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Abstract. this paper two models are presented to study the
relationship between capital accumulation and stock pollution
focusing on the greenhouse effct. In the first model we assume a
constant population and we analyze pollution control through choice
of capital stock level. In that model CO2 emissions depend on the
stock of productive capital and the stock of CO2 emissions has a
negative effect on production through a damage function. The second
is a Harrod-neutral technological progress model of optimal growth
with increasing population and emission abatement capital. For an
economy with constant population the existence of a steady state
with stable emissions -is guaranteed under the assumption of
concavity of the utility and production functions. For an economy
with growing population the saturation of preferences is necessary
although not sufficient.

1 This paper was written while Santiago Rubio was a visiting
scholar at the Department of Agricultural & Resource Economics,
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2 Mailing address: Departamento de AnAlisis Economic°, Universidad
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1. INTRODUCTION

The aim of this paper is to investigate if a path of economic
growth compatible with stable, emissions and concentration of
greenhouse gases exists. Since the early paper of Nordhaus (1977)
about the carbon dioxide (CO2) problem, a growing literature
devoted to the economics of the greenhouse effect has emerged. The
main issues studied in that literature have been the estimation of
costs of CO2 abatement and of economic damage of climate change.
Only a few papers have developed explicit models of economic growth
to address the issue of optimal control of CO2 emissions.

In studies by Nordhaus (1991) and Tahvonen, von Storch and Xu
(1992) climatic variables (emissions, concentration of CO2 and a
differential in temperature) are added to a model of an
exponentially growing economy. But these additions represent more
a juxtaposition than a real integration of climatic elements with
economic elements. For example, it is assumed that economic growth
is compatible with a stable concentration of 002, in order to
analyze the optimal level of emissions'.

Gottinger (1992) presents an interesting way of evaluating the
costs of CO2 abatement using a model of optimal growth and
exhaustible resources (stock of fossil fuel .energy) with an
exogenous rate of technological progress in resource requirements
and labor force growth. The author translates the constraint on CO2
c'[Icentration into a constraint on cumulative rate of extraction

finite time horizon and compares the optimal growth path when
the constraint is operative with the unconstrained case. The result
is a. tendency. to postpone capital accumulation.

In the recent special issue on global warming of the journal
Resource and Energy Ecanomics2 Nordhaus has presented a Dynamic

1 Falk and Mendelsohn (1993) present a model very similar to
Tahvonen, von Storch and Xu's model but from a partial equilibrium
approach. The same kind of analysis can be found in Harford (1976)
for a flow pollutant with adjustment costs in the emission
abatement activity.

2 See Vol. 15, No. 1, March 1993.

2



Integrated Climate-Economy (DICE) model that has several
characteristics in common with an extended version of the model
suggested in this paper. He does not however develop the model
theoretically, applying it instead to simulate different policy
experiments for controlling greenhouse gases3.

This lack of a complete, consistent neoclassical growth-
theoretic approach to the problem is the motivation for our work.
We develop a model which integrates a simplified_ dynamics for CO2
concentration and a damage function into a model of optimal growth
and we study the existence of steady states of the economy
compatible with stable emissions of CO2. Notice that if such long
run equilibria exist, they define the optimal level of emissions
and concentration of CO2 from an economic point of view.

Although our theoretical approach represents a departure in
the literature on global climate change in the sense that we focus'

. on damage of global warming to productive activities, and only
indirectly on consumption, it is related to a previous literature
.devoted to the study of optimal capital accumulation and control of
stock-pollutants4.

The influential paper of Keeler, Spence and Zeckhauser (KSZ)
(1972) contains two models of pollution control. The first is a

'model of optimal capital accumulation with constant population and
stock pollution. For this model they assume that a composite.

commodity can be allocated to consumption, investment and pollution
control. Utility depends positively on consumption and negatively
on pollution stock. Emissions . Serve no productive purpose and their
flow is assumed to be a fixed proportion by-product of Production.
In this model there are at most two steady state equilibria. At one
of them, no composite commodity is spent on pollution control (they

3 In particular he applies the DICE model to evaluate from a
pure economic point of view the following scenarios or policy
proposals: no controls, optimal policy (maximization of the present
value of economic welfare), ten-year delay of optimal policy,
twenty percent emissions reductions from 1990 -levels .and
geoengineering.

4 See the papers of Keeler, Spence and Zeckhauser (1972),
Forster (1972a), Brock (1977), Asako (1980), Becker (1982), Heal
(1982) and Tahvonen and Kuuluvainen (1993).
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called it the Murky Age Equilibrium). It is characterized by an
abundance of capital, a high consumption level and an extreme
pollution level. The other steady state (the Golden Age
Equilibrium) with positive pollution control exhibits lower
capital, consumption and pollution levels. In the second model the
emissions have a positive marginal product but they do not take
into account the dynamics of the capital stock. In this model a
fixed supply of labor is allocated to the production of emissions
which serve as an intermediate good, or directly to the production
of the consumption goods.

Forster (1972a) has an interesting analysis of pollution in
the context of the neoclassical model of economic growth. He
introduces the stock of pollution into the production function with
a negative marginal product and defi - s a differential equation for
capital depending on capital and pollution stocks assuming a'
constant rate of savings. On the other hand, he relates pollution'
to the use of capital and in this way obtains a second differential
equation for stock pollution depending on capital and pollution
stocks. Then, he studies whether this system of first order
differential equations which drives the economy has a steady state.
Under the assumptions of concavity and separability for the
production function and convexity for the emission function there
will exist a unique steady state for the economy, but in general it
will not be optimal.

