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1. INTRODUCTION

One of the topics in the economicjiterature on natural

resources is the distinction between physical and economic

exhaustion of resources. The latter occurs when the increase in

marginal extraction (or harvesting or pumping) cost above the

economic limit prevents further depletion of stock below its 'long-

term equilibrium' value. However, from among the two concepts, the

economic exhaustion has had a larger acceptance in the literature.

So in the case of the model of optimal management of ground water

it is assumed, more or less explicitly, the economic exhaustion .

(see the papers of Burt (1964, 1967), Brown and Deacon (1972),

Gisser and Sanchez (1980) and, more recently, Neher's book

(1990)1) .

However, Domenico, Anderson and Case's (1968) paper is an

exception. These authors distinguish two elements in an aquifer:

the natural recharge (a flow variable) and the water reserves (a

stock 14.rariable) considering the latter as an exhaustible reource.

Consequently, they split up the rate of extraction in two parts,

the 'sustained rate' and the 'mining rate' and take into account

and analyze the conditions for physical exhaustion as one of the

possible long-term equilibria of the model.

In our work this approach is taken up again in the framework

of optimal control theory, and it is proceeded to a complete

characterization of all possible long-term equilibria (steady

states) of the standard model of optimal management of an aquifer.

The results show that, given the adequate values for the

parameters., the long-run equilibrium of water reserves can be any

value in an interval defined by the minimum reserves compatible

with the geological 'survival' of the natural recharge and the

maximum storage capacity of the aquifer. The conditions, ,in terms

of steady state price, extraction costs and rent, that determine

each one of the different kinds of possible equilibria are defined

in Propositions 1, 2 and. 3.

In addition to the economic exhaustion assumption, another
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usual assumption in the model of optimal management of an aquifer

is that the demand is stationary2. This assumptipn has already been

relaxed in the literature on biological renewable resources, see,

for instance, Berck (1981), but it has not been relaxed yet in the

economic literature on ground water3.

In the second part ,of our work we lift that assumption

incorporating a dynamic component in the demand function and we

study the possible steady states associated to the optimal

management.

The main result, which is presented in Proposition 8, is that,

if the rate of interest is greater than the demand's rate of

growth, there exists a unique steady state which implies the

physical exhaustion of initial water reserves, resulting that the

incorporation of a dynamic component in the demand function

drastically, reduces the number of possible steady states with

respect to the model with stationary demand. So, a growing demand

will lead to a physical exhaustion of an aquifer and will emphasize

the exhaustible character of the resource.

The paper has been organized in the following manner: in the

next section the model of optimal management with stationary demand

is completely characterized; in the third, an illustrative example

with linear functions is presented;" in the fourth, growing demand

is incorporated into the model and the resulting steady state is

defined. In the last section, the main conclusions are summarized.

2. THE MODEL OF OPTIMAL MANAGEMENT WITH STATIONARY DEMAND

We will begin this section defining the assumptions that

characterize the standard model of optimal management of a single-

cell aquifer according to a partial equilibrium approach under

certainty prediction.

(A-1) The dynamic constraint. The natural growth (recharge)

rate R is modeled as exogenously determined and constant. As an

aquifer "is a geological natural resource we assume that the
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recharge is not stock dependent. Let x, a scalar, be the water

reserves, then the dynamic constraint is described by the usual

differential equation = R (1-a)q, where.g,is the flow rate of

extraction and a is the return flow coefficient.

Besides the usual nonnegativity constraints we assume a

maximum capacity for the single-cell aquifer R > 0. This assumption

will permit us to . determine under what conditions ,the optimal

management gives a steady state at this value.

(A-2) costs. The average and marginal cost of pumping water is

given by c (x), a convex monotone decreasing differentiable function •

of x. Besides the margiz2a1 post is bounded in the following way:

0, limx..oc (x) < 00, lim,„2-Ecl(x) 0, 1 m -o ci(x) <x CO .

We assume that the marginal (average) cost of extracting can be as

great as one wants but finite.

• (A-3) Demand. Consumers' preferences are represented by a

downward sloping demand inverse curve p(q) which is continuously

differentiable and stationary (in Section 4 we relaxe this

assumption). Moreover we assume that the function is asymptotic to

the axes of coordinates.

(A-4) Present Value Maximization. Let the objective of a

management authority be to maximize the present .value of net social

benefit. This is defined as gross consumer's surplus minus total

costs.

As long as an intertemporal perfect competitive equilibrium

,supports an intertemporal optimal allocation of the resource

according to Assumption 4, we will pose the problem which the

management authority is faced as a maximization problem of the

present value of the benefits derived from the exploitation of the
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aquifer, assuming a price taker behavior.

Then the management authority's problem is

maxq fo e
-rt - c (x)] q dt (1)

s.t. .71-=R - (1-a)q(p), x(0)=x0 > 0,

x o, € [0,00) ,

where r is the rate of interest, p is the price of water and xo are

the initial water reserves of the aquifer.

In order to solve the above indicated problem we introduce the

multipliers 11(t) and 712(t) associated with Constraints (1.2) and

form the Lagrangian

where

Cx„ q, 1,4/11,112) = X(x, + (3-e-x) + 112x (2)

= [p-c (.4] q + )[R - (1-a)q] (3)

is the usual Hamiltonian.

The corner solutions that q=0 or 00 are avoided by (A-3), in

this case the necessary conditions, provided the constraint

qualification holds, are the following5

p=c(x) + (1-a).X 4)



1=r1 + (x) q + 111-112

o (=0 if x> x).

