0) =Wo >0 (1)

Then the difference between the stochastic water resources and the control

variable, water withdrawal, determines the increment in water reserves, S,

but reserves cannot increase .3 bove the storage capacity defined by the phys-

ical capital stock, K. In symbols,

dS =

(W — w)cit if S < alf

0 if S . alf

S(0) = So > 0 (2)

_

where a is a conversion factor that gives storage capacity-its a function of

the capital stock2.

Utility depends on water withdrawal U(w), with IA. > 0 and tl,,,,u, < Os.

There are of course costs of with.

'An Ito process is .:, generalization of

aw , the costs of conveying water to its

A simple Brownian motion with drift where dz is

the increment of a Wiener process, and a(W, t) and b(W, t) are, respectively, the expected

instantaneous drift r e and the instantaneous variance rate. See Dixit nd Pindyck Q6,

Ch. 3] for good introduction to the subject of stochastic processes.

2We assume that the conversion factor a is calculated taking into account, mong3,

other things, the reduction in water storage capacity caused by the mud sedimentation on

reservoirs' floor.

3As we are interested in the socially optimal management of w

8
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place of final consumption by farms, municipalities and firms, Cfw), with

Cw > 0 and Cww < 0. The concavity of this function is explained by the

existence of increasing returns to scale in the technology because pipeline

volume increases more rapidly than built surface.

Finally, the capital stock K evolves according to

K(0) = Ko > 0 (3)

where I is investment and 6 is the rate of depreciation. We assume that the

built storage carries environmental costs, H(K), with HK > 0 and HKK > 0.

Environmental costs are included because, in its natural state, the environ-

ment yields some benefits.

Then, for a risk neutral authority, the problem is to choose w and I to

maximize the expected present value of net social benefits:

max E0 f RI (w) — C(w) — H (K) — clj e'dt (4)
{10,4 o

subject to differential equations (1), (2) and (3) where r is the social discount

rate.

function must be interpreted as a monetary measure of consumer welfare from water

consumption. This measure could be the gross consumers' surplus so that the price of

water would be the marginal utility of water consumption.

9
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Notice th t assuming a risk neutr authority is compatible with conc ve

utility function if we distinguish between the utility that consumers obtain

from water consumption and the (net) welfare generated by management of

water reserves and investment in storage capacity. For this formulation sod :1

welfare is defined as the difference between the consumers' surplus from water

consumption net of withdrawal costs, and the environmental and adjustment

costs of the capital stock, as

(4)4.

!ven by the expression in brackets in equation

3 Investment under uncertainty

Let J be the value of water reserves and capital stock assuming w is chosen

optimally, so that

where •

J(S, K, W) = max Et ft °D (r) e'dr

= (w) C(w) 1-1(10 ci ) H(K) — ci is the

social welfare and (.) is the (net) consumers' surplus or benefit from water

.:1

41b analyze the effects of different attitudes toward risk we could introduce explicitly

ter man gement authority's utility

as it has been defined 4IP

is linear (risk neutrality).

1 r nction who ,:qgument would be the soci I welf:.re

ye. Hn our model we implicitly assume that this utility function

10



consumption.

Because time appears in the maximand only through the discount factor,

the Bellman equation for this problem can be written as

rJ = max[P(w) — H(10 — cI A(clif (11dt)Etclji. (5)fw,/}

where A is the multiplier associated with the restriction S < crK; A is positive

if S = ocK, and zero otherwise.

Since W is a stochastic process, we can use ItO's Lemma to write

1
dJ = JsdS JKdK JwdW + —

2 
Jww (AV)2.

substituting for dS,dK,dW and (dW)2 we obtain

.•
dJ = (W w)Jsdt (I — 610JKdt + a(W,t)Jwdt -1-b(W,t)Jwdz

(6)

1 1
tWww(dt)2 a(W,t)b(W,t),Iwwdtdz + —

2 
b2(W
' 
t)Jww(dz)2,

which reduces to

dJ = (W w),Isdt+ (I — 510.1Kdt a(W,t)Jwdt

1 
+b(W,t)Jwdz —

2
1)2(W,t).1wwdt (7)

since (dz)2 is equal to dt, from the definition of a Wiener process, and dtdz,

which is of order (dt), and (dt)2 both go to zero faster than dt as dt be-

comes infinitesimally small, and can therefore be neglected'. Applying the

5See Dixit and Pindyck [6, p.711.