In a similar model by Gifford (1973),. the stock of pollution
does not have 6ny economic role but firms have to pay an emissions
tax. • The model assumes a 'technical 'change frontier between
pollution abatement and labor augmentation. At each time there is
an exogenously given amount, of technology-improving resources and
the firms allocate them to maximize the instantaneous growth rate

5 Forster (1972b) points out that the result of the second
model of KSZ that a nonzero l level of pollution is optimal depends
on the assumption of a disutility of the first units of emissions
equal to zero. Forster shows that with positive disutility for the
first units of emissions no equilibrium at a nonzero level- of
pollution exists. However, this .condition is not sufficient for
this result. Lupta6lk and Schubert (1982) extend this model
defining an emission function which depends, on production,
consumption and depreciated capital stock, and introducing a more
general expression for abatement expenditures.
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of the value of output less the emissions tax bill. This plus a
constant savings rate reduces the dynamics of the economy to a
system of two differential equations, one for the capital-effective
labor ratio and another for the ratio between the emission tax bill
and output. The main result is that economic growth with a constant
level of pollution is possible through the use of a growing tax on
emissions, although growth of per capita output is decreased by the
control program6. •

Brock (1977) develops the second model of KSZ taking into
account the dynamics of the capital stock and introducing emissions
directly into the production function. He obtains a polluted Golden
Rule for the case of zero discount (Ramsey's approach) and he shows
that there is a unique steady state and a unique optimal path which
converges monotonically to it.

Asako (1980) examines the optimal program of economic growth
for the first model of KSZ adopting the maximin principle. His
results show that the constant utility criterion performs fairly
satisfactorily within the framework of the model. Becker (1982)
analyzes the regular maximin programs in Brock's model. This
results in a constant utility path supported by competitive prices
with government imposed effluent charges on emission producers and
environmental rental charges on consumers. Moreover, he gives
sufficient conditions for a regular maximim path to satisfy a
Hartwick rule for intergenerational equity.

. Heal (1982) reinterprets the model of Ryder and Heal (1973) as
a model of optimal capital accumulation and stock pollution. In his
model, emissions are generated by consumption. The solution to the
model is very sensitive to the specification of the utility
function. The issue is whether in a steady state the gain in
utility from an increase, in consumption is or is not offset by the
loss in utility from the associated increase in the stock of
pollution. In the first case, multiple steady states may exist. In
the second case, there is a unique steady state which can depend in

6 Stephens (1976) presents a variation of the model of Gifford
taking into account the possibility of capital augmenting technical
progress and introducing emissions in the production function. In
the last section of the paper, the model with stock pollution and
investment in emission abatement is analyzed.

5



a complex way on the discount rate, the rate of decay of the
pollution stock, and the utility function.

More recently, Tahvonen and Kuuluvainen (1993) have solved the
model of Brock for a positive discount rate. They have found that
at least one steady state exists if the productivity of capital is
'not bounded when capital tends to zero. Moreover, if the marginal

utility of consumption decreases with or is *independent of the
stock of pollution then the steady state is unique. Additionally if

the rate of discount is small enough the equilibrium point is

globally stable for bounded solutions. When emissions are

uncontrolled the steady state consumption and capital are higher

than the case of optimally controlled pollution and the steady

state has the saddle point properties'.

In this paper we present two models to study the relationship

between capital accumulation and stock pollution focusing on the
greenhouse effect. In the first model we assume a constant
population and analyze pollution control through choice of capital

stock leve18. In our mode COL emissions depend on the stock of

7 A number of other papers are less directly related to our
subject. Maybe the first model of growth and stock pollution is due
to D'Arge (1971). In his paper a simple model of the Harrod-Domar
type is used to investigate conditions under which it is possib:,,t
to grow without affecting environmental quality. D'Arge and Kogi'
(1973) formulate a model of optimal growth with stock pollution
investment in recycling machinery and equipment, but they assur
that the only use of capital is in the recycling process.
Forster (1973b) and (1977), pollution is a stock variable but
capital vanishes from the model. Maier (1974), in the line of the
model of D'Arge and Kogiku, presents a model of optimal growth with
stock pollution and recycling in which he incorporates two kinds of
capital and scarce exhaustible resources. Forster (1975) extends
his (1973b) model to -examine the effects of introducing a
nonconstant exponential pollution decay rate on the steady state
equilibrium. On the other hand Forster (1973a), Converse (1974) and
Gruver (1976) elaborate different models of economic growth with
flow pollution.

The assumption of a constant population is a standard
assumption in this kind of literature. See KSZ (1972), Forster
(1972a), Brock (1977), Asako 11980), Becker (1982), Tahvonen and
Kuuluvainen (1993), Forster (1973a), Forster (1973b) and Gruver
(1976). Heal (1982) does not specify clearly his assumption about
population. Ryder and Heal (1973) take into account an exogenously
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productive capital and the stock of 002 emissions (concentration)
has a negative effect on production owing to climate change. This
negative effect appears in the model through a damage function that
depends on 002 concentration9. As we focus on the greenhouse effect
on total production we assume that utility is only a function of
per capita consumption. In the second model, we allow population to
grow at an exogenously given rate and introduce emission abatement
capital which determines the rate of abatement for a given level of
productive capital stock.

Our main findings are that there exists a unique steady state
for the economy in the first model under the standard assumption of
concavity for utility and production functions and that at least
one steady state is possible in the model with growing population
and investment in emission abatement if there is saturation of
preferences. We establish conditions in which increasing per capita
consumption with constant emissions and concentration of greenhouse
gases is viable.

For the first model, we compare an optimally controlled
economy with an uncontrolled one and find that an economy with

uncontrolled emissions has higher steady state capital and
concentration of 002 levels than the optimally controlled economy

but that consumption can be higher or lower. Moreover, we analyze
stability properties and the comparative statics of steady states.