112 (=0 if x > 0)

being the transversality condition as it was established by Arrow

and Kurz (1970,p.49,Prop.8)

e-zel(t) 0, limt_ (t)x(t) = 0 (8)

where Condition (4) is the optimality, condition: price equal to

marginal extraction cost plus ,rent.

If we develop (4) and (5) we obtain the following differential

equation for the price

.15=r (p-c) + cIR + (1-ct) (111-12)

that with the dynamic constraint of water 'reserves and the

inequalities (1.2)-(6)-(7) permit us to obtain the optimal path of

the variables of the problem if the transversality condition holds.

If we focus on an interior solution and we look for the steady

states of the system of differential equations, we have two

equations that have to be satisfied

R (1-a) q(p) =0 (10)

r[p-c(x)] + cl (x) R=0 (11)

As Equation (10) does not depend on x we can find the steady

state price directly from this equation. Obviously, if the (A-3)
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holds Equation (10) has an unique positive solution we design as

On the other hand, we can derive an explicit function for the

price from Isocline (11)

P=c (x) - cl 
(x) R (12)

which gives us the optimality condition that characterizes the

steady state. This condition says that in the steady state the rent

must be equal the positive effect of the natural recharge on

marginal extraction cost over the rate of interest.

Moreover, we have

dpi

dx115-0
(x) _ cu(x)R < 0, Vx CO (13)

According to this, there will exists a solution in the

interval (0,5) and it will be unique if

c1(x)R,
limx_o[c (x) - 

cl (x) R
] 

r 
> (x) - (14)

this condition guarantee that the isocline' p=0 cuts the isocline

which is parallel to the horizontal axis, at the level 15. The

uniqueness of the solution is immediately derived because the

isocline p=o is decreasing with respect to x. A graphical

illustration of this is given in the phase plane of Fig. 16.

To determine the stability properties of the first, order

differential equations system we examine the characteristic roots

of the linearization of the system.

On the basis of the two-equation system (9)-(1.1) we first

form the Jacobian matrix and evaluate it at the steady state point



i=(),x*), being x* the solution to Equation (12) for p=15,

be

.315 at,
ap ax
axax
ap. axx.)

(15)

7

The four partial derivatives, when evaluated at E, turn out to

-1 = r > 0
ap E

a .-rci(x*) + cll(x.)R > 0al 

E

1 . - (1-ex) ql (P) > 0
aP E

ax1 _ 0
E -

It follows that the Jacobian matrix takes the form

[
— (1-0) ciri 03) 0

(x*) +cll (x*) R
(16)

and as the Jacobian determinant is equal to the product of the

characteristic roots we have

1'7E1= (--rci (x*) (x)R) (1-00 (p) < 0 (17)

• This -implies that the two roots have . opposite signs, which

eseablishes that the critical point of the linearized system is

locally a saddle point.
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For this kind of critical points there are two stable branches

leading toward E in the phase plane, so the,re,..,exists an optimal

path to reach the steady state (f),x*) as it is illustrated in the

phase plane in Fig. 1.

FIGURE 1

As regards the transversality condition the lim,„&"1(t) must

be zero since x* > 0. But given that 1 is a positive constant equal

to (b-c(x*))/(1-a) in the steady state, the transversality

condition will be satisfie because the discount factor tends to

zero when t tends to infinite.

Finally, we can use the differential equation (9) to determine

the time needed to reach the steady state

T* f
p(o) dp o)

(p_c.) +c/R 
1 

J- 
1 
n‘

t 
r (p-c) +c

,,R)ip (18)

Then as r(b-c(x*)+c' (x*)R=0 in the steady state, T* will be 00 and.

the optimal path will aproach asymptotically to the critical point

(15,x*)'•
All this can be summarize in the following proposition:

Proposition 1. If Assumptions (A-1)-(A-4) and Condition (14) hold

then:

(a) There is only one steady state (15,x1) with 0 < xl <2', and

the perfect foresight optimal path leads to the steady state.

(b) The steady state is a saddle point equilibrium and the

optimal path approachs asymptotically to it.

(c) If the initial stock is greater (lower) than the steady

state water reserves, then the initial price is lower (greater)

.than the steady state price and the price is increasing

(decreasing) along the optimal path.
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But in this problem there exists two possible corner solutions

for the steady state. If

(19)

the isocline P=0 with i = 112 = 0 does not cut the isocline Sc=0 in

the interior of the first quadrant. Then a corner solution with x*

= 0 will appear as the solution to the system p = 0 and * = 0. For
this case the differential equation (9) is written in the following

way

15=T (p-c) + cIR - (3.-a) n2 (20)

with 112 0, and the isocline p=o now will be

p=c (x
c" (x) R- (1-a) 112 (21)

then the rent has another component equal to net value of the

.multiplier (shadow price) associated to the restriction of

nonnegativity capitalized on the rate of interest.

The optimal value of %will be choosen so that Isocline (21)

intersects the isocline *=0 at the point .(15,0). If Condition (19)

holds Condition (7) will be satisfied and 112*(t) 0 in the steady

state.

Moreover, as 112*(t) is a constant the partial derivatives of

the linearized system will not change and the Jacobian determinant

will continue being negative. For this reason the steady state over

the vertical axis will continue being a saddle point but in this

case with only three branches. In the graph of the Fig. 2 this

corner solution is represented.
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FIGURE 2

Now only one of the three branches is a stable one and

consequently there is only one possible approach to the equilibrium

point. For any value of the initial water reserves the optimal path

presents an increasing price with an initial price lower than the

steady state price b.