11



(.1.1fiferential oper tor (1/dt)Et to (7) and considering that Et[dz] = 0, ag in

from the definition of Wiener process, the

as

eliman equation can be written

r J = max [P(w) H(10 — A(aK S) (W w)Js — OIC)JK
ftv,I1

-f-a(W,t)tlw (W, t) J}. (8)

Maximizing with respect to w and I we have the optimality conditions:

(9)

(10)

The first condition states that the mar ,:n::] utility of w ter consumption must

be equal to marginal cost, which has in turn two components, the marginal

withdrawal cost C,,, and what we might call the marginal user cost J. The

user cost arises because water consumption today reduces the availability

of water for tomorrow's uses6. The second condition establishes that the

m r I

Uw = Ctu

C

nal 'djustment cost of capital must be equal to its marginal user cost

6The second order condition requires a decreasing marginal utility. However, this is a

necessary condition but not s1111 cient to satisfy the second order condition because of the

assumed concavity of the cost function for withdr

the appendix for 41

41wing and distributing water, C(w). See

n ev luation of the scope of this problem.

12



To examine how uncertainty affects long-run capital stock, we shall need

to derive an expression for the expected dynamics of water consumption

and investment, thus making the transition from the Beaman equation to

solution of the stochastic control problem defined in Section 2 in terms of one

stochastic differential equation for the control variables, water consumption

and investment, and the differential equations (1), (2) and (3). It will then

be possible to use that system of equations to characterize a long-run (steady

state) stochastic equilibrium and evaluate the effects of changes in variance

on long-run capital stock or storage capacity7.

Differentiating equation (8) with respect to S, and taking into account
..•

that the optimal value of w is given by equation (9), we obtain

ow
rJs . (P,„ — Js)T,--5 — A + (W — w)./ss + (I — OK)JKs

+a(W,t),Iws + il b2(W,t)Jwws.

Since the terms in the first set of parentheses sum to zero, Js is given by (9),

7This approach is applied by Pindyck [13] to study the optimal investment of the firm

under uncertainty with adjustment costs, and Rubio [141 to analyze optimal investment

in an extractive industry. Basically, it is an extension of the comparative statics analysis

used in deterministic control theory to evaluate changes in steady state values caused by

variations in the model's parameters.

13



and (11dt)Etthls = (W-w)Jss±(.1-5nlics+

by Ito's Lernm. equation (11) can be written as

W, t)Jws+ ib2(41, t)thivws

(11dt)EtcUs = r.13„,+ (12)

where A = 0 if S < cxK. Applying the differential operator to (9) and

equating it to (12), we get

(1 1 dt)EtdP„, w + A (13)

Developing the left-hand side of (13), we can obtain the expected dynamics

of water consumption. From Ito's Lemma

1
dP = Pdw+ (dw)2 (14)

Considering that w* = w(S, K, W) along the optimal path, using ItO's Lemma

again,

aw aw 1 32w 
dw . --8-5-,dS + a Kdif + awdW +  (dw)2 , (15)

and by substitution of dS, dK,dW and (dW)2,

aw 8'w aw
dw . (W - w)-5.-§cit + (I - 610 akdt + a(W,t).awdt

aw 1 82w 
+b(W, t)ywdz + -2-b2

 
(W,t) aw2dt. (16)

The implied expression for (dw)2 is gre,,tly simplified by neglect of terms

in higher powers of dt dt goes to zero, so th t we ,,re left with (dw)2

14
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(b)
2
 b2(W,t)dt, from which equation (14) can be written

dPu, = Pwwdw + P„,ww 
(&)2 

b2 (W, t)dt, (17)

and the differential operator of (17) is

(1.1dt)EtdPw = Pww(lIdt)Etdw + 'Pwww (awaw) 2 b2(W, t). (18)