The paper is organized as follows. In Section 2 the model of

optimal capital accumulation and stock pollution with constant
population is presented and its properties analyzed. Section 3

and exponentially growing labor force, but in a model of optimal
growth with pollution, this assumption does not work very well.
Notice- that if emissions depend on per capita consumption the
growth of population decreases 'cteris paribus' the emission of
pollutants. The only clear exceptions are Gifford (1973) and
Stephens (1976).

We extend here the model of Forster (1972a), in which the
stock of pollution enters the production function with a negative
marginal product. We introduce this characteristic through a damage
function and assume more. general conditions for the production
function. Moreover we look for the optimal steady state of the
economy.



develops a model of optimal economic growth with abatement
investment. Concluding comments and some directions for future
research are left to Section 4.

2. OPTIMAL CAPITAL ACCUMULATION WITH CONSTANT POPULATION

We will begin with the definition and characterization of
variables, parameters and functions of the model.

Variables:

• = total production

NY = net production
• = consumption

capital stock
• = gross investment

• = stock of pollution or anthropogenic atmospheric

concentration of CO2 equivalent greenhouse gases (GHGs)
• = anthropogenic emissions of CO2 equivalent GHGs

Parameters:

p = social rate of discount
= rate of depreciation of capital goods

b = linear adjustment costs of capital (b>1)

a . fraction of CO2 equivalent emissions that enter the
atmosphere

p = rate of removal of CO2 equivalent from the atmosphere or
rate of decay

We assume that the utility function U(C) and production
function F(K) are twice continuously differentiable and strictly

concave and that the production function satisfies the Inada
conditions'°, i.e.:

lim F(K) = 0, lim F(K) = 00

10 With fixed labor supply, production can be represented
a function of the capital stock. These condition apply as well
the utility function.
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K

lim (K) = 00, 14 m F K) = 0 (2)

K-40 K -ow

In addition to these two standard functions, we are going to define

the greenhouse damage function and the emission function which

relate economic variables to emissions and concentration of CO2 or

stock of pollution. The greenhouse damage function is defined as a

proportion of total production D(Z)F(K) with Dz > 0 and Dzz 0. For

this function, there exists a critical value -2 such that, for that

value, the greenhouse damage is maximum (D(2)=1). Then, net
production will be given by NY = (1-D(Z))F(K) which is defined on

a convex subset X of R2, X = {(K,Z):2 Z 0 and K 0} and
exhibits the following properties:

aNyiaK= (1-D) FK>0 , aNY/aZ=-DzF<0

a2Ny/aK2= (1-D) FKK< 0 , a2NY / a Z2 = -DzzF< 0 a2NY/aKaZ=-DzFK< 0

- (1-D) FDzzFKK (DZFK) 2

which determines that that function is concave. Finally the \>

emission function relates economic activity and GHGs emissions. As.

emissions are an output (not planned) from productive process of

economy, a joint product of production, we propose the functional

relationship E=E(K) with EK>0 and EKK ?- 0.

For these functions the dynamics of capital stock and

concentration of CO2 are given by

(1-D(Z))F(K) = C + bI (6)

I = 1.< + 5K (7)

= sccE(K) - (8)

using (6) and (7) we obtain

k = (1/b)1(.1-D(Z))F(K) - C] - 8K (9)

9



Then he optimal path of capital accumulation and control of CO2
emiss1;ns has to maximize

U(C) e-Ptclt (10)

with respect to C subject to dynamic restrictions (8) and (9),
initial conditions and usual conditions on control and state
variables: (1-D(z))F(K) - C 0 and C, K, Z On.

In order to solve the above described optimal control problem,
we introduce the multipliers associated with constraints and form
the Lagrangian

where

g(K,z,c,x,-To = u-cuc,z,c,x) .111( (1-D(Z))F(10 -C)
+ n2K + n3z

= U(C) +

+ (aE(K) -8z)

is the usual Hamiltonian.

(12)

The corner solutions Z*(t)=2 and Z*(t)=0 are avoided by the
properties of the utility function (limc_41Jc(C)=00) . In this case

11 These last constraints imply 2 - Z 0 since if Z > 2 then
C must be n , ative to. fulfill (1-D)F - .0 0 violating the
nonnegative ,astraint. e

10



necessary conditions for an interior optimum are the following12

bUc(C) = X, (13)

= (P+8)2 - (2,311D) (l-D(Z))FK(K) - X2ocEK(K) (14)

/ 2 = (p+13)X2 + (Xlib)F(K)Dz(z) (15)

PROPOSITION 1. If assumptions of the model hold then there exists
only one steady state (r, 27, C*) characterized by the following
'warm' modified golden rule of capital accumulation

(l-D)FK = b(p+o) (//(p+13)/FDAEK (16)

Where the left-hand side is the net marginal productivity of
capital and b(p+5) + [1/(p+13)]F'DzocEK is the marginal cost of
capital. The second component of marginal cost represents the
marginal damage to production owing to an increase in emissions
because of an increase in the capital stock.

Proof. From (15) we obtained 2 = [Xi-/b(P+13) JFDz letting
X-2=0. Substituting X2 and Xi for (13) in (14) and letting 11=0 yields

0 = Uc{b(p+8) - (1-D)FK + [1/ (P+13)]FpzaEK) (17)

so that, if there e)dsts a steady state with C->0, it will have to
satisfy

(1.-D)FK = b(p+o) + [1./(p+13)1FDAEK

n If t, .."KK=0 or X2<0 the Hamiltonian is concave in (K,Z,C) and
then the necessary conditions, together with the transversality
conditions, are also sufficient (see Seierstad and Sydsaeter (1987,
p.385, Th.11)). Notice that concavity of net production guarantee
the quasi-concavity of constraint (1-D(Z))F(K)-C.n. This implies
that if we find a path (K*(t),Z*(t),C*(t)) which satisfies necessary
conditions we have found an optimal path. On the other hand, the
constraint qualification does not apply for an interior optimum
since this requires (1.-D(Z*))F(K*)-C*>0, K*, Z*, 00>0.