For this kind of solution one can wonder if a discontinuity in

the price it is possible in the moment when the system arrives at

the steady state. In other words, is it the optimal path in Fig. 2

the unique path to the steady state? As long as in an optimal

control problem with pure state constraints, discontinuities in the

control and costate variables are allowed, this question is not

irrelevant and a clear answer must be offered.

As we mentioned in Footnote (5) if there are discontinuities

they have to satisfie the following 'jump condition'

* T(I.) =X CT ag(x () -) -P ax
(22)

where p 0 and ag(x*(t),T)/ax is the partial derivative of the

restriction.

If T designs the moment when the system arrives to the steady

state and if there is a jump of the price at that moment, we will

have

  > 0
1-a

(23)

while the 'jump condition' gives A(T)-.(T) s 0. This forbides any

jump in the optimal path and for this reason the optim
al path of

the price will converge monotonically to b.

On the other hand, the transversality condition 
holds because
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the steady state reserves are zero.

One interesting effect of the restriction on the optimal path

is that the optimal time of the exploitat,iopy of reserves can be

finite, the system can reach the steady state in a finite period of

time as it can derived from Expression (18). If r(15-c(0))+c'(0)R >

0 i.e. if Condition (19) holds as a strict inequality then

Expression (18) will give a finite value for T* and the water

reserves of the aquifer will be exhausted in a finite period of

time. On the other hand, if Condition (19) holds as an equality

then r(15-c(0))+c'(0)R=0 and in this case it takes to the optimal

path.an infinite time to arrive to the steady state.

We want to remark that an optimal physical exhaustion of the

initial water reserves of the aquifer does not mean the

'extinction' of the resource. An aquifer can become 'extinct'

through overuse if its geology is such that water channels are

supported by the water within them. As water is withdrawn; the

channels can collapse.

In this paper we assume that an optimal management can not

drive to the 'extinction' of the aquifer. For this reason if a zero

water reserves destroy the capacity to store water, Restriction

(1.2) would have to be rewritten as R > x > x, where x is the

minimum volume of water reserves compatible with the 'survival' of

the aquifer. Obviously all the anterior results hold for a steady

state x*=.x.

Another possible reason to raise the lower bound of the stock

is the exhaustion of the quality of water. If,for instance, a very

low level of the aquifer provoqups the salinization of water then

there will be an exhaustion of the resource because of the loss of

quality8. Again, a respecification of the restriction would be

necessary to adequately model the problem of the optimal

management.

.The following proposition summarizes the anterior results:
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Proposition 2. If Assumptions (A-1)-(A-4) and Condition (19) hold

then:

(a) There is only one steady state 06,0),, and the perfect

foresight optimal path leads to the steady state. In this case it

is optimal to exhaust physically the initial water reserves of the

aquifer or it is optimal to exploit it at the minimum capacity

compatible with the 'survival' of the aquifer.

(b) The steady state is a saddle point equilibrium. If the

Condition (19) holds as a strict equality (inequality) it takes an

infinite (finite) time to exhaust the reserves.

(c) In both cases, the initial price is lower than the steady

state price and the price is increasing along the optimal path.

The other possible corner steady state will occur if

lim[c(x)-  
ci(x)R] (24)

then the isocline P=0 with 111=n2=0 does not intersect the isocline

*=0 in the interior of the feasible set defined by the restrictions

and a corner steady state with x*=5c- will be the solution to the

system Sc=0 and p.o. In this case the differential equation (9) is

written as

=r(p-c) + cIR + (1-a) (25)

with i k 0, and the isocline P=0 now will be

(x) R+ (1-cx )11 (26)

then the rent will decrease by the net value of the multiplier
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(shadow price) associated to the restriction capitalized on the

rate of interest.

The optimal value of n1 will be choosen, so, that Isocline (26)
cuts the isocline *=0 just at the point (15,5?). If Condition (24)

holds Condition (6) will be satified and ih*(t) 0 in the steady

state.

Moreover, as 111* (t) is a constant the Jacobian determinant will

continue being negative but the saddle point only will present

three branches. In the graph of the Fig. 3 this corner solution is

showed. .

FIGURE 3

Now only one of the three branches is a stable one and then

there is only one possible approach to the equilibrium point. The

initial price will be higher than the steady state price and the

optimal price path will be decreasing throughout the period of

exploitation.

Discontinuities are not allowed by the 'jump condition' and

the optimal path is unique and converges monotonically to fp.

As regards the transversality condition the same argument that

we used for the interior solution can be now applied. •This will be

satisfied as long as l*(t) is constant at the steady state and

discount factor tends to zero when t tends to infinite.

If we define adequately Expression (18) to avoid the logarithm

of a negative number and we take the absolute value, we obtain the

same kind of result that we obtained for the other corner solution.

So if (24) holds as a strict inequality the optimal path will reach

the steady state in a finite time.

The following proposition containts the results associated to

this kind of corner solution:
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Proposition 3. If Assumptions (A-1)-(A-4) and Condition (24) hold

then:

(a) There is only one steady state ap,A), and the perfect

foresight optimal path leads to the steady state. In this case it

is optimal to exploite the aquifer at its maximum storage capacity.

(b) The steady state is a saddle point equilibrium. If the

Condition (24) holds as a strict equality (inequality) it takes an

infinite (finite) time to reach the maximum storage capacity of the

aquifer.

(c) In both cases, the initial price is greater than the

.steady state and the price is decreasing throughout the optimal

path.

