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Testing the Translog Specification with the Fourier Cost Function

James A. Chalfant and Nancy E. Wallace

1. INTRODUCTION

Restructuring trends in transportation markets have intensified the need for analysis of

firm level production technologies. Accurate predictions about the outcomes of deregulation

necessarily rely on careful portrayals of the production or cost functions of firms operating in

these industries. In particular, the economically relevant information sought in empirical studies

of the transportation industry is the estimation of substitution and output elasticities of firms.

These elasticities portray the underlying structure of production and thus are usually the focus

of policy debates concerning the effects of regulatory intervention.

--.-The purpose of this paper is to compare two strategies for estimating motor carrier cost

functions: a semi-nonparametric approach using the Fourier flexible form developed by Gallant

(1981, 1982), and the more common locally flexible approximation, the translog (Christensen,

Jdrgensen, and Lau, 1973). The comparison will be made using a data set for general motor

freight carriers observed immediately prior to deregulation and immediately after deregulatiojn.

The data set has been constructed to be consistent with previous studies of the highway motor

carrier industry, accounting for the output heterogeneity and network structure of these firms

(Wang and Friedlaender, 1984; Daughety and Nelson, 1988; Daughety et al., 1986; Caves et al.,

1984; Kim, 1984; Friedlaender and Spady, 1981; Ying, 1990).

In every case, the translog restriction is rejected as a special case of the Fourier cost

function, indicating that use of the translog may lead to specification bias. This bias can, in turn,

lead to incorrect and misleading results for hypothesis tests or estimates of elasticities.



2. MOTOR CARRIER COST FUNCTIONS AND THE TRANSLOG

The empirical model draws heavily from assumptions common to many pre-deregulation

cost studies. Following numerous recent studies of the trucking industry (e.g. Ying 1990;

Daughety and Nelson, 1988; Daughety et al. 1986; Wang and Friedlaender, 1980; Kim, 1984),

it is assumed that the spatial network of firms can be represented by a vector of attributes t. The

motor carrier firm is assumed to take input prices as exogenous and minimize costs. The

unknown cost function is thus represented as

g *(x) = g *(y,w,t), (1)

giving the minimum cost of producing outputs y with factor input prices w and technology

attributes t. The objective in estimation is to characterize this function, its first derivatives (thus

characterizing marginal costs and factor shares or input levels) and its second derivatives (thus

characterizing elasticities).

The typical empirical specification for trucking industry cost functions has been the

translog (e.g. Ying, 1990; Friedlaender and Spady, 1981; Spady and Friedlaender, 1978; Wang

and Friedlaender, 1980; Daughety et a., 1986; Daughety and Nelson, 1988; Caves et al., 1984;

Harmatuck, 1980; Kim, 1984). The translog may be thought of as a valid functional form for

cost functions, but is generally assumed to provide a suitable second order approximation to the

unknown cost function, g*(x), where the simple arithmetic means of the vector x are characterized

as the point of approximation.

White (1980) has shown, however, that the approximation interpretation is questionable,

and Gallant notes (1981, p. 212) that "statistical regression methods essentially expand the true
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function in a (general) Fourier series -- not in a Taylor's series". Even if the coefficients of a

Taylor series were recoverable from empirical methods, Despotalcis (1985) and Devezeaux de

Lavergne et al. (1989) have noted that the implied behavior of the technology away from an

approximation point would behave according to the form chosen, rather than according to the

underlying function. Usually, interest is in the properties of technology at more than one data

point, so this is of some concern. The translog can provide that information, of course, when it

is treated as the correct functional form. As noted by Barnett (1983), however, models based on

Taylor approximations have no inherent advantage over other functional forms that satisfy

Diewert's (1973) definition of local flexibility. For these reasons, specification tests become

important. Such tests generally amount to an examination of goodness-of-fit or checking the

properties of concavity or monotonicity, although Berndt and Khaled (1979) tested the translog

assumption by nesting it within a generalized Box-Cox model.

Other locally flexible forms can yield different results, so considering alternatives such

as the generalized Leontief or generalized Box-Cox makes sense. Monte Carlo evidence (Barnett,

Lee and Wolfe, 1985; Guilkey and Lovell, 1980; Guilkey, Lovell and Sickles, 1983; Caves and

Christensen, 1980) suggests that each form is likely to perform better in some cases and worse

in others. In any event, each alternative remains subject to the problems of locally flexible

forms. These observations suggest that an alternative model -- one that approximates the function

and its derivatives everywhere in its domain -- is an attractive possibility. Of particular interest

are specifications which can emulate the sample cost surface and remain consistent with the

global approximation properties of least squares regression methods. The Fourier flexible form

introduced by Gallant (1981, 1982) accomplishes this. The Fourier is consistent with Diewert's
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(1973) second-order flexibility definition with the additional advantage of "global flexibility" --

it leads to consistent estimates of elasticities throughout the region of approximation (El Badawi,

Gallant, and Souza, 1983) and is asymptotically free of specification bias (Gallant, 1982). The

Monte Carlo results of Chalfant and Gallant (1985) are encouraging for applications to small

samples.