11



which is Condition (16). On the other hand, 2.0 establishes that
Z-.(a/13)E(K-) and then Condition (16 can be written as a function
of 1K-. Then a steady state will ex_.:.t if there is a value for K
that fulfills Condition (16) associated to a positive value for
consumption.

As (1-D)FK.is a decreasing. function with lim (1-D)FK = + 00
and lim(1-D)FK = 0 where R = E-'(1 2/a) and b(p+o) + [1/ (p+S) ]E'DzaEK
is an increasing function in the interval [0,R] with initial value
a(p+5) < + 00, then there will exist only one value K°° E (0,R) which
satisfies Condition (16). To prove that K- has associated a C- > 0,
we suppose that K7 K' Where K' is given by C = 0 = [1-
D(aE(K')/0)] F(K')-b8K'. Subtracting this last expression from
Condition (16), we obtain

or

Cl-DC-SE(K"))] Fic(K•1) -[1-DC-SE(e) )1 F(ICI) > 0
ic/

1-D[E(K°11
 >  F ( 

1-D{-ci„E(K/)] FK(K-)
(18)

and as marginal productivity of capital is decreasing we have
D[aE(K-)41 < b[aE(K')/P] from which we conclude that K7°< K' since
D(-) is an increasing function, resulting in a contradiction. Then,
K- must be lower than K' and C- will be positive.0

The graphics of Fig.1 represent a possible steady state
solution to the problem. Notice that as the derivative of (1-D)F is
equal to -Dz(a/Z)EKF + (1-D)FK, E7 can be higher or lower than K"
which is the stock of capital which maximizes consumption.

FIG. 1
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For this model net production (1-D)F is first increasing and
then decreasing because the stock of pollution (concentration of
CO2) is increasing with respect to capital stock in the steady
state (see (8)).

To develop the stability analysis of the steady state
equilibrium let us derive the modified Hamiltonian dynamic system
(MHDS) of the system (8), (9), and (13) - (15). Equation (13)
defines C as a decreasing function of X,. Denote this by C = C(X0
with Cx1 < 0. Then the MHDS is

k=1 ((1.-D(Z))F(K) -C(11)) -8K •

2=aE(K) -f3z

11= (pi-8) (1-D(z) )FK(K) -A,2aEK(K)

12.(p+0)12+-11F(K)Dz(Z)

The Jacobian of (19) evaluated at the steady state is

13

(19.1)

(19.2)

(19.3)

(19.4)



where

a DzF C
IIp+

b(p+p)
 FDzEK -

b 
-
b 

0

aElc -P 0 0

0 A::76. DzFic  a
-  b (p +p) FDzEK -aElc

17 FDz
13- FxDz - FD

b zz b P+P

e=---1 (1-D) FKK-V2saEKK and the characteristic roots

(i=1,...1 4) are the solutions of the corresponding
characteristic equation

• where -w and 0 are, respectively, the sum of all diagonal second and
third order minors of J, and 1J1 is the determinant of J evaluated
at the steady state point:

I JI 7CA1FDzz( afiC ) a (p+2)  17E KF D zCA1
b2

P (p+P)  c xcis (1-D) FKK+a2)..:Ed >0
b . b

(20)

since Cx1 < 0 and X2- < 0. This allows us to conclude that either all
roots are positive or all are negative or there are two positive

4

roots and two negative, since . As trJ. 2p all roots

cannot be negative and, as the model does not imply any restriction
on J and 0, the following kinds of equilibria are possible: A) If
roots are real then the steady state is an unstable improper node 
if all roots are positive and an unstable saddle point if two roots

14



are positive and the other two roots are negative. B) If roots are
complex then the steady state is an unstable spiral point when the
two real parts are •positive and an asymptotically stable spiral 
point if the real part of one root is positive and the real root of
the other root is negative.'

Obviously, these results are not very conclusive but from the
*Jacobian different conditions can be obtained to satisfy the
necessary and sufficient conditions of Th.3 in bockne.r, (1985, p.96)
and to guarantee in this way the saddle point property of the
equilibrium.

We now turn to the analysis of comparative statics of the
steady state. This analysis is relatively easy since the steady
state value of the capital stock is independently determined by
Condition (16), which allows us to do the analysis in a sequential
way. Differentiating that condition and ordering terms, we obtain

where

•alCt = 1
ap a

aic%  P +8 <0ab a

b- FD MO(p+p)2 " <

ars a—= <0as a

(21)

(22)

(23)

a 2 a=--,--,DzEKFK+ (1-D) F - (FxDzEK
a 

—a FDzzEK+FDzEKK) <0. (24)p+13 

Similar results about stability of steady state equilibrium
can be found in Ryder and Heal (1973) and Heal (1982).

15



Then, given the -lationship between capital stock and•
concentration of CO2 with t . 0), we obtain that

az"<0 az tl0 ,ab
az-= -<o.ab , ap < (25)

On the other hand, from (9) (with k=0), the following expression is
derived Alhen we consider a variation of b:

aCc.
= [ (1—D) FK— Ct: FD -ab T3 ZE K

air kr
."'.404%.'4' •ab (26)

This last equation tells us that the variation of consumption
remains undetermined, which was predictable because of the nature
of the steady state equilibrium. As is shown in Fig. 1, K°°
determines C- but as K7 can be lower or higher than K" according
to Condition (16), an increase of K7 can increase consumption if
Ki7<K" or can decrease it if K7>K". This will be true as well for
the variations of the other parameters.

The following pro7)osition summarizes all these results:

PROPOSITION 2: Variations of parameters have the following effects
on steady state values of the model:

a) An increase in the depreciation rate of capital (5) or in
adjustment costs (b) will decrease capital stock and concentration
of CO2.