Now we turn to the characterization of the optimal path in

terms of a capital market rule. Working out on necessary conditions

the following rule can be obtained

(p-c)-r(p-c) + (1-a) c1s:1
dt

(27)

that it is equivalent to the differential equation that we .can find

in Berck. (1981, p.108) or Pindyck (1984, p.281) for biological

renewable resources if we eliminate the stock from the dynamic

constraint of the resource. However, as there is no opportunity

cost for the rate of extraction in terms of growth of the stock,

this rule places the groundwater reserves more in the side of non-

renewable resources than in the side of renewable resorces. Besides

the difference in the capital market rule, it can be established

another difference with respect to the biological renewable

resources that is related with the uniqueness of the steady state.

For an aquifer there will always exist an unique solution as it can

be,concluded from Propositions (1)-(3), however for a biological

renewable resource if the average costs are not constant the steady

state is not unique (see Berck (1981, p.108)).



15

To be over with this section we will investigate the effects

of variations of the rate of interest on steady state values.

For the case of an aquifer the analys.ls,ls.(Nisy,because the

steady state price is only determined by natural parameters (4,R).

For this reason a variation of the rate of interest will not have

effects on the steady state price and the unique effects will be on

the water reserves steady state value.

Differentiating (12) we find

cbc*  cl (x*) R
d.r r trcl (.7e) -cll (x*)R

<0 (28)

since c'(x) < 0 and c"(x) 0. This gives-a standard result:

Proposition 4. If Condition (14) holds then clf)/dr=0 and dx-Vdr .< 0.
•

So an increase in the rate of interest will reduce the steady

state water reserves.

However, when the corner steady states occur the effects are

not so clear. If Condition (19) holds a variation in the rate of

interest can have no effects on the steady state reserves if the

sign of the inequality does not change. In this case a critical

rate can be defined on the basis of the strict equality of

Condition (19) r=c'(0)R/-[15-c(0)] where r is positive given that

c(0) must be less than 15 to (19) holds. So r is the value that
equals the marginal extraction cost plus the rent to the price of

the steady state, and then for any rate less than that critical

value it will not be possible a steady state with zero reserves.

Obviously, a enough low rate will give rise to a enough high rent

to avoid Inequality (19). So low rates of interest play against the

optimal physical exhaustion of the initial water reserves. On the

other hand, c(0) < 15 appears as a necessary condition for this kind
of singular point, and r r as a necessary and sufficient

condition. From this we can conclude that variations of the rate of
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interest will not have any effects on the steady state since for r

less than r it is not possible that solution and for r greater than

or equal to r Condition (19) holds and the stpady state does not

change. In this last case the variation of the interest rate will

be supported by the multiplier n, that will increase when the rate

of interest increases.

In the following proposition we summarize these effects:

Proposition 5. (a) If c(0) < p there exists a critical value for
the rate of interest r, so that if r <r then a steady state (P,O)
it is not possible.

(b) If r r then dxt/dr=0 and d7721.11/dr > 0. Variations of the

rate of interest does not affect to the steady states reserves.

For the other corner solution similar results are obtained.. If

c(R) then Condition (24) holds independently of the value of

the rate of interest. It is clear from this condition that when the

rate of interest tends to 00 the rent tends to zero but even then

Condition (24) would hold because c(R) b. This means that that

kind of steady state will appear for any rate of interest and c(R)

results a sufficient condition for operating the aquifer at its

maximum storage capacity.

If c(R) < 15 as the rent is decreasing with respect to the rate

of interest there will exist a critical value for the interest rate

which equals the marginal cost plus the rent to the steady state

price. This means that for any r s t, where t is c1 (5-)R/-[15-c(R)]

Condition (24) holds as strict inequality and then variations of

the interest rate will not affect to the steady state. Again the

variations of the interest rate will be supported by the

multiplier.

In Proposition 6 we organize these results:
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Proposition 6. (a) c(g) p is a sufficient condition for a steady

state (p,A).

(b) If c(2) < p then there exists a .criAical value for the

rate of interest f7, so that if r si:= then dx-t/dr=0 and diillydr < 0.

Variations of the rate of interest does not affect to the steady

state reserves.

3. AN EXAMPLE: THE LINEAR MODEL

With this example we present an illustration of the results

obtained in the previous section and an explanation of how the

optimal phats can be computed for the different steady states.

The linear model is based in two linear functions, p(q)=a-b(q)

is the demand inverse function and c(x)=co-clx is the marginal

(average) extraction cost with parameters such that c(x0) > 0 and

c(R) 0.

For this two functions, the differential equations (9) (in

terms of the rate of extraction) when the restrictions are not

operative is

r (a-c0) -c1R

'•=1-$2.-
(29)

that with the dynamic restriction (1.1) form a system of two first

order linear equations.

If we calculate the Jacobian determinant of the coefficients

matrix we have

„ rc
Y1-Y2=1,71=- 1 (1-a) <0 (30)
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then there is one positive eigenvalue 171 and one negative y2 and the

general solution to the homogeneous system is

q* (t) =Ae-Y1t+BeY2t

(1-a) 
:K* ( =- (1-cc)  BeY2t

Y2

(31)

(32)

where € '=(l, (1-a) /y1) and € ' 2= (1, (1-a) /y2) are associated

eigenvectors of the coefficients matrix and A and B are arbitrary

constants.