Equating (13) and (18) and ordering terms, we obtain the desired expression

for the expected dynamics of water consumption

Pww(1Idt)Etdw = rPw+ A— —1P,,„„ (- 1.1--) 2 b2(W, t) (19)
2 OW

Now differentiating equation (8) with respect to K, and taking into ac-

count that the optimal value of w is given by equation (9), we obtain

ow
rjK 

(Pw JS)
-8-1—f 

HK Aa (W to)Jsic

— 610JKK a(W, t)JwK 1- b2(W, t)Jwwic (20)

Since the terms in the first set of parentheses sum to zero, JK is given

by (10), and (1/dt)EtdJK = (W — w)JsK (/ 510JKK a(W,t)Jsvic

ib2(W,t)./wwK by Ito's Lemma, equation (20) can be written as

(11dt)EtcLIK = (r 6.)c HK Aa (21)

15



Applying the .1Terenti operator to (10) ,nd equating it to (21), _we get

1
(22)

since c is a constant. This condition establishes that investment in new

capacity will take place only when reserves reach capacity. The shadow price

of the constraint,A, is equated to (r 5)c, the opportunity cost of capital

plus HK, the environmental costs and 1/ci is a conversion factor, the capital

requirement to store an additional unit of water. In that case (19) becomes

1 1 
aw 2

Pww(i/dt)EtdW = rP,„ Tr;[(r ± 5)c + Hid — —P. b2(W,t) (23)aw

Equation (23), together with (1Idt)EtdS and (3) describes the expected dy-

namics of w, S and K. Notice that as the marginal cost of adjustment of

the capital stock is constant the adjustment is instantaneous. If a stochastic

equilibrium exists, in the sense of convergence to a long-run (steady state)

distribution for w, S ::nd K, the distribution has to satisfy the con.itions

(Vdt)Etdw = (1/dt)EtdS = (1/dt)Etd = O. At the long-ru.n equilibrium

the expected v ue of variations in water consumption, water reserves ad

capital stock is zero, and the expected values of control, w, and state vari-

S and K, must s tisfy these conditions. Then we can use the ste.dy

st te. conditions to study how the expected value of w

16

ter reserves, 5, (long-



run equilibrium) when A = 0 and the expected value of capital stock, K, and

storage capacity, aK , (long-run equilibrium) when A > 0 will be affected by

changes in the variance of water flow in a way dependent on the properties

of the (net) benefit function, P(w), associated with water consumption8.

4 Effects of uncertainty

In order to obtain the long-run equilibrium for capital stock and consequently

for storage capacity we are going to analyze the (steady state) optimality

condition for water withdrawal defined by (1 I dt)Etdw = 0 and equation
_

(23), assuming A > 0. As A > 0 implies S = aK , equation (23) can be

written as

1 1(4, (w) + -,-; [ (r ± 6) c + HK ( K ) ] = Cu,(w)+ -2--r- P,,,(w) (8w" ' IC)) 2 b2(W, t),aw
(24)

8AS Pindyck [13, p.421] has pointed out, we can also use these steady state conditions

to determine how, given a current realization of W, the values of w, S and K that satisfy

the steady state conditions will change with variance, so that we can determine the effects

of uncertainty (for a given value of water resources) even if in the long-run there is no

stationary distribution for this variable. Basically, it is an extension of the comparative

statics analysis used in deterministic control theory to evaluate changes in steady state

values caused by variations in the model's parameters.

17



where the number of state variables has been reduced to two: W, w ter

resources, and K, capital stocks). The marginal benefit, on the left-hand

side of this condition, presents two components, the marginal utility and the

present value of a flow of benefits originated when a marginal unit of water is

devoted to consumption instead of being stored. This second term appears

because when we are defining the optimal long-run equilibrium for the capital

stock, an increment in consumption turns into a reduction in storage costs

equal to the opportunity cost of capital, (r 6)c, plus the environmental

costs, HK, a reduction that must be taken into account to correctly define

the optimality condition for w ter withdrawal. Notice that when unit of

water is devoted to consumption the reduction in capital is given by the

inverse of the conversion factor: 1/a. On the other side, the margin cost of

water consumption incorporates a term related to the instantaneous variance

rate whose sign depends on the convexity of the marginal net benefit function,

, for water consumption.