3. THE FOURIER FLEXIBLE FORM

Gallant (1982) demonstrates that a flexible form for the cost function based on a Fourier

series approximation can avoid the specification errors arising from other flexible forms. He

suggests the Sobolev norm as the appropriate measure of distance to measure the error in

approximating the unknown cost function ge(x) with some flexible form gic(x I 0), where K

denotes the number of parameters in the function used to approximate ga(x). As noted above,

the goal in demand analysis is to approximate the cost function and its first and second

derivatives; although the local flexibility interpretation involves those properties of the cost

function only at a particular price vector, the desired uses almost invariably involve the entire

data set. For instance, in a cross-section of firms modeled to examine scale or scope economies,

interest is not merely in whether the firm with the price vector corresponding to some

hypothesized approximation point behaves a certain way, but what would happen at a different

level of output or factor prices.

The Sobolev measure of error is defined by

1

I I g (x) -g(x) II=I lei Lp= E f[D e(x)] f(x)dx
Pi° kp

4

1 < p < oe. (2)



where m is the largest order derivative of g(x) that is of interest, f(x) is a probability density

function describing the data generating process , Di denotes partial differentiation, and the region

of approximation is 'P. The Sobolev norm thus accounts both for errors in approximating the

function throughout its domain and errors in approximating derivatives. The importance of this

measure for empirical work is that a Fourier series approximation can be found to make the

Sobolev measure small. When the cost function is approximated using a Fourier series, then, the

approximation has the potential to behave as would the underlying function throughout the data

space, where that behavior may be judged by the similarity of costs, factor shares, and elasticities

throughout the range of the data. As noted by Gallant (1982, p. 292), the problem of

approximating an unknown function becomes one of finding the appropriate Fourier series

approximation, rather than searching over an unlimited set of functional forms.

When approximating a non-periodic function by a Fourier series expansion, linear and

quadratic terms are often appended (Gallant, 1982). The Fourier cost function can thus be

written as

gk(x 0) = uo + biz + x iCx +
2

A

E Woc, +2 [uacos(?.kaix) - vasin(Xlcax)])
aul

(3)

where x denotes a vector that includes output, input prices, and any technology covariates. Output

and the prices of inputs are measured in natural logarithms. The x vector is scaled by so that

the data will fall within the (0, 2n) interval, following the procedure described by Gallant (1982).

The matrix C has the structure

5



A

C = -E Uç2kka/ (4)

and the vector of parameters is 0 = (u0, b, u01, ul, v1, ..., u0A, uA, vA).'

The ku vectors, a = 1,2, ..., A, are the set of multi-indices that determine the directions

along which the Fourier expansions are taken. The particular set of ku vectors used in this paper

is defined in the Appendix. The Fourier cost function can thus be thought of as the sum of a

second-order approximation using the translog, plus the sum of A univariate Fourier series

expansions determined by the Ica' S. Linear homogeneity in terms of prices is imposed on the cost

function by requiring that the elements corresponding to prices in each lcu sum to zero and that

E bi = 1. A final set of parametric restrictions relates to the fact that some of the u0c, parameters

are redundant in the C matrix, as detailed in the Appendix.

Since the translog is nested within the Fourier, a test of the significance of the extra terms

in the latter is a test of whether there is anything systematic in the residuals of the estimated

translog model. Finding such significance, of course, means that one of the implications of the

maintained translog hypothesis -- the residuals do not depend systematically on factor prices or

other exogenous variables -- is violated. It is then of interest to examine how the incorrect

restriction to the translog case -- essentially an omitted variables problem -- biases the estimates

of coefficients or elasticities. Gallant (1982) suggested this nesting, and it was also exploited by

Chalfant (1987) in the context of generalizing the almost ideal demand system and by Devezeaux

de Lavergne et al. (1989) in estimating aggregate cost functions for sectors of the French

economy. In all three cases the added Fourier terms were statistically significant.



4. ELASTICITIES AND STANDARD ERRORS

Differentiation of the logarithmic Fourier flexible form provides share equations of the

form

A

S I 0) = b {uoakal x + 2[uasin(?ckaix) + vacos(Xkaix)] ka . (5)

An expenditure system is formed for estimation with the cost function and n - 1 of the share

equations. The system is linear in the parameters, and so can be estimated with the usual iterated

seemingly-unrelated regressions estimator (Zellner, 1962; Barten, 1969) to obtain invariance to

the deleted equation.

Following Gallant (1982), the Hessian matrix of the Fourier cost function is the N by N

matrix

A

H = x2E fuoa [u.cos(?kccix) — a sin(Xl ix)]) kakai .a
aul

The own-price elasticities of substitution can thus be written as

aU = 1
hii • 1

Si(x10)2 Si(x10)

(6)

(7)

where h 1 is the if element of the Hessian, evaluated at the data point of interest and Si is the

estimated share for the th factor input. Similarly, the Allen-Uzawa elasticity of substitution
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between factors i and j can be written as

= 1 +  
Ii SA 10)S j(X I 0)

(8)

First-order approximations to the standard errors for the elasticities have been proposed

by Gallant (1982), although recent studies (Anderson and Thursby, 1986; Eakin et al., 1990) have

questioned the precision of estimates obtained in this manner from the cost function, as well as

the normality of the underlying distribution. For these reasons, bootstrap sampling methods (e.g.