7 f 
b(p+o) <(>) F.DzaEK then an increase in the social

rat- discount will decrease (increase) capital stock and

16



concentration of CO2.
c) The variation of consumption remains undetermined.

To conclude this section we study how an economy without emissions
control evolves, i.e., we study the suboptimal growth path of a
competitive economy when the agents take the evolution of
concentration of CO2 as if it were exogenously determined."

PROPOSITION 3: An economy with uncontrolled emissions has higher
steady state capital and concentration of CO2 levels than an
economy with optimally controlled emissions.

Proof. The case where emissions are not optimally controlled
can be analyzed by assuming k2=0. Then the steady state value of
capital stock will be given by

b(p +8) = (1-D) FK, where Z°'=--E(K) again.

Using the same kind of arguments as in Prop. 1 it is shown that
that equation has a unique solution 17 associated with a positive
steady state consumption level (t'-). To show that K7 ‹. R7 and Z-.( '2°°
we assume that K- >. R7. Then subtracting the optimal Condition (16)
from the above condition we obtain's

( 1 -D(ir) ) (1?°') - ( 1 -D(K") ) FK ( K-) 
=- 

a F ( K") Dz ( K") EK ( re) (27)
P+0

from which can be obtained the following relationship:

In Tahvonen and Kuuluvaineu (1993) the. same kind of analysis
is done for Brock's .(1977) model.

15 To simplify notation we write damage function directly
depending on K.
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1-D(K)  > Fic(res)

1-D() FK(Ir).
(28)

Then as FK(K-) F(i-) since we have assumed that K- R- and
marginal productivity of capital is decreasing, we have that D(K-)
< D(R-), that means R7 > K- since D(.) is an increasing function,
obtaining a contradiction. For this reason K- must be lower than R7
and, given the positive relationship between K and Z, Z- must be
lower than 2-.13

An interesting corollary from .this proposition is that
consumption in an uncontrolled emission economy can be higher or
lower than in an optimally controlled economy. Again the
explanation of this result is given by the characteristics of
optimal steady state. If K- > K", where K" is the capital stock
which maximizes consumption, an increase in the capital stock will
decrease consumption and will increase the concentration of CO2
(see Fig. 1).

Let us next study the dynamic properties of this kind of
steady state, i.e., the stability of the basic growth model with
accumulating emissions. In that case the dynamics of the economy
are defined by the system of differential equations

k=2--[(1-D(z))F(K)--c(11)]-8K (29)

2=aE(K)-13.z (30) •

=11 p+8_  1.--D(Z)  
FK 

(4)
b 

(31)

PROPOSITION 4. If B p, the steady state without emission control
is a saddle point or an asymptotically stable spiral point.
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is

Proof. The Jacobian of (29)-(31) evaluated at the steady state

J=

X7(1-D) x0 
_ s: nb K

CA,

a EK

DzF

and the characteristic equation

trtiii2+1N

-13

where if is the sum of all diagonal second minors of J, and

z- a C F EK > 01 -D) F
CA1X7 KK 132 1

since Cx1 <0.

On the other hand, we have
3

trJ=E
1-1

• (32)

Then the

positiveness of [JI implies that either all roots have positive
real parts or two roots have a negative real part arid one has a
positive real part. If p the case of all real parts positive is
ruled out and the steady state must be an unstable saddle point or
an asymptotically stable spiral point.0

3.. OPTIMAL ECONOMIC GROWTH WITH ABATEMENT INVESTMENT

In the previous model we have shown that there exists a steady
r
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state for economy which defines the optimal level of emissions (E-)
and concentration of CO2 (Z). In this Section we are going to
investigate if these results carry over to an economy with growing
population. To do this, we introduce these two variables (E,Z) in
the neoclassical model of optimal growth with Harrod-neutral
technological progress (for details, see Arrow and Kurz (1970)). As
the answer to this question is "no," if the economy does not devote
resources to reduce emissions, we shall incorporate a second kind
of capital, an emission abatement capital, in the mode116.

We begin with the definition of efficient labor and of
variables, parameters and functions of the model of optimal growth.
Efficient labor is defined as the labor times a factor reflecting
technological progress, i.e., 1=e'L, where L represents labor and
T is a rate of technological progress exogenously determined. As
L=L(0)e t, where it is the rate of growth of labor, we can write
1.exp{(T+70t)L(0) and defined all economic variables in efficient
labor units".

Economic Variables:

y = total production
ny = net production

kp

ka

ia

= consumption

stock of productive capital

= stock of emission abatement capital
= gross investment in emission abatement capital

Economic parameters:

1' Notice that an economy in a steady state for a model of
growth with exogenous technological progress and increasing
population is growing. Every variable (production, consumption,
capital and investment) is growing at a rate equal to the rate of
technological progress plus the rate of growth of population, and
the per capita variables are increasing at a rate equal to the rate
of technological progress, since the steady state is defined in
terms of efficient labor units. This means that, as emissions have
been defined as a function of the capital stock, a steady state is
not feasible without introduction of emission abatement capital.

" We write the variables in small letters to avoid confusion
with the absolute value of variables.
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p = social rate of discount
= rate of depreciation of capital goods

b = linear adjustment costs of productive capital (b>1)

e = linear adjustment costs of emission abatement capital
(e>1)

T = rate of technological progress in productive activity
it = rate of growth of labqr
a = elasticity of marginal utility with respect to per capita

consumption

We assume that production function is linearly homogeneous.
Then the dynamics of the two capital stocks are given by18

}ip = (l/b) [ (1.-D(Z))f.(kp) - c - eia) - 7kp (33)

1a — 71aS (34)

where y = T + it + 5.