To interpret this last component, let us assume that the marginal bene-

9If A = 0 (S < al° i:'condition (23) reduces to r,„= i/ 2 P.n.,. 111.10‘2 t) which

defines the loicg-run equilibrium w ter reserves for K, capital stock or storage capacity, at

its optimal v

18



fit is convex, i.e. that Pwww > 0. Then for variations of water withdrawal

around its expected value, as P„, (marginal net benefit) defines the marginal

valuation of water withdrawal by consumers, a reduction in consumption

has a larger impact on consumers' welfare than an increase, and there is an

incentive to reduce water withdrawal, to store water to avoid low consump-

tion due to low realizations of W. If Pww„, <0, i.e., if the marginal benefit

function is concave, a reduction in consumption has a lower impact on con-

sumers' welfare than an increase and then the incentive is to increase water

withdrawal and reduce water reserves. We shall have more to say about the

sign of P„,„,„, shortly.

In any event, equation (24) allows us to determine the effect of an increase

in variance on optimal capital (or storage capacity) for the resource flow W

equal to its expected value. When (1Idt)EtdS = 0, Et(W — w) = 0, so

Et(W) = Et(w) =W , or in other words, the expected value of water

consumption at the stochastic steady state is going to be the expected value

of water resources, W. Then equation (24) can be rewritten as

1 1atV(IV K) 2
&—r[(r+6)c+HK(KA = C(W)+--P(W)') b2(W ,t),aw

(25)

which can be used to establish the relation between optimal capital stock,

19



K, and the variance rate, b2(W, t), when water resources are equal to their

expected value10.

To develop this analysis we rewrite equation (25) as

(r + 6)c = aA(W b2, K) I K (K) , (26)

where the first term on the right-hand side is given by

, , 
) 

b2(1 
aw(W  

2
-
,t) r Pw(W)b2 , Pwwwt1 4 ) aw

Equation (26) can be interpreted as the optimality condition for the long-

run equilibrium capital stock where (r 5)c is the marginal . .prtunity cost

of capital stock and aft(1,1-7, b2, K) HK(K) is the (net) marginal value of

capital stock (NMV). Before using this condition to determine the effects of

an increase in uncertainty about future water resources, we need to verify that

a solution exists. To do this, it is useful to present the following definition:

10When there exists a steady state distribution for the capital stock the optimal value

is just the expected value, given that the expected values of w and K have to satisfy the

steady state conditions. In the other case (non existence), the optimal value is the value

that satisfies the steady state conditions when the current value of water resources is its

expected value. Obviously the definition of a true steady state implies that the expected

value, W, be constant aid the instantaneous vari nce rte independent of time.

20



Definition. If 82" > (<) 0, then K and W are complements
OWOK

(substitutes) with respect to the optimal policy function w = w(W, K).

Although we have developed the analysis presented in this Section for

both cases, K and W complements as well as substitutes, it seems plausible

that only the substitute case is relevant. W and K substitutes means that

an increase in the capital stock, K, and consequently in storage capacity,

weakens the link between flow, W, and withdrawals, w; a decrease in capital

stock strengthens the relationship between flow and withdthwals. In other

words, we assume that the cross partial derivative 82wiaw3K is negative.

In that case we obtain the following result:

21



Result 1. If K and W are substitutes and the marginal benefit is convex

then (r b)c < aA(W ,b2, 0) — HK(0) is a necessary and sufficient condition

to have a unique optimal value for the capital stock

Assuming that optimal water consumption responds positively to wa-

ter resources, (g-> 0), when the state variables are substitutes the net

marginal value function is (monotonically) decreasing, since

aNmv aw  a2w 82w2b H K K < 0, f(n.   < 0aPaK www aw awaK awaK

Then if the marginal value for zero capital stock is higher than the constant

marginal cost, equation (26) has a unique solution, as illustrated in Figure

1.