Freedman and Peters, 1984; Eakin et al.,1990) could be used to obtain suitable standard errors

for the statistics of interest.

5. EMPIRICAL ANALYSIS

The cost functions were estimated using data for 60 Class I and II less-than-truckload

general' freight carriers that did not purchase transportation from other carriers during 1979 and

1981. Most recent empirical studies of highway motor carrier focus either exclusively on firms

that purchase transportation or do not distinguish between firms that do and do not purchase

transportation services (Daughety and Nelson, 1986; Daughety et al., 1988; Rose, 1987). There

is, therefore, little information available on the production technology of firms that solve the

linehaul deployment problem internally rather than purchase linehaul transportation either through

brokers or on long term contracts from other firms.

A period immediately prior to deregulation was chosen for two reasons. First, it was

desirable to have the analysis be comparable with previous empirical studies of trucking costs,

without the confounding effects of deregulation. Second, the Cost functions were estimated under
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the assumption that output and network structure are exogenously determined. This assumption

may not be valid in the deregulated environment. Accordingly, we tested the endogeneity of

output for both sets of observations. This was done using a Hausman-Wu test (Hausman, 1978;

Wu, 1973) in which separate estimates of parameters were obtained using iterated SUR and an

iterated three-stage least-squares technique using instrumental variables. The exogeneity of

output was not rejected, so we report iterated SUR results below. Because the test is not exact

and is dependent on instrument choice, the failure to reject exogeneity cannot be considered

definitive. In any event, the translog results do not seem to depend on this choice. We find the

same pattern of results for 1979 or for 1981, and preliminary experience with corrections for

possible simultaneity suggest that the results are not sensitive to the estimation technique.

Data

There are four input prices, one output, and one variable to represent the attributes of

motor carrier spatial networks. The variables and their labels are as follows:

Factor Prices:

xi: Price of fuel ($/Gallon)

x2: Price of labor (VEmployee/Year).

x3: Price of terminal capital ($/terminal unit)

X4. Price of vehicle capital ($/vehicle unit)

Output:

x5: Total ton-miles

Although it would be ideal to represent the output of a firm operating over a network as ton-

miles of attributes carried between origin-destination pairs, data limitations make such a
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characterization impossible. Instead, the standard output measure, ton-miles, is used. Thus, we

examine the cost of producing ton-miles as a function of factor prices and firm characteristics.

The theory of the firm underlying cost function estimation dictates including only factor

prices and the level of output in the cost function and share equations. If the particular 4

application suggests that there are other variables that should be included as "shifters", essentially

indexing the cost function and technology, these can be treated in a manner similar to output.

First, they might only be included to adjust the level of costs but not interacted with prices, in

which case they would not show up in the equations that determine factor shares, but only in the

cost function itself. This is analogous to the homotheticity restriction for output. If the particular

variable also affects optimal input ratios, it should also appear in the share equations. Gallant

(1982) likens these choices to allowing for interaction effects in an experimental design.

We constructed a network variable to serve as such a shift variable. A measure of

network structure can explain variation in the cost of producing a particular level of ton-miles,

holding factor prices constant, by capturing the cost of operating a particular firm's network

arrangement. The network variable is defined as

NETWORK =
Ed •ag
i=1

1/2

(9)

where dig is the straight line distance in miles from the terminal to the main terminal and n is the

number of terminals. The network variable is a "standard distance measure" (Bachi, 1963)

• indexing the dispersion of points (terminals) in Euclidean space. The measure is the geometric

average of distance from the center of gravity (the main terminal address). It is an aggregate
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measure of the spatial distribution of terminals and varies with distance between terminals and

the number of terminals. The minimum value of the network variable is zero for firms with only

one terminal, so very small values (.01) were used for such firms. Assuming an isotropic surface

and equal interaction propensities, it may be presumed that a greater aggregate amount of

movement would occur when the standard distance is large since pairwise distances are great.

As with any measure of central tendency, this measure can be biased by extreme locations.

A non-parametric test for whether a network variable should be included was performed

in the following fashion. We made use of Varian's (1984) nonparametric test for

cost-minimizing behavior. In brief, one calculates for firm i the cost of buying the inputs of any

firm j that was observed to have a larger output. If firm i could have purchased firm j's input

bundle for less than it actually spent, then either firm i is not as successful at minimizing costs

or it does not have as good a technology as firm j. One reason for such outcomes might be a

less favorable network structure. We made all possible comparisons for the 60 firms in our

sample -- T*(T-1)/2 or 1770 in all -- noting which firms were ever revealed to be inefficient in

this manner and which were the more efficient ones. We performed this test for each data set.

Every violation of Varian's Weak Axiom of Cost Minimization produces data on an

inefficient firm i and an efficient firm j. In the absence of any network effects, it would be just

as common for firm i's network variable to exceed firm j's as the reverse. It was found,

however, that the firms with the smaller networks tended to appear inefficient relative to other

firms. Of the 228 violations where the network variable differed between firm i and firm j, 131

of these occurred when the network variable of firm i was less than that of firm j. A simple x2

test for independence rejects the hypothesis that the probability of a violation is unaffected by
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differences in the network variable (x2 = 5.07 compared to a critical value of 'Y = 3.84).