One particular solution to the complete system is 4=0 and *=0,

which gives us the following two values

R 
(1-a)

-
x*=R( + 

)aco
 - 

c1(1-a)

(33)

(34)

If we write the left-hand side of Condition (14) in terms of

the functions of the example we have

ciR
co+ ->p=a-b 

1-a
(35)
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which implies x* > 0. On the other hand, the rigth hand of

Inequality (14) gives

ciRp=a-b=>c0 - C1X+1-a
(36)

which implies in this occasion x*< R. So the.particular solution

for reserves is its steady state value and this is in the interior

of the feasible set defined by Restriction (1.2). Thus, the

solution for the system of differential equations is

q* e) =AeYlt+BeY2t+ R (37) .
1-a

x*(t) =._ A
- y 
e 

t 
-  (1-00 eY2t+x•

Y3 Y2
(38)

To determine the constants we use the transversality condition

and the initial condition x(0)=. xo. If we substitute q(t) and x(t)

in Condition (4) respectively for (37) and (38), and we multiply by

e-" we obtain the following expression

c1 R ee rt- 1 ((b+  
c
1
(1-a 

- Ae (Y1-2.) t
r(1-a) 1-a J71

+ (b+  
c
1
 (1-a)

) Be (-Y2-1.) t]
-Y2

(39)

then, as r=y1-1-y2 we have y1-r=-y2 > 0 and y2-r=-y1 < 0, the
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transvprsality condition only will be held if A=0 since x* > 0.

Using now the initial condition we obtain the temporal path for the

control and state variables.

4--N y2 (x*_x)eY2t+ R
1-a 1-a

(40)

x*(t) =x0eY2t+x* (1-e)2t) (41)

If x* > xo then q*(t) < R/(1-a) since y2 < 0 and the rate of

extraction and the water reserves will be increasing, whereas if x*

< xo then q*(t) > R/(1-a) and the rate of extraction and the water

reserves will be decreasing, moreover limv.,„q*(t) = R/(1-a) and

= x*, the optimal path asymptotically approachs the

steady state.

On the other hand, if Condition (24) holds then x* > R. In

this case, the steady state reserves are x* = R. If we recall the

particular solution as then the dynamics of the system is given

by the following system of equations:

0=AeY1T+BeY2T

(1-a) 
x  A-

(1-a  
Jo

) T, - 
=- +.2C

yl Y2

(42)

(43)



le- (1-a)  AeY1T-  (1-a)  BeY2T+2
-Y1 -Y2
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(44)

for the two constants A and B and for the period of accumulation T

< co .

This system can be reduced to one equation

Tc-2 x -2-0 (-Y2e-Y1T-
Y2 -71 )

e-Y2T) (45)

which has a strictly positive unique solution for T. Then

calculating the constants A and B in terms of T* and substituting

them in (37) and (38) we have

and

q* (t)

Cii-2Oy1y2 (ey2(t-T*)_ey1(t-ro))+

- 

1 

R
(1-a) (372-371) 1-a

1-a

VtE[0, Ta]

Vte 03)

OF-40  (372eY1(t-7") ) +2 VtE [0 ,2]
x*

VtE[T* , 00)

(46)

(47)

In this case there are two phases in the optimal program of

exploitation of the aquifer. During the first, that it ptakes a

finite time, the reserves are increasing until they reach the

maXimun storage capacity, then the system enters in the steady

state with a rate of extraction equal to net natural recarge.
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The equilibrium paths are represented in the graphs of the

Fig. 4.

FIGURE 4

If Condition (19) holds then x* < 0 and in this case the

steady state reserves are x*=0. To obtain the dynamics of the

system the same steps than in the previous case are followed

writing R=0. The results are graphically represented in Fig.5.

FIGURE 5

4. THE MODEL OF OPTIMAL MANAGEMENT WITH INCREASING DEMAND

Stationary demand functions of the kind used in Section 2 do

not take into account for the effects of increasing population

or/and growing wealth on water demand. For this reason, it seems

interesting to analyze the effects of an increasing water demand on

the results obtained from the standard model developed in Section

2.

To do this analysis Assumption (A-3) has to be adequately

modified. In this section, we assume that the demand grows at an

exponential rate, then Assumption (A-3) has to be replaced by

(A-3) Demand. Consumers' preferences are represented by a

downward sloping demand inverse curve p(g) which is countinuously

differentiable and increasing at an exponential rate m, so that the

demand function is written as Pe=emp(q).

If we substitute p for i5 in Section 2 we have that the

discounted benefits are nd = e-rt[em tpr-c(x)]q and that the

differential equation which drives the dynamics of the price is
• now9



P=e-mt[ (r-m) emtp-rc+Rcl+ (1-a) (r)1-112)]
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(48)

Using this differential equation we can obtain the following

result:

Proposition 7. If Assumption (A-3)1 holds and r s m there does not

exist a steady state for the problem (1).

To show this proposition we assume that there is a steady

state value for x such that 0 s x* s R. Then this value has to hold

P=0 for p.b. If we first try with x*=R then p=o implies

(r-rn) e n'tP -.rc (3E) +Rci (R) + (1 -ce)Iii=0 (49)

with 0. As r s m, Th. must be positive and Condition (6) holds,

but then the transversality condition does not hold.1° If x*=R > 0

the- transversality condition requires that the lime-"1(t)=0,

where

then

limA(t)=' emt/3-c(3)] . (50). •
-a

-r9t, t) 1-a (e (in-%) cp-e-rtc (x)] =

£>o if r=m
-a

if r<m

(51)

Now' we try out with x*=x such that 0 < x < R. In this case, p=o
requires that



(r-m) einti3-rc(x*) +Rcl (x*) =0

24

(52)

given that for all x in the interval (0,5), rc(x)-Rc'(x) > 0, the

previous equality can not occur for any value in the interval.