Notice that as the mar v ue of the capit stock is positively related

to the variance of water resources it could happen that for a low variance

it does not pay to build stock because the cost is t!: eater than the benefit

of the first unit built. In the case of complement ry st.te vari.:ibles the

previous condition is neither necess-ry nor s

22
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marginal revenue function is not determined. When the state variables are

complementary, neither existence nor uniqueness are guaranteedn.

We are now ready to determine the effect on the capital stock of a change

in variance. Totally differentiating optimality condition (26), we obtain

0= aPwww—w aw  82 2w b2dK -c!Pwww(-38-14-7w) db2 — HKKafa awax 2

Reordering terms,

dK 1Pwww 
(
8w

)2
a2W

  > 0, for  < 0 (27)8w a2 w awaxdb2 HKK — aPwww79747 8W8K

With substitute state variables an increase in variance increases the optimal

level of capital. When K and W are substitutes the second derivative of the

optimal policy function that appears in the denominator of the right hand

side of (27) is negative , and the sign for the effect of an increase in variance

on the optimal capital stock is unambiguous for a convex marginal benefit

function. This conclusion allows us to present the following result:

"However, if the state variables are complementary and the marginal benefit function is

concave the condition in Result 1 is necessary and sufficient to have a unique optimal value

for the capital stock. Thus, the existence and uniqueness of an optimal value for capital

stock depends crucially on the relationship between the compiementarity/substitutability

of the state variables and the concavity/convexity of the marginal net benefit function.
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Result 2. If the state variables K and W are substitutes, the marginal

benefit function is convex, and there exists an optimal value for the capital

stock, an increase in variance implies a higher capital stock for water flow at

its expected value.

When K and W are substitutes and the marginal benefit function is con-

vex, an increase in the variance rate implies that more capital is required

to avoid or reduce damages from the realization of low v ues of water re-

sources 'ven that now the prob bility of these extreme events is higher. If

the marginal benefit function is concave the effect is ambiguous. With a con-

cave marginal benefit, the (net) marginal value of the capital stock can be

increasing or decreasing. With a decreasing marginal value an increment in

variance would imply lower capital stock12. This somewhat counter-intuitive

12When the marginal benefit function is concave an increase in variance shifts downward

the (net) marginal value function. Then with constant marginal cost and a decreasing

mart nal value that movement would cause a reduction in the optimal capital stock. The

effect for an increasing marginal value is not determined because the long-run equilibrium

for the capital stock is not well defined. On the other hand, when the state vathbles are

complementary, an increase in v riance implies a lower capital stock for w ter flow at its
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result is another example of the mischief caused by nonconvexity, here the

presence of increasing returns in the water distribution technology. Without

this, the marginal net benefit function could safely be assumed convex, as

marginal utility is convex for a concave utility function.

5 Asymmetric adjustment costs: the range

of inaction

In the standard neoclassical theory of investment it is well known that asym-

metric adjustment costs produce a range of inaction for investment ( Hayashi
..

[9], Abel [1,2,31). The result is based on Tobin's q model which says that if

there exists an asymmetry between the purchase and sale prices of capital

goods, two critical levels qm and cr can be defined such that if q, the increase

in the value of the firm that would result if the capital stock were increased by

one unit, lies between these critical levels, zero investment is optimal. Here

we obtain the same result, but using what we have called the (net) marginal

value of capital,a A(W, 0, K) — I I K(K), instead of Tobin's q, which is more

expected value if the marginal benefit function is concave and has an undetermined effect

if is convex.
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di cult to calculate, requiring the solution o

like our e rlier equation (8).