The utility or welfare of society is determined by thelevel
of per capita consumption. The social utility index function, U(c),
is assumed to be homogeneous of degree 1 - a, a>0. Then, the
optimal growth path of the economy is found by maximizing

f: U(c)e-rtcit, where r = p-n- (1-a) T>0 (35)

Finally, we are going to assume a particular specification for
emission function

= e-etgkp, where 0 = aka, (36)

where a>0 is a measure of the efficiency of capital devoted to
reducing emissions. In this way we homogenize how technological

13 Notice that definition of net production allows us to relate
Z (concentration of CO2) to the economic variables defined in
efficient labor units in the differential equation for productive
capital. We thank Oscar Loureiro for this suggestion.
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progress is introduced into the model (remember we are assuming a
rate of exogenous technological progress in productive activity
(T)). Using this exponential function we are saying that emission
abatement capital determines the rate of abatement for a given
level of production. The dependence of 0 on ka means that an
increasing stock of capital is required to maintain a constant rate
of emission abatement .(remember that, although ka is constant,
capital stock Ka is increasing at a rate equal to T+n). So we are
assuming that, for a given level of production, emissions will be
reduced with the passage of time only if an increasing amount of
resources is devoted to. this purpose.

On the other hand, we assume that the function is linearly
homogeneous with respect to kp with the aim of being able to write
he function in terms of efficient labor units (so it is a

technical assumption).

Making the appropriate substitutions, we can rewrite the
differential equation for the concentration of CO2 as

2= aexp{(t+n-aka)t}gkp —13Z . (37)

Then, the proposed model can be stated as the following optimal
control problem

max 1 000 u (c) e-rtdt (38)
{c, ia)

s.t. = (1/b)[(1-D(Z))f(kp) - c -eial - yk (39)

ka = a - Yka (40)

= aexpf-(t+n-aka)t)gkp - 13z (41)

kp (0) =kpo?..0, ka (0) =kao?..0, T (0) =To?..0 (42)

(1-D(Z))f(kp) - c eia 0 (43)

c, kp, ka, Z 0 (44)

In this problem the necessary conditions for an interior optimum
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are:

X1 = bU

X2 = euc

= (r+y- (1-D) /b f kp X3CteXP (t+n-aka) t)g

(45)

(46)

(47)

PliC2 = r+ ) -1-X3aatexp{ (t-i-n-aka) t)gkp •(48)

3 = 3 ( r + 13 ) + ( / b ) Aos fpz (49)

Then if there exists a steady state it must satisfy

PROPOSITION 5. If there exists a value ô such that EI,(6)=0 and
b754' where y' is given by equation system

(1-D) f=o ey(t+n)/a + (p'kp'
-Dzwf + (1-D) fkp =

then there exists at least one steady state for the economy. If
14=9' the steady .state is unique. If by<9' there exist two steady
state values for productive capital stock (Jrp1,k71,2) that satisfy
the following inequalities

+ (1 -. D) fk,{} by for

The two values support the same level of consumption and abatement
capital stock but different values for the concentration of CO2,

Proof. Setting 13=0, we obtain 71/473=-(1/b(r+13))X00IfDz.
Substituting this value in (47) and (48) and using (45) and (46),
X1=X2=0 gives the equations

23



0=Uc(b(r+7)- (1-D) ficp+(cci (r+P))fDzexp{ (t+n-ak-a)t}g)

0=1J, (e (r+y) -(a! (r+13) ) fDzatexp{ ( t+n-ara) t}gk-p)

On the other •hand, from we obtain

Z-=Ivexp{(t+n-ak-a)t}k-p,

(50)

(51)

(52)

where iv=ag/P. From this last equation it is immediate that a steady
state will be possible only if le'a=(t+n) /a, establishing a direct
relationship between Ze° and le; in the steady state of economy. This
result modifies Conditions (50) and (51), giving

0=14 (b ( r+7) - (1-D) fkp+ (a/ (r+13) ) fDzg)

0=1Jc (e - (a/ (r+13) ) fDzatgk-p)

but as this last equation is not autonomous with respect to time it
will be satisfied only if there exists a value e such that uc(e)=o.
However,, the existence of a maximum for the utility function is
only a necessary condition. Additionally, it is required that the
following equation (kp=0) has solution

(1-D (wk-p) ) f (k-p) = e + e7 (t+n) /a + bykp (53)

where 7(T+70/a=i-a and a=c-. But as the left-hand side is a concave
function and the right-hand side is a linear function, Equation
(53) will have solution only if the slope of the linear function is
lower than or equal to a critical value 9' defined by the following
equations system

. (1-D)f = a + e7(T+70/a + yikp i

(54)
+ (1-D) fkp =

If by=y, equation (53) has a unique solution but, if by<T, the
linear function cuts the concave function twice and there exist.two
values (k-p1,k-p2) for the steady sate productive capital stock and
two (Z-11 Z-2) for the steady state concentration of CO, with
the. fc Ting relationships: }e3p1<k-p2 and ra1<Z°32.. For the first
equilih the slope of net production function will be higher
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than the slope of the linear function e + e7(T+70/a + bykp while,
for the second equilibrium, the reverse will occur. For the other
variables, the steady state values do not change c-1=Ce°2=a, i7a=i;1=
1ee,2 and k-a=k-ai=k-a2 - 0

In Fig. 2, we illustrate the case for which equation (53)
presents two solutions, the role of condition bMT and how the
critical value T' is determined.

FIG. 2

We now turn to a stability analysis of steady states based on
the following simplified system of differential equations

kp = (1/b)[(1-D(Z))f(kp) - - ykp (55)

t= agkp - PZ ,

where "o"= e + fe7(T+701/a.