Finally, for x*=0 we have

(r-m) en'ti3-rc(0) +Rci (0) -(1-cc)1)2=0 (53)

. with 112 k 0. Then, given that rc(0)-Rc'(0) > 0, %would have to be

negative to satisfy the above condition. Consequently no value in

the interval [0,5-c] will hold the steady state condition p=o and
*=0.

This proof suggests that for r > in a steady state with •x*=0

can be feasible. But first we will check out if the other values of

the domain of x can support a steady state.

For x*=5-c, (49) must hold for r > in. As (r-m)emtf) is an

increasing convex function with respect to time, there exists a

moment t' > 0 for which (r-m)eint'15-rc(2)+Rc' (2)=0, then we will have

that Th(t) < -, for all t > t' violating the Kuhn-Tucker condition

(6). If (r-m)15 > rce,(51)-Rci(2) the same argument applies for all t

> 0.

For x*=x such that 0 < x < 2, if (r-m)15 < rc(x*)-Rc' (x*) , it is

possible to define a moment t' > 0 such that (52) holds but then

for all t > t', p > 0 and (15,x*) can not support a steady state. If
(r-m)15 > rc(x*)-Rci(x*) it is not possible to satisfy p=o for all
t > 0, then we can conclude that no value in the interval (0,2] can

be a steady state value.

If x*=0 is the steady state value for the water reserves, we

will have to check out that equations p=o and k=0 are hold besides
the transversality condition.

If (r-m)15 < rc(0)-Rc'(0), there exists a moment T > 0 for



which Equation (53) holds with 112(T)=0, then we have

*,*1
0 if 0 stsT*

={-
1 
[ (r-m) eint13-rc (0) +Rci (0) if T*st<00

1-a

verifying the Kuhn-Tucker condition (7).

If (r-m)i5 > rc(0)-Rc'(0) we have

lirnt..7.45*( t) = (r-m) ernT/3-.rc (0) +Rci (0) >0 (55)

whereas
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-(54)

(t) =(r-m) einT13-rc (0) +Rci (0) -(1-a) i.t2 (r) =0 (56)
•

this guarantees that p=0 and then (15,0) can be the steady state for

the system. In this case, a discountinuity in µ2*(t) and p*(t) at T*
occurs, being T* the moment when the system enters in the steady

state: so T12*(t) is given by (54) but with T*< t < co for the second

expression. Finally, it can be easily confirmed that the

transversality condition holds since the lim,x*(t)=0.

Notice that conditions (r-m)15 >, rc(0)-Rc'(0), which are

equivalents to left-hand side of (14) and (19) in Section 2 does

not affect the proof selecting different kinds of steady states as

it happened with the model of stationary demand.

With an increasing demand the physical exhaustion of the

initial water reserves of the aquifer will occur if. r > m

independently of which is the relation between the steady state

price 15 and the costs for zero reserves.
If (r-m)15 > rc(0)-Rc'(0), T12*(t), p*(t),. (Int) and )s.*(t) are
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discontinuous at T*, but it is not necessary to check the "jump

condition" since this is defined to avoid some kind of

discontinuities in 1(t) and the costate variable is continuous all

along the optimal program of explotation.

As regards the optimal path it can be showed that if there

exists an optimal path that leads to the steady state, the system

will reach it in a finite time.

To prove it, we assume that there exists an optimal path that

asymptotically approachs the steady state. Then lim,..45*(t)=0 and

lim,...,**(t)=0. For the dynamic restriction of the reserves this

implies that p*---15=p(R/(1-a)) and for the differential equation of

the price that.

( t) (r-m) p-e-mt (rc-R ) (r-m) 15> 0 (57)

since lim(rc -Rc') > 0. Then it is not possible that ,an optimal

path reachs the steady state in an infinite time.

Now, we can summarize these results in the following

proposition:

Proposition 8. If Assumption (A-3)f holds and r > m then there is

an unique steady state (amtp,o). Moreover, if there exists an

optimal path that leads to the steady state, the system reachs it

in a finite time.

From Equation (48) the optimality condition for the steady

state can be obtained, this condition is written as

13—c(0) (Rcl(0)—mi3— (1—cc)12) . (58)

which presents a new rent component equal to the opportunity cost
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of foregone capital gain because of the growth of water demand.

We will devote the second part of this section to analyze the

profile of any optimal path that leads to thp steady state. Any

optimal path is driving by the differential equation (48), with

n1=112=0, and (1.1) until the path enters in the steady state with

15=0 and *=0. Then taking the total differential of Equation (48) we

have

dt
=e-me (rc-Rcl) + (r-m) -dp (rcl-clIR) 

dx
dt dt

(59)

and from this second order differential equation it is clear that

if p k o and * k 0 then dP/dt > 0 and dVdt k 0. This means that if
p(t) k 15 and the price is increasing, the price path quickly moves
away from the steady state.

According to this if 15 > (rc (x0)-Rc' (x0) )./(r-m) then there is

no accumulation phase during the exploitation period of the

aquifer's initial resources, i.e. p*(t) < 15 for all t in the

interval [0,T*).

If p*(0) were greater than f the differential equation (48)

gives us that 15*(0) > 0 since (r-m)15 > rc(x0)-Rc' (x0), in that case

as **(0) > 0 we have that dp/dt > 0 and the price path moves away

from b. Consequently, the optimal path will have to begin with
p*(0) < 15. Moreover, the optimal path will stay during all the

exploitation period under the line /5 because any approach to that

line would have to occur with p*(t) > 0 since p*(0) < 15, and then

again the price path would move away from line 15.