(.1°Ifferential equ don

5.1 Asymmetric capital purchase and sale costs

Letting cp equal the purchase price of capital goods and c, the sale price, we

can rewrite optimality condition (26) as

6)cp aA(W, b2 K) — K(10

(28)

(r 15)c8 = aA(1717,b2,K) HK(K)

Condition (28) allows us to define a range of inaction for the variance of

the random variable W, i.e., an interval [(0),.„, (b2)"11 such that if changes in

variance stay within that interval, effects on the optimal stock are null and

no investment takes place. This is shown in Fig.2 and stated as Result 3 13.

FIG.

'3The results presented in this Section only work for a decreasing (net) marginal value

of capital because for an increasing (net) marginal value function the long-run equilib-

rium is not well defin See footnote H. We analyze the range of inaction only for a

convex marginal benefit function. The extension to a concave marginal benefit function is

straightforward and presents minimal changes.
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Result 3. If there exists asymmetry in adjustment costs, changes in

variance do not affect the optimal capital stock in the range defined by the

interval 02),„(b2)1. The limits of the interval are calculated for each value

of K from condition (28)

(r + .5)cp . a A(1/V, b2, K) — HK(K) —> Pn[(b2)'n , If] =0

(r + .5)c9 = a AP , b2, K) — H K (K) —+ Fin[(b2),n, IC] . 0

The F(.,.) functions are impliCit functions in b2 and If-eclefined by the
..

optimality condition for the two prices when the water resources are equal

to their expected value. In other words, given that (r +5) and W are fixed,

the functions F(.,.) associate a K with a given b2 or conversely. Clearly

(102),, < (b2)n because the marginal value function is increasing with respect

to the variance and c, < cp.The existence of a range of inaction means that,

given any level of capital stock and storage capacity, it will nbt be optimal

to disinvest at least until the variance falls below the critical value (b2),,,,

and it will not be optimal to invest again until the variance rises above the

critical value (b2)m. The distance between the critical values depends on
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the • , fference between the purchase and sale prices given that the elasticity

of A(V-V, b2 )with respect to the variance is equal to one (since 4 is an

increasing, linear function of b2), so a big difference between these prices im-

plies long periods of inaction for investment in water resource infrastructure.

A comparison with previous models of investment with asymmetric adjust-

ment costs is worth noting here. We define the critical levels in terms of the

variance of the random variable W. In Tobin's q model, the critical levels

are defined in terms of an unobservable q, the effect on the value function

(like our in of an increment of capital. In principle, development of empirical

counterparts should be easier for our model. _

5.2 Costly reversibility

We turn now to what seems to us the most realistic and therefore the most

interesting, case: costly disinvestment. Contrary to what we have assumed

thus far, there may be no market for the capital stock accumulated to accom-

modate water reserves, or in other words, c9 equals zero. Further, and more

importantly, there can be a cost of disinvestment, especi y when it is rec-

o ized. th t Usinvestment implies restoring something like the pre-project

environment.

.
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To develop the analysis of this case, we shall need to redefine the adjust-

ment cost function of section 2 as

AC(I) . [I > *1,1 — [I < (*di. (29)

The adjustment cost function has the following interpretation: if I > 0,

one is investing in infrastructure, at a cost cp; if I < 0, one is investing

(disinvesting) in environmental restoration (infrastructure), at a cost cd.

For this adjustment cost function, social welfare from the management of

water reserves and investment in storage capacity can be written as

B =U(w) — C(w) — 1-1(10 — [I > O]cp1 -I- [I < cilcd1

and the Bellman equation, equation (8) of section 3, as

rJ = max[P(w) — II(10 — [I > OlcpI + [I <01cdI + A(celf — S)
{w,ar}

+(W — w)Js + (I — .5141K + a(W,t)Jw + -1' b2(W,t)Jww](30)

Then following the development presented in section 3, equation (23) be-

comes
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Pww(l/dt)Etdw =1 r Pw + i[I-IK — (r + 5)cd] — .1 Pwww (z) 2 b2(W, t) for 1 < 0
(31)

and the stochastic steady state defined by (1/dt)Etdw . 0 establishes the op-

timality condition for the capital stock, analogous to equation (26) of section

4:

[HK 5)cp] (ff-)
2 
b2(W) t) for I >

(r 6)cp = crA(171 , b2 , — IIK(K)

(32)

6)cd = ail(W, b2, K) HK(K)

This condition defines a range of inaction for the variance of W, but now

the net marginal value must be negative to trigger a disinvestment process.