Similar patterns were also observed for the number of terminals operated, average length of haul,

and average load size. The network variable has the potential to capture these effects in a

relatively parsimonious fashion; in any cost function, including several covariates and their

interactions with prices and output leads to an infeasible number of parameters to estimate.

Accordingly, we made use of the network variable as a covariate in the cost function.

The Fourier Flexible Form

We estimated four versions of the Fourier cost function. Our first objective is to test the

translog restrictions. Our second objective is to examine the trade-off that exists with the Fourier

between good properties concerning curvature restrictions and the number of parameters

estimated. We first estimate a model referred to as Model I in which we restrict the multi-

indexes to a length of less than or equal to 2 (i.e. multi-indexes ki through 1(9 as shown in the

Appendix). This model implies a homothetic technology underlying the cost function, since

interactions between prices and output will not appear in factor share equations. Network enters

similarly--only in the cost function itself.

Models II - W broaden the set of multi-indexes to those of length less than or equal to

3 (i.e. multi-indexes k1 through k21 in the Appendix). Models II and III are only briefly discussed

below. Model II allows interactions of price terms with output only (multi-indexes k10 through

k15 are added to Model I) and Model III allows interactions with network only (multi-indexes k16

through km are added to Model I). Model IV contains both network and output interactions.

Model I: The Homothetic Model

The cost function was augmented by the equations for factor shares of fuel, labor, and
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capital invested in vehicles. For both years, the system was estimated using the ITSUR option

of the SYSNLIN procedure of SAS (Version 6.03) with the symmetry and homogeneity

restrictions imposed. As already noted, this procedure produces maximum likelihood estimates

that are invariant to which share equation is dropped. Parameter estimates obtained using the

1979 observations are shown in Table 1 and those from 1981 in Table 2.

Both models perform reasonably well from the point of view of having a number of

statistically significant parameter estimates. Concavity of the cost function is satisfied for 48 of

the 60 firms for 1979 and for all 60 for 1981. As shown in Tables 1 and 2, the output, network,

and output/network interaction covariates have a statistically significant effect on costs in both

the regulated and deregulated environments. The sine and cosine parameter estimates for the

covariates are also statistically significant and these terms would not appear in the translog-

restricted version of Model I. The pattern of significance of the main input price ratio effects

is not the same across the two years; however, in both years, the translog restriction would be

binding, given the statistically significant parameter estimates on the fuel/vehicle interaction terms

for 1979 and the labor/vehicular capital interaction terms for 1981.

A Test of the Translog Restriction

For each model, we tested the translog restriction conditional on the homotheticity

restriction, by testing whether the ua and va parameters could be set equal to zero. Each

estimated system involves 33 parameters, a subset of which corresponds to the parameters of the

translog cost function. The 18 ua and va (a = 1,...,9) parameters are all equal to zero if the

translog restriction is correct. Thus, testing whether the added terms -- the coefficients of sine

and cosine terms -- are statistically significantly different from zero is a test of whether the
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translog would be a proper restriction to impose on the model. When the likelihood-ratio statistic

was calculated to test the hypothesis that all of these parameters were zero, we obtained a value

.of 55.41 for 1979, as compared with the x2 value with a = .05 and 18 degrees of freedom

(corresponding to the 18 coefficients ua and va that would be deleted) of 28.87. For 1981, the

test statistic was 34.62, again leading us to reject the translog hypothesis in favor of the Fourier

cost function.

What is the gain from using the Fourier? The natural characteristics to focus on are the

elasticities of substitution, since the translog is relatively limited in that it dictates their behavior

away from the "point of approximation". The local flexibility interpretation is correct for the

translog, in that it can allow arbitrary values for these elasticities at some point. This is evident

from the familiar translog formula for the substitution elasticity:

= 1+_L..
If StS'i

What if we evaluate the elasticity at different price vectors? It varies only because shares vary,

and not because the curvature of the cost function (i.e. the second derivatives of the logarithm

of total costs with respect to logarithms of prices) varies. In that sense, the translog is relatively

inflexible; unless firms have very different shares, they will not have very different elasticities

of substitution. While this corresponds to a plausible cost function and is sufficient to obtain the

local flexibility property, there is no theoretical reason why the second derivatives have to be

constant.

In fact, substitution elasticities do not seem to vary much throughout the sample for the
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translog, as can be seen in Table 3 for 1979 data and Table 4 for 1981. For the Fourier, the

averages of the same elasticities differ from the translog and they also exhibit considerably more

variation throughout the samples. The range of observed Fourier elasticities always includes the

range for the translog values.

Interaction Effects between Prices and Output or Network

The next set of models we considered allowed share equations to depend on output and/or

network variables. If the level of sharesclepends on relative prices and output, then the cost

function is non-homothetic. Network, similarly, can affect the level of shares. A summary of

results of likelihood ratio tests for the Fourier is shown in Table 5.

In 1979, Model I was rejected in favor of II, implying a non-homothetic technology.

When Model I was tested against Model III, we found that adding interactions between relative

prices and the network variable also contributed sufficient explanatory power to cause the

restriction to be rejected. In 1981, Model I is not rejected as a special case of either Model II

or Model III. However, testing whether both sets of interactions combined would improve over

Model I led us to reject the homotheticity restriction for 1981, as in 1979.