(56)

This simplification is partially justified if we think that
once the economy is in a steady state any variation of the
productive capital stock is going to affect only the concentration
of CO2, since steady state values of consumption and emission
abatement capital and investment do not depend on productive
capital or on the concentration of CO2. Simplification does not
remove the esselltial fact that concentration of CO2 depends at the
sEeady .state.on the productive capital stock.

Reducing, when the economy is at the steady state, the
dynamics of the model to the differential equation system (55)-
(56), we can obtain clear results on stability of the two possible
long-run equilibria.

PROPOSITION 6. (epi,Z-1) is an unstable saddle point whereas
(ep2,272) is an unstable improper node or spiral point if (1-
D)4p>b(74) and an asymptotically stable improper node or spiral
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point if (1-D)4p<b(74).

Proof. For System (55)-(56), the Jacobian matrix is

LTE

1-Df - y
b

ag

and the characteristic equation is

fD

13

2 + ( 13 411 
1-D 
b -Lk) 

iL 
 - 

1-D 
fk.P-Y) abg fpz =

(57)

(58)

where the last term is the Jacobian determinant evaluated at the
steady state I JE I - For the first equilibrium -Dzwf + (1.-D) fkp is
greater than by which implies that IJElI=rU-lr-2M < 0. The two roots are
real and have different sign, defining a saddle point. For the
second equilibrium -if + (1-D)fkr, is lower than by which implies
that IJE2=lrH2 I H > 0. Then the two roots can be real or complex andr--

positive or negative but, as tr J = (1-D) /b• fkp-y-13.µ1-1412, we may
conclude that if (1-D) /b• f>7+13 the two roots have to be positive.
and then the equilibrium point is an unstable improper node (if the
roots are real) or an unstable spiral point (if they are complex).
In the other case (1-D) /b• f<7+13 the two roots are negative and the

equilibrium point is an asymptotically stable improper node (if the
roots are real) or an asymptotically stable spiral point (if they

are complex19 . 0

We conclude this section with a comparative statics analysis

of steady state. Using (53) the following signs are obtained

19 When the equilibrium is unique the Jacobian determinant is
zero. Consequently, the two roots are zero and an optimal path to
reach the steady state cannot be defined.
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ak; ak; _ (e/ a) (T + Tr + y) + bkp
at an (1 - D) - Dzilr f - by

ak; _ (e/ a) (T + TL)+ bkp (>0
aK (1 - D) - Dziltf - by l<0

>0
<0

for Ikpias 1kp2-

11
ak;  ylc kp 

or

I.

ab (1-D) fk - Dz.* f - by
P2

ak;  Cy / a) (T + n  f1) g°>0 for{ k

ae (1-D) - DA: f - by l<01 kp2-

ak; (-ey/a2) (-c + 71) i<01 f 1k 1or Pi
aa (1-D) fk - D - by l>01z P2

(59)

(60)

(61)

(62)

(63)

The effects of variations of parameters on Z- will have the same
signs as these partial derivatives since concentration is
positively related to the stock of productive capital (Z0..14fk-p) . On
the other hand, as the abatement capital stock only depends on T,
it and a according to the expression ea = (T+70/a, we have

= -  (t+n) <0.
at an a aa a

(64)

The other parameters (8, b, e) do not have any effect on the steady
state value of abatement capital stock. Finally, as the steady.
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state investment in abatement capital is given by ip% 7k;

the same signs apply for this. variable.

The following proposition summarizes these results.

PROPOSITION 7. Variations of parameters have the following effects

on endogenous variables of the model:

a) For ('p1' Z°°) all parameters but the rate of efficiency of

emission abatement capital are positively related to the productive
capital st-ck and the concentration of CO2.

b) Fc (K°p2, Z-2) all parameters but the rate of efficiency of
emission a. cement capital are negatively related to the productive
capital s- k and the concentration of CO2.

c) F :he two equilibria, stock of and investment in emission
abatemem spital increase with the rate of growth of the economy
(T+n), de ease with the rate of efficiency of emission abatement

capital (a), and are independent of the other parameters ($5,b and
e).

CONCLUSIONS

The two main results of this paper concern the existence of

steady states of the economy that are compatible with a stable flow

of emissions and concentration of CO2. For an economy with constant

population the existence of a steady state is guaranteed under the

standard assumption of concavity of the utility and production

functions. For an economy with growing population, there are

additional conditions: saturation of preferences and low values for

the adjustment costs of productive capital, the rate of growth of

the economy and the rate of depreciation of capital goods. In this

case there will exist a. path of economic growth compatible with

constant emissions if society devotes increasing resources to

reduce emissions or to improve the efficiency of productive capital

in terms of the relation emissions/production. However, if the
economy grows very fast, investment in abatement will have to be

very high to assure sufficient resources for increasing per capita

consmption, Thus, growth may occur only at the price of more

emissions and higher concentrations of CO2 in the atmosphere.
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Another interesting result is that in the model of constant
population, uncontrolled emissions do not necessarily imply more

per capita consumption. With a damage function the model of optimal

capital accumulation presents a modified golden rule with a
component that reflects the marginal damage caused by an increase

in CO2 concentration. But, as this component depends on the

discount rate, the steady state capital stock can be larger. or

smaller than the capital. stock that maximizes per capita
consumption. Then, as an uncontrolled economy (the agents take the

evolution of concentration of CO2 as exogenously determined) has a
larger capital stock than an optimally controlled economy, the
uncontrolled economy can also have lower per capita consumption.

Further research is required in the stability analysis of the
models. Mainly for the first model the possibility of an unstable

improper node or an unstable spiral point must be carefully checked
because the economy cannot reach those kinds of equilibrium points.

One possible extension of the first model can be to
incorporate the stock of pollution to the utility function and take
into consideration the possibility that resources are allocated to

improve the efficiency of productive capital. This extension would

complete integration of the greenhouse effect into the models of

growth with stock pollution.