When the net marginal value of capital is negative a decrease in the stock

increases the value of capital, so that if the increment in value is eater

than the cost of reversal it will be optimal to destroy the infrastructure and

recover the natural environment. This effect is shown in Figure 3, and stated

in Iø esult 4.

MUM
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Result 4. If investment in environment is costly, changes in variance do

not affect optimal capital stock in the range defined by the interval 02),„, (b2)m}.

The limits of the interval are calculated for each value of K from condition

(32)

(r 6)cp = aA(IV b2 K) 1-1K(K) Fm[(b2)m , 0

—(r 6)cd = aACITV, b2, — 1-1K(10 F„,[(b2),,, = 0

Again, (b2),„ < (b2)rn because the marginal revenue function is increasing

with the variance and c, is always greater than —cd, but now the range of

inaction is going to be greater than in the case of asymmetric purchase and

sale prices with costless reversibility. This result allows us to conclude that

disinvestment can be optimal even when it is necessary to pay to restore the

environment, but a range of inaction will appear because of the presence of

restoration, or disinvestment, costs. A corollary of this result is that the range

of inaction is increasing with the cost of disinvestment. This suggests an

interpretation of the earlier literature on project investment with irreversible
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environment: impacts. XI-reversibility of investment in natural resources can

be considered an economic phenomenon, related to a sufficiently high cost of

reversal'.

This is clear also when we consider the decision to invest, rather than

t sinvest. Suppose disinvestment has occurred, from K* in Figure 3 to a

lower level of reserves, say to the point If- in the Figure, as a result of a

shift in the marginal value curve to NMV(b2)', which lies below NMV(b2)m.

Now variance b2 increases, shifting the NMV curve back up. No investment

is warranted, however, unless the variance increases all the way to a new

critical value, one that implies an intersection of the NMV. curve with the

(r ± 6.)c, line at a level of reserves above K. In particular, a shift of the

NMV curve back up to NMV(b2)„, will not trigger investment in reserves

to K.

Finally, it is important to note that the linearity assumption for the ad-

justment cost function is not critical to our results because we know that a

convex component of an adjustment cost function will be zero at the long

run equilibrium. Suppose we include a convex adjustment cost term in our

function: ci + c.(/), where c.' (/) > 0 nd c."(/) > O. Then the mar

14A similar result is obtained by Fisher 3ind Hanemann [7].
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adjustment cost specified in our optimality condition is c ± ca' (/), and the

second term vanishes when / . 0. Therefore, neither our optimality condi-

tion for the long-run equilibrium capital stock nor our results on the influence

of uncertainty will be affected. This point is strengthened if we recall from

the theory of investment that adjustment costs do not affect long run equilib-

ria, rather the adjustment (speed) towards the long run equilibria, i.e., they

modify the investment process, not the long run value of the capital stock.

6 Conclusions

_
In this paper we have studied the socially optimal investment in water stor-

age capacity, taking into account that the supply of the resource is uncertain

because of the variability of the hydrological cycle. The motivation for the

study is the perception that climate change is likely to affect the hydro-

logical cycle, in many regions, by increasing its variability, i.e., increasing

uncertainty about future water resources availability.

We model water resources as a stochastic process and focus on the deter-

mination of long-run water storage capacity. The model takes into account

that to build a certain level of reserves requires investment in public capital
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stock or infrastructure and that environment costs re associated with this

investment, as the pre-project environment will typically yield some benefit

in its natural state. We find that under =certainty and convex margin

benefits there exists an incentive to build a certain level of water reserves

(invest in water resources infrastructure) thereby avoiding drastic reductions

in consumption that would otherwise be occasioned by drought. Further, we

find that long-run water storage capacity is positively related to the level of

uncertainty. An increment in the variance of water resources increases the

long run stochastic equilibrium level of the capital stock or water storage

capacity. As an increase in the variance rate means an increase' in the prob-
<.•

ability of occurrence of extreme values of water resources, more reserves will

be required to reduce potential future losses.