Now we assume that p*(0) < 15, then it is possible that

la* (0) = (r-m) ps (0) -rc(xo) +Rcl (x0) ' (60)

•

in this case, the optimal path can be decreasing or increasing
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during the initial phase of the exploitation period of the

reserves. However, although it is feasible an initial phase with a

decreasing price, the optimal price path can not be decreasing

throughout the exploitation period. If that were the case we would

have that p*(T) would be less than 15, and a discontinuity would

appear at T* that would not hold the "jump condition" as we saw in

section 2 (see (23)). For the same reason if the optimal price path

is increasing throughout the exploitation period, p*(t) has to

converge to 15 as t tends to T*.

All this can be organized in the following proposition:

Proposition 9. If p > (rc(x0)-Rcl(x0))/(r-m) we have that:
a) pl(t) < p, for all t in the interval (0,n. There is no

accumulation phase during the exploitation period of the aquifer's

initial reserves.

b) If pl(0) <(>) (rc(x0)-Rcl (x0))/(r-m) there exists an initial

phase along which the price is decreasing (increasing). However,

independently of the profile of the optimal path during the initial

phase, the price is increasing in the final phase of the

exploitation period and converges to p as t tends to T.

The other case that has to be studied to complete the analysis

is 15 < (rc(x0)-Rc' (x0) )/(r-m) . For this case a first result is that

P*(t) has to be less than (rc(x0)-Rci (x0) )/(r-m) along the optimal

path. If p*(°) were greater than or equal to (rc(x0)-Rc' (xo))/(r-m)

we would have that p*(o) 0 and as Sc*(0) 0 since p*(0) > 15 then

dp/dt > 0 according to (59) and the price path would quickly move

away from the steady state.

If 15 < p*(°) < (rc(x0)-Rct (x0) )/(r-m) we have that P*(0) < 0.

This sign can not change along the optimal path until 
p*(t) <

since p*(t) 0 can not happen while Se(t) 0 if to enter in an

explosive path wants to be avoided. Now then, once the price path

is under the line p necessarily the function will have to present

at least one minimum to avoid a discontinuity when the path arrives
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at the steady state. Obviously, a decreasing path that converges to

15 from above is ruled out because then it is not possible that
x*(t) converges to zero, since for p(t) > the reserves are

,
increasing.

If during the accumulation phase (p*(t) > 15) the restriction

x becomes active the system will enter in a transitory steady

state (f,). During that transitory steady state p = 0 because the
multiplier i becomes strictly positive since the price path reachs

the steady state with 15*(t1) < -0, being t1 the moment when the

system enters in the steady state. Then

and

limt_tiub* ( t) =e-mel (r-m) emelp* -rc (3) +Rci ] <0 (61)

( t) =e-mel [ (r-m) eme115-rc +Rci (3-) + (1-ce)n1(ti+)] =0 (62)

with 113.(t1+) > 0 and p*(t1-) > b. This means that there is a
discontinuity in the price and in the costate variable. Again this
discontinuity will not satisfy the "jump condition". This condition
requires that 1(t1+)-A(t1-) = 0, since 0 0 and ag(x*(t1),t3.)/ax

= a (5-c-x* (to ) iax = -1 (see(22)). But the jump in the price implies
that (t1 )-1(t1-) = (15-pt(t1-)/(1-a) < 0. So, only a reserves path

underneath the line R can be an optimal path and the price path can

not present discontinuities.

Finally, if p*(0) s. 15 then P*(0)=(r-m)p*(0)-rc(x0)+Rc' (x0) < 0

since (r-m)15 < rc(x0)-Rc' (x0) and p*(t) < 15 for all t in the

interval (0,T*) . But, by the same reason used to show point (b) of

Proposition 9, the price.has to be increasing in the final phase of



30

• the exploitation period and converges to i5 as t tends to T*. All

this can be sumarize in the following proposition:

Proposition 10. If p < (rc (x0) -Rc' (x0) ) / (r-m) we have that:

(a) pt(t) < (rc(x0)-Rcf(x0))/(r-m) for all t in the interval

[0,T±I.

(b) If p p4(0) < (rc(x0)-Rcf(x0))/(r-m) there is an initial

phase of water reserves acummulation. During this phase the price

is decreasing but the water reserves are increasing. However, the

exploitation period ends with an increasing price which converges

to p as t tends to Tc with pt(t) < p.

(c) If the restriction ff x(t) is active during the

accumulation phase there is not an optimal path that leads to the

steady state.

(d) If r4(0) s p then 124(0) < 0 and r4(t) < p for all t in the

interval (0,n. However, during the final phase of the

exploitation of the aquifer's initial reserves the price is

increasing and converges to /-3 as t tends to T.

If the optimal initial price is greater than 15 then the

optimal program of exploitation will present three different

phases, during the first phase the reserves will be increasing and

the rate of extraction will be less than the net natural recharge,

it will be a phase of accumulation that will reduce the extraction

costs. The second phase will be the phase of exhaustion of the

water resources of the aquifer. During this phase the rate of

extration will be greater than the net natural recharge and the

reserves will decrease until the physical exhaustion, then the

program of exploitation will enter in the steady state (15,0).

To conclude with this •section we will show the last

proposition of this paper.

Propcition 11. If there exists an optimal path that leads to the

steady state, it is unique.
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To prove this we assume that there exists two path. Then the paths
have to cut at least once since the paths does not present
discontinuities and the initial reserves for, both path are the
same.

fTi((1...a)q;(t)
dt= f T2 ( (1-a)q2

0 
-R) dt=x0 (63)

We assume that p1(0) < p2(0) and that the paths, intersect the

firs time at t'. Then pi(t')=P2(t'), P. (t) < p2(t) for all t < t' and

151(V) > 2 (t').p Moreover, x2(t') > xi(V) since Sc2(t) > Sc1(t) for

all t < t'.