We then tested the hypotheses that network alone or output alone would suffice in the

share equations (each variable was retained in the cost function itself). For both years, however,

Model W with both variables included in the share equations dominates the others. Models II

and III are each rejected as special cases of Model IV for both years. Thus, Model IV is the

preferred model on this basis for both 1979 and 1981.

Before turning to a discussion of those results, and an examination of the tradeoff between

the number of parameters and good properties concerning concavity, we return to the translog
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restriction. In each of the models estimated, the translog restriction amounts to deletion of the

ua and va parameters; the uoa parameters remain, as described in the Appendix. Thus, the

translog is easily tested as a special case of these models. We did so, as in Model I, by

reestimating the models subject to the appropriate zero restrictions. Table 6 contains the results

of likelihood ratio tests of the translog restriction for all four models. For both years, the

translog is rejected as a special case of each of the four models estimated.

The Results for Models II.- IV: The Nonhomothetic Models

Parameter estimates for Model IV are given for 1979 in Table 7 and for 1981 in Table

8. Estimated elasticities of substitution are summarized in Table 9 for 1979 and Table 10 for

1981. Once more, we calculated elasticities of substitution for the 60 firms in our sample, using

estimated parameters from Model IV for each year. In 1979, 31 of the observations were

consistent with the concavity restriction while 47 of 60 firms were consistent with concavity from

the 1981 results. Neither of these numbers is as high as one would like, reflecting possible

heterogeneity of firms that has not been captured fully by including characteristics of output such

as the network structure. It may also reflect the fact that there are many insignificant parameter

estimates included in these models; some of these may correspond to redundant parameters that

are reducing the precision of our elasticity estimates. Almost surely, our Model IV is not the

"right" model, in the sense that an approximation using a different set of multi-indexes -- some

other Fourier cost function -- could perform better. We have not attempted any systematic search

over which of any other possible multi-indexes one might include -- those with coefficients of

-1 instead of +1 on the covariates, for instance.

In any event, if the results for the firms not violating concavity are examined, the same

16



result concerning variability of elasticities emerges. The translog elasticities do not vary much

from observation to observation, while the Fourier counterparts do; again, the range for the

Fourier estimates for each elasticity of substitution includes the entire range of translog values.

Further evidence of the fact that there may be some redundant parameters can be found

in Tables 7 and 8, where the parameter estimates themselves are reported. A large number are

not statistically significantly different from zero. Nevertheless, the results are similar to those

of Model I, and here again the output, network, and output/network interaction covariates have

statistically significant parameter estimates. The 1979 and 1981 estimates for Model W again

do not reveal consistent patterns of the input price ratio effects on costs; however, many of the

main effect parameters are statistically significant and they also correspond to parameters on the

sine and cosine terms that would not appear in the translog. As already noted, the translog model

is rejected as a special case of the Fourier.

A final point concerning curvature restrictions should be made. There is clearly a trade-

off between flexibility of the cost function and the number of violations of concavity. Everyone

is familiar with the problem that going from a Cobb-Douglas to a translog can cause -- concavity

violations become possible. None occurred with our translog results. As we introduced more

ua and va parameters, we tended to find more violations. The final column in Table 6 reports

the number of firms for which the concavity restriction was violated for all 4 Fourier models.

Model II, which relaxes the homotheticity restriction but does not introduce the network variable

into share equations, turns out to have 10 more observations consistent with concavity than did

Model IV. For 1981, Model II never exhibits a violation, similar to Model I. Model III behaves

similarly in 1981, although curvature fares no better in 1979 with that model than with Model

17
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Iv.

These observations reveal the trade-off inherent in imposing restrictions on flexible

functional forms. When shares are constant, substitution elasticities are the same for all firms

and the Cobb-Douglas cost function that is implied is globally concave. When we fit the

relatively more flexible translog, there was some variation in elasticities permitted but no

violations of concavity resulted. As we added parameters by relaxing restrictions, elasticities

became more variable and curvature violations more frequent. Thus, there is a trade-off between

good global properties and variability of estimated elasticities. Likelihood ratio tests do not

support the translog restriction. These results imply that there is probably an intermediate case,

obtainable by deleting some of the Fourier parameters, that would capture both the improved

explanatory power of the Fourier and still have fewer violations of the concavity restriction. Of

course, this assumes that violations are due to the form estimated, rather than firm behavior,

some of the firms tend to exhibit curvature violations more than others, so it may be the

individual observations that are responsible and not the functional form itself.

Suppose one does not care much about elasticities of substitution, or that the variability

they exhibit in the Fourier is of no particular interest. Would the use of the translog have any

other economic implications? Subject to the restrictions on the Fourier cost functions to obtain

the translog case, we reexamined the tests between Models I to IV described earlier, to see

whether input shares depended only on relative prices, or whether output and network interactions

should be retained in share equations. Some interesting reversals of our previous tests occurred.

For 1979, the homotheticity restriction is rejected using either Model II (against Model

I) or Model IV (against I or III). However, the network variable does not contribute a significant
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amount of explanatory power, in that Model I is not rejected as a special case of Model HI, nor

is Model II rejected as a special case of Model IV. Thus, use of the translog would lead to the

erroneous conclusion that a firm's network structure was unnecessary in explaining factor shares.