On the other hand, we show that when adjustment costs are asymmetric

there exists a range of inaction for investment in water resources infrastruc-

ture. In that case the stability of the long-run capital stock increases with

respect to changes in variance. Finally, we study this issue when there is no

market for the infrastructure capital stock, and when disinvestment is costly.

In our model, II*sinvestment in w-ter resource infr structure is interpreted to

include include investment in environment I restoration. We find th t reversibility
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of investment in water resource infrastructure is increasing with the social

valuation of environmental assets and decreasing with the cost of reversal,

and that here too a range of inaction appears. Moreover, the range of inac-

tion is larger; for cost of reversal sufficiently high, the investment is in effect

irreversible.



A e PENDIX

Although the concavity of C(w) can cause problems when the second

order condition is checked, it is easy to show that it is satisfied for at least

one interesting case: the linear one. If we use a quadratic utility H ction:

U = aw — 4w2, that measures the gross consumer's surplus associated to a

linear demand function, and a concave cost function like C = dw13 with d> 0

and 13 < 1, the optimality condition (9) can be written as

or

_

a — bw — dOw13-1 — JAS, K, W) = 0 (33)

ii(S, K, W) — bw — clOw13-1 = 0 (34)

where ã(S, W) . a — JAS, K, W) is assumed strictly positive to avoid the
trivial solution w .---- 0.

From (34) we can rewrite the optimality condition for water consumption

as net mar 'nal utility equ

w ter

VI to mak:1nal cost of withdr
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ã(S, K, W) — bw = di3w13-1 (35)

that presents two solutions since the left-hand side is a linear function whereas

the right-hand side is an asymptotic decreasing convex function. In this case,

the second order condition allows us to select one of the two solutions. This

condition requires that

—b < MO — 1)d(w*Y5-2 (36)

The slope of marginal net utility has to be less than the slope of marginal
_

cost for the values defined by necessary condition (35). The application of

this condition selects the bigger of the two values located by the application

of the first order condition.

However, a third condition must be applied to this value before selecting

it as the optimal water consumption. Average net utility must exceed average

cost in order to have a positive value of the right-hand side of the Bellman

equation for the optimal w* (a shutting or closing condition). This third

condition requires that the following expression be positivel5

15We do not write the term A(aK — S) because in any case it is zero.
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Or

= 11(W, I , S)w* (w*)2 .d(w) 3 (10 — W Js

4-(.1 — 5 10JK a(W,t)Jw + 221 b2(W,t),1ww (37)

b 2 *RH S A(W, K, S) a(W, S)w* -2-(w*) d(w) (38)

where (W, K, 8) = —H (K) cl W + (I — If)Js a(W,t)Jtv

ib2(W,t)Jww is constant with respect to water consumption. Written in
this way the right-hand side of Bellman equation can be interfireted as the

benefits associated with water consumption and then the third condition

would require that these benefits be positive. Figure 4 illustrates a possible

solution for the maximization problem in Bellman's equation assuming that

Li(W, K, S) >016.

ET113

Notice that in the figure tit will be a maximum if the value RHS(tvi is

t.[eater than RHS(0) and the restriction w < W S is not operative: w* <

W S.

16For A < 0 we would have a very similar figure with the same kind of solution.
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Finally, we can also present some results for the following case: U = awa,

with a > 0 and a < 1, and C &DI', with d > 0 and < 1. If a < f3 and

the first order condition is satisfied, the second order condition selects a local

maximum that under certain not very restrictive conditions is also a global

maximum. However, if a > the local maximum will be a global maximum

only under more restrictive conditions than in the previous case. If these

condition do not hold the optimal policy consists of consuming all available

water in each moment and, therefore, it will not be optimal to store water.
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