If now we calculate the difference_ between the rate of
variation of the price at t' basing on (48) we have

151 ( tI) -132 (ti) =e-rne [r( c(x2(ti) ) ti) ) )
+R ( cl (xi ( t ) -ci (x2 ( tl) )

(64)

since pl(t') = p2(t'). As x2(t') > xl(t'), the marginal extraction

cost is decreasing with respect to x and c' (x) is increasing or

constant with respect to x, the difference in (64) is negative and

pl(tt) < (t'),p2  resulting a contradiction. Then there is only one
optimal path to reach the steady state.

5. CONCLUSIONS

The main conclusion of this paper is that the incorporation of

a growing water demand to the standard model of optimal management

of an• aquifer drastically reduces the range of possible, steady

state solutions. In the standar model any (f),x*) with x* in the

interval [0,R] can be a steady state for the appropiate value of

the parameters. Both a steady state with an empty or almost empty
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aquifer and a steady state at the maximum storage capacity of the

aquifer are possible solutions for the optimal management of the

aquifer.

This means that the results of the standard model must be used

carefully, in fact the standard model hides the true nature of the

steady states that support an optimal management since the

assumption of a growing demand is by far more realistic than the

assumption of a stationary demand.

So we have to conclude that, if the rate of interest is

greater than the rate of growth of the water demand, the optimal

management will lead to a steady sta.':,1 with water reserves at the

minimum level compatible with the 'survival' of the ground water

streams.

If

On the other hand, this result helps to characterize better

the resource. So, an aquifer understood as an underground water

deposit would have to be clasified as an exhaustible resource since

the optimal management implies the depletion of the initial water

reserves. The capacity to store remains but it will not be used

anymore because in the steady state the rate of extraction is equal

to the net natural recharge. The aquifers run out or reduce at

their minimum level and only the ground water streams remains to be

exploited.

Finally, we would like to point out that the question of the

optimal management of an aquifer when the rate of interest is equal

to or less than the rate of growth of water demand is still open.

If the dynamic component enters in the demand function in an

additive way this problem vanishes and all the results in Section

4 remain. But this is a poor way of solving the problem, so that

further research and different criteria will be required in the

future to find a satisfactory answer to that question.
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NOTES

1.The influential paper of Burt (1967) established a clear bias 
in

favour of economic exhaustion. In his paper, it is assumed: 't
hat

pumping depths ultimately limit economic utilization of groundwat
er

stocks (as contrasted to physical exhaustion) ' (Burt, 1967, pp.
45-

46) . In addition to the exhaustion effects on the costs, 
this

author showed another reason for economic exhaustion, the ins
urance

value of stocks against uncertainty.

2.Brown and Deacon (1972) introduce growth of the net marg
inal

value of water in an exponential fashion, but in this way t
heir

analysis result equivalent to a review of the optimal cont
rol

problem for a lower rate of interest. In Propositions 4, 5 and 
6 of

our work this issue is studied and it is showed that when cor
ner

long-term equilibria occur, the variations in the rate of int
erest

can have no effects on the equilibrium value of water reserve
s.

3.The two main issues studied more recently have been the analys
is

of the effects of externalities caused by the common property of

water, see Gisser and Sanchez (1980), Gisser (1983) and Allen and

Gisser (1984) and the conjunctive management of groundwater and

surface water under uncertainty conditions, see Bredehoeft and

Young (1983) and Tsur and Graham-Tomasi (1991).

4.For great aquifers aq is so small in comparison with the natural

recharge than a = 0 can be a good approximation to the coefficie
nt'

s value. See Gisser and Sanchez (1980, p.638-39) for a comple
te

description of the dynamic restriction and the model of an aqu
ifer.

5.See, for instance, Takayama (1985,p.648) for the constraint

qualification. In our problem this holds owing to the lin
earity of

the restrictions. See Seierstad and Sydsmter (1987,Ch.5, 
Th.1) for

sufficient conditions with pure state constraints. 
In this case

besides the concavity in x of the Hamiltonian for the 
maximum value

of the control variable and the quasiconcavity in x of the

restrictions, there is a 'jump condition' because a 
finite number
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of jump discontinuities in the costate variable are allowed in the
solution of the optimal control problem.

6.If we assume that c' ''(x) 0 then the isoclijie p=o is a monotone
decreasing convex function of x.

7.If p < o it is necessary to multiplie by -1 the differential
equation and adequately redefine the integration limits to obtain
the same result.

8.See Cummings (1971) and Cummings and McFarland (1974) for the
case of optimal management with saltwater intrusion.

9.This profit function allows to generalize the results of this
section at least to two cases that present formally identical
profit functions, the growing economy with technical progress in
the extractive activity case and the growing economy with change in
the relatives prices in favour of water price case. In the former
we have that nd=e(ar-r)t[p_e-ptc(x) ]q, being m the rate of growth of the
economy and p the rate of technological change, is equivalent toIrd=er t[eptp c(x) where In the second we have and=e-rt[emtp-
entc(x)]q, being n the rate of growth of extraction costs. This
expression is equivalent to Tcd=et[e(m-n)tp-c(x) ]q, with m>n.
Obviously, a proportional growth with a generalized technical
progress is formally equal to a variation in the rate of interest
as Brown and Deacon (1972) remark.

10. In Berck (1981, p.111) the same argument can be founded.
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FIG. 5. Optimal path and steady state (R/(1-a),0)