The same results were obtained for 1981.

6. CONCLUSIONS

Using two cross sections of firms from the trucking industry, we have tested the translog

assumption for cost functions. Almost invariably, that functional form is used to model industry

structure. While it is a plausible cost function, and its convenience and familiarity have helped

make it widely used, it does not follow from the "local approximation" interpretation that it will

not be subject to specification errors. We have made use of the Fourier cost function to test the

translog specification; essentially, to see if there remains any correlation with prices in the error

terms. We find that Fourier cost functions lead to rejection of the translog restriction, regardless

of the specification of output and shifters (i.e. whether or not homotheticity is assumed). As the

Fourier cost function is not much harder to estimate than is the translog, the translog assumption

should be tested in future applications in this manner.

There seems to be a trade-off between explanatory power and good global properties

concerning concavity of the cost function. This is not a new observation, since many studies

have reported that some observations violate concavity using a translog or generalized Leontief,

for instance. The generalization those forms provided, away from inflexible but globally well-

behaved forms, such as the Cobb-Douglas or CES, is sufficient to permit arbitrary values for

substitution elasticities at any particular price vector. The results in this paper illustrate that this

property does not guarantee that the estimated model is a good approximation to the unknown
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cost function throughout the range of the data.

If the homotheticity restriction is not maintained, and Model IV is taken as the correct

model, imposing curvature restrictions might be desirable. This could be done using inequality

constrained estimation and a nonlinear programming method (e.g. Gallant and Golub, 1985) or

in a Bayesian fashion (e.g. Chalfant, Gray, and White, 1991). The translog restriction should be

retested, of course, once the restrictions are imposed. Our results for Model I and Model II,

which exhibit few violations, suggests that the translog will still prove a strong restriction. In

any event, this paper has shown that a maintained hypothesis of the translog model, that the

residuals are well-behaved, can be rejected for this industry.
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APPENDIX: STRUCTURE OF THE C MATRIX

The estimation of a Fourier flexible form cost function requires that a set of multi-indexes

be chosen to determine the sine and cosine terms that are included in the approximation. No

particular model selection rule has been shown to dominate, but selecting the 'low-order' vectors

seems sensible and has given good results in the past. The entire set we considered are those

multi-indexes of length less than or equal to 3; essentially the same set without the network

effects was used by Gallant (1982). In order to keep the number of parameters to be estimated

from expanding too rapidly, when interaction effects were included, we required that the output

or network variables have a coefficient of +1 in each multi-index. Multi-indexes with a -1

associated with those variables could also have been included.

The 21 multi-indexes that result are given in Table A.1. As shown, there are three multi-

indexes (k1 - k3) for the output, network, and output/network interaction covariates; six multi-

indexes represent the main effects of input price ratios on cost (k4 - k9); the remaining 12 multi-

indexes represent the main effects interacted with output (k10 - k15) and network (k16 - k21).

The translog restriction reduces the parameter set in Equation (3) to uo, b, and C. The

matrix C contains the (logarithmic) second derivatives of the translog cost function. One way

to see that the translog is a restrictive case when applied to more than one data point is to note

that the translog requires that the elements in C be constant; C, does not vary with the level of

prices. The addition of the sine and cosine parameters relaxes this assumption, and one could

always allow the second derivatives to depend only on those, and include no C matrix. However,

in order for the translog to be nested within the Fourier, C must be included.

There is no direct correspondence between A, the number of terms chosen in the Fourier
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series that augments the translog, and the number of parameters in C. If A is too small, the

translog is not nested, and if A is larger than necessary, some of the redundant uoc, parameters

must be deleted. For the latter case, there is more than one collection of restrictions on the uoa's

that would do; the choice is arbitrary. However, all results except for the estimated uoa's

themselves are invariant to that choice.

As Devezeaux de Lavergne et al. (1989) note, any choice for the matrix P will suffice:

vec C = P • Uo.,

where vec C = \- (C119-9CIN, C22,-.9C2N9--,CNNY is the vector of the N(N+1)/2 unconstrained

coefficients of C and Uoa denotes a vector of length A containing all uoa terms. Our particular

choice of uoa's was made by taking the multi-indexes in the order they were generated by

FORTRAN code (Monahan (1981)) and retaining each uoa in turn if it represented new

information in C.

Recall that the vector x is of length 6, containing 4 input prices, output, and the

network variable. When homotheticity is imposed on the technology, there are no

interactions between the prices and output or the network variable; this restriction can

be imposed on the cost function by including only the first 9 multi-indexes. As can be

seen from its structure, this implies certain zero restrictions in the matrix C:
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U +U +U —U —U05 —U 0 0U04 
05 06 cm 06

—U04 U04 +U07 +1.408 —U07 —U08 0 0

—U
05 —U07 U05 +107 

+j409
 —U09 0 0

—U06 —U08 —UN U
06 +U08 +U09 0 0

0 0 0 0 u01 u03 u03
0 0 0 0 UO3 U02 

+1103_

(Al)

Only 9 uoa terms are present; denoting by Cii the second partial derivative of the cost

function with respect to the it and j elements of x, uoi and uo2 contribute to the second

derivatives C55 and C66, while um measures the additional effect Css. Similarly, the

coefficient of the square of the first price, C11, is equal to the sum of the parameters u04,

u05, and U06, each associated with a multi-index that includes the first price.