Another possible extension would be to take into account

different kinds of capital stocks with different structures .of

. adjustment costs in order to capture some of the phenomena involved

in the adjustment to changes in GHG concentrations that have not

been analyzed here.

Finally, we have assumed that damage caused by concentration

of CO2 thi.ough climate change is known with certainty and that it

changes in a smooth and continuous way with the size of the CO2

concentration until it reaches its maximum value. There is,

however, great uncertainty about climate change .and its effects,

and the possibility of sharp discontinuities with disastrous

effects should not be neglected. This is another area meriting
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further research'.

REFERENCES

Arrow, K.J. and Kurz, M. (1970), Public investment, the rate of

return, and optimal fiscal policy, Baltimore:Johns Hopkins.

Asako, K. (1980), 'Economic growth and environmental pollution

under the max-min principle', Journal of Environmental
Economics and Management 7:157-183.

Becker, R. (1982) , 'Intergenerational equity: the capita:-
environment trade-off', Journal of Environmental Economics
Management 9:165-185.

Brock, W.A. (1977) , .'A polluted golden age' in Economics of natural

and environmental resources, V .L. Smith (ed.) , New York:Gordon
& Breach, Ch. 25.

Converse, A.O. (1974), 'Environmental controls and economic

growth', Journal of Economic Theory 7:411-417.

Cropper, M.L. (1976), 'Regulating activities with catastroph'

environmental effects', journal of Environmental Economics

Management 3:1-15.

D'Arge, R.C. (1971), 'Essay on economic growth and environment._

quality', Swedish Journal of Economics 73:25-41.

D'Arge, R.C. and K.C. Kogiku (1973), 'Economic growth and the

environment', Review of Economic Studies 40:61-77.

Dockner, E. (1985), 'Local stability analysis in optimal control

2° Cropper (1976) uses the model of Forster (1973b) to develop
a model of catastrophic pollution based on the example of
radioactive pollution produced by a nuclear power plant. In his
work the stock of polltt.ion affects the probability that a
catastrophe occurs. Fisher and Hanemann (1993) discuss the
implications of catastrophic climate change impacts for the
behavior of damage functions.

30



problems with two state variables' in Optimal control and
economic analysis 2, G. Feichtinger (ed.), Amsterdam:North-
Holland, pp. 89-103.

Falk, I. and R. Mendelsohn (1993), 'The economics of controlling
stock pollutants: An efficient strategy for greenhouse gases',
Journal of Environmental Economics and Management 25:76-88.

Forster, B.A. (1972a), 'A note on economic growth and environmental
quality', Swedish journal of Economics 74:281-285.

Forster, B.A. (1972b), 'A note on the optimal control pollution',
Journal of Economic Theory 5:537-539.

Forster, B.A. (1973a), 'Optimal capital accumulation in a polluted
environment', Southern Economic journal 39:544-547.

Forster, B.A. (1973b), 'Optimal consumption planning in a polluted
environment', Economic Record 49:534-545.

Forster, B.A. (1975), 'Optimal pollution control with a non-
constant exponential decay rate', journal of Environmental
Economics and Management 2:1-6.

Forster, B.A. (1977), 'On a one state variable optimal control
problem. Consumption-pollution trade-offs', in Applications of
control theory to economic analysis, N.V. Long and N. Vousden
(eds.), Amsterdam:North-Holland, Essay 2.

Gifford, A. (1973), 'Pollution, technology and economic growth',

Southern. Economic Journal 40:210-215. •

Gottinger, H.W. (1992), -'Optimal economic growth when CO2

constraints are critical', Energy Economics 14:192-199.

Gruver, G.W. (1976), 'Optimal investment in pollution control .
capital in a neoclassical growth context', Journal Of
Environmental Economics and Management 3:165-177..

Harford, J.D. (1976), 'Adjustment costs and optimal waste
treatment', journal of Environmental Economics and Management'

31



3:215-225.

Heal, G. (1982), 'The use of common property resources' in

Explorations in natural resource economics, V.L. Smith and

J.V. Krutilla (eds.), Baltimore:Johns Hopkins University

Press, Ch. 3.

Keeler, E., M. Spence and R. Zeckhauser (1972), 'The optimal

control of pollution', Journal of Economic Theory 4:19-34.

Luptank, M. and U. Schubert (1982), 'Optimal economic growth and

the environment' in Economic theory of natural resources, W.

Eichhorn et al. (eds.), Wurzburg:Physica, pp. 455-468.

Maier, K-G. (1974), Environmental Economics: A Theoretical Inquiry,

Baltimore:Johns Hopkins University Press.

Nordhaus, W.D. (1977), 'Economic growth and climate: The carbon

dioxide problem', American Economic Review 67:341-346.

Nordhaus, W.D. (1991), 'To slow or not to-slow: the economics of

the greenhouse effect', Economic Journal 101:920-937.

Nordhaus, W.D. (1993), 'Rolling the 'DICE': An optimal transition

path for controlling greenhouse gases', Resource and Energy

Economics 15:27-50.

Ryder, H. and G. Heal (1973), 'Optimal growth with intertemporally

dependent preferences', Review of Economic Studies 40:1-31.

Seierstad, A. and K. Sydster (1987), Optimal control theory with

economic applications, Amsterdam:North-Holland.

Stephens, J.K. (1976), 'A relatively optimistic analysis of growth •

and pollution in a neoclassical framework', Journal of

Environmental Economics and Management 3:85-96.

Tahvonen, 0. and J. Kuuluvainen (1993), 'Economic growth, pollution

and renewable resources', Journal of Environmental Economics'

32



and Management 24:101-118.

Tahvonen, 0., H. von Storch and J. Xu (1992), 'Optimal control Of
CO2 emissions', Mimeo.

33





FIG. 2