The interactions between two prices, measured by C12, C13, etc., are each uniquely

determined by the uoa term corresponding to the multi-index that measures such

interactions. For instance, k4 = (1 -1 0 0 0 0)', so uo4 is the derivative C12. Finally, notice

that terms of the form Cij or qv where i=1,2,3,4 and j=5,6, are all zero to imply no

interactions between prices and output or network. This implies that share equations

do not include those variables as "shifters"

The Nonhomothetic Case:

When interactions with output are allowed, there are six more multi-indexes

included in the model; a large number of parameters appear to be added to the C

matrix, but not all are free parameters. Some are redundant and may be set equal to
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zero. To simplify notation, consider below the matrix Cy that measures the added terms

that would appear in C, following the introduction of multi-indexes klo through k15,

corresponding to interactions with output of the price combinations appearing in k4

through 1<9.

- _
U010 +U011 {u010+U011

-U -U011 -U012 . 0
+U012 } 

010 
+U012 )

1.11010+U013 [ -U +U010 013 A-U 010 -U
013 -U

014 v
+U014 I +U014 }

( U011 +U013 { -TU -U011 011 A
- U011 +U015 } 

15 +U015 

V-U013 -U0 1

U012 +U014 { -U012-U014
-U012 -U014 -U015 +U015 } -u015}

( U010 +U011 - 010+U013 { -u01 -u013 { -U012-U014
+U012 +U014 ) +U015 } -u015}

U
010

+U
011

+U012 +U013

+U014 +U015 }

0

(A2)

Proceeding down the 5th column of the matrix, first with element C15, note first

that uolo contributes new information, namely, the interaction between the first price and

output. There is no need to have uon or u012 for the same interaction, making the latter

two parameters redundant. These are zeroed.out. Next, for C25, along with -um°, the new

parameter u013 appears, also representing new information. u014 is redundant and is set

equal to zero. Finally, u015 is needed for C. By homogeneity of the cost function in

input prices, those 4 effects must sum to zero, which is accomplished in row 4, with

element C45. Symmetry accounts for the first 4 elements of the 5th row. For C55, the uoa's
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that were added for column 5 appear accordingly.

Thus, only three of the parameters are necessary to incorporate into C; these enter

in the following way:

- _
U010 -u 0 0 U 0010 010 010

-U010 U010 U013
+ -U013 0 -U010 +U013 0

0 -U
013 U013 +U015 - 0U015 - . U013+ U015

0 0 -U
015 U

015 -U015 0

010 -U010+U013 -U013+U015 -U015 U010+U01 +U015 0

0 0 0 0 0 0

A3)

A similar number of interaction effects are added to the model when price-network

interactions are also permitted:

_ _
u016 -U016 0 0 u016 0

-u 0 -u +u 0-u016 U016 +U020 020 016 020

0 -u020 U020 +U021 -U021 -U +U 0020 021

0 0 -u
021 ' 

u
021 -U

021 0

U016 -U016 +U020 -U020 +U021 -U021 U016 +U020 +U021 0
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Table 1: Parameter Estimates-Fourier Cost Function, 1979 Model I

Description Parameter Estimate Std. Error

Intercept U0 12.6291* 0.6871

b, 0.0965* 0.0245

b2 0.6520* 0.0209

b'x b3 0.0978* 0.0186

b4

bo 1.2528' 0.6750

bmt -0.6517 0.6738

uo., 0.2284 0.1744

U1 0.0554 0.1353

V1 0.2003* 0.0852

uo2 -0.0600 0.1506

Covariates .U2 -0.0383 0.1437

v2 -0.2926' 0.0994

u03 -0.0708* 0.0294

U3 -0.0417 0.0462

v3 -0.1156* 0.0393

uo4 0.0012 0.0110

U4 -0.0043 0.0052

v4 -0.0077 0.0052

uos • -0.0304' 0.0110

us 0.0089' 0.0032

Main Effects vs 0.0166* 0.0063

of uos 0.0014 0.0014

Price Ratios us -0.0007 0.0011

V6 -0.0029* 0.0012

U07 0.0142 0.0118

U7 -0.0119. 0.0066

V7 -0.0171* 0.0047

uos -0.0090. 0.0046

U5 0.0053 0.0036

V8 -0.0046 0.0042

Continued on next page
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Table 1 (continued)

Description Parameter Estimate Std. Error

Main Effects uog 0.0007 0.0019

of ug -0.0030. 0.0016

Price Ratios vg -0.0016 0.0015
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Table 2: Parameter Estimates-Fourier Cost Function, 1981 Model I

Description Parameter Estimate Std. Error

Intercept U0 10.1750' 0.8563

1)1 0.0671' 0.0351

b2 0.6504' 0.0352

b'x b3 0.1240' 0.0110

b4

1)0 2.2902' 0.8304

0.3104 0.8151

0.7610' 0.2531

Li, 0.4024' 0.1868

vl -0.0863 0.1043

um 1.0055' 0.2855

Covariates u2 0.1456 0.1769

V2 0.2361 0.1791

(Jos -03472' 0.0765

u3 0.0404 0.0578

V3 0.2312' 0.0739

uo4 0.0436 0.0447

U4 -0.0361 0.0227

114 0.0066 0.0115

uos 0.0111 0.0137

us -0.0053 0.0075

Main Effects vs -0.0027 0.0047

of uo6 0.0026 0.0022

Price Ratios u6 -0.0027' 0.0014

V6 -0.0017 0.0023

U07 -0.0248 0.0182

U7 0.0078 0.0113

V7 -0.0099' 0.0037

uos -0.0183' 0.0066

us 0.0001 0.0047

vs 0.0070 0.0056

Continued on next page

4

„.
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Table 2 (continued)

Description Parameter Estimate Std. Error

Main Effects uog 0.0019 0.0019

of ug -0.0019 0.0016

Price Ratios vg -0.0027 0.0017

'
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Table 3: Elasticities of Substitution
Model I: Homothetic Model

1979 Data

Substitution Elasticity

a11

a14

a22

a23

a33

Translog
Mean Min. Max.

-9.09 -9.67 -7.21

0.40 0.15 0.55

1.55 1.26 2.14

0.68 0.42 0.81

-0.31 -0.46 -0.20

0.57 0.34 0.64

0.81 0.78 0.86

-5.35 -7.07 -4.13

1.06 1.04 1.09

-5.16 -6.19 -3.43

Fourier
Mean Min. Max

-6.90 -13.96 -0.96

0.21 -0.03 1.30

1.96 -1.49 4.18

0.53 -0.39 2.00

-0.30 -0.59 -0.20

0.51 0.18 1.31

0.94 0.58 1.12

-5.19 -10.41 -1.71

0.76 0.00 1.84

-5.67 -8.03 -2.63

NOTE: Fourier mean values include the 48 (of 60) firms for which the concavity restriction was
satisfied.
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Table 4: Elasticities of Substitution
Model I: Homothetic Model

1981 Data

Substitution Elasticity

a12

a22

a23

a24

a33

Translog Fourier

Mean Min. Max. Mean Min. Max

-6.63 -7.15 -5.33 -4.65 -27.57 -1.02

0.19 -0.13 0.35 0.10 -0.24 2.30

2.21 1.60 3.06 1.40 0.72 4.13

1.09 1.05 1.14 0.90 0.26 1.99

-0.29 -0.48 -0.18 -0.26 -0.64 -0.08

0.42 0.16 0.52 0.49 -0.12 1.01

0.72 0.67 0.79 0.64 0.16 0.93

-6.23 -7.85 -4.85 -6.36 -12.42 -1.21

1.16 1.09 1.25 1.15 0.38 2.39

-4.04 -5.05 -2.77 -3.53 -4.43 -2.52

NOTE: Both translog and Fourier mean values include all 60 firms, since the concavity

restriction was always satisfied.

-
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Table 5: Tests of Restrictions for the Fourier Cost Functions

1979

Restricted Model Unrestricted Model 2 #d.f. Reject?

II IV 33.00 15 Yes

III IV 33.21 15 Yes

I IV 60.95 30 . Yes

I II 27.94 15 Yes

I III 28.02 15 Yes

1981

Restricted Model Unrestricted Model #d.f. Reject?

II IV 50.17 15 Yes

III IV 25.57 15 Yes

I IV 50.17 30 Yes

I II 22.29 15 No

I III 22.60 15 • No

NOTE: X215, .05 = 25.0, X230, .05 = 43.77.
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Table 6: Tests of the Translog Restriction

1979

# Consistent
Model 12 #d.f. Reject? with Concavity 

I 55.41 18 Yes 48

II 73.26 30 Yes 41

III 81.33 30 Yes 31

IV 101.42 42 Yes 31

1981
# Consistent

Model #d.f. Reject? with Concavity 

T 34.62 18 Yes 60

II 43.60 30 Yes 60

ITI 54.44 30 Yes 56

IV 67.06 42 Yes 47

NOTE: X218, .05 = 28.87, %230,.05 = 43.77, X242, .05 = 58.12.
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Table 7: Parameter Estimates-Fourier Cost Function, 1979 Model IV

Description Parameter Estimate Std. Error

Intercept U0 12.6449* 0.6727

0.1255* 0.0369

b2 0.6225' 0.0294

b'x b3 0.0709* 0.0305

b4

1.2354. 0.6601

-0.5850 0.6685

uol 0.2592 0.1719

Li, 0.1147 0.1373

V1 0.2428* 0.0953

um -0.0643 0.1495

Covariates U2 -0.0089 0.1464

v2 -0.3380* 0.1046

uo3 -0.0652* 0.0306

u3 -0.0491 0.0458

1/3 -0.0913* 0.0408

uo4 0.0158 0.0115

U4 -0.0157' 0.0055

V4 -0.0089 0.0053

uos -0.0483* 0.0143

U5 0.0123* 0.0039

Main Effects V5 0.0282* 0.0083

of uo6 -0.0036* 0.0018

Price Ratios us 0.0019 0.0015

ve -0.0013 0.0014

U07 0.0370* 0.0155

U7 -0.0168* 0.0074

V7 -0.0209* 0.0053

uos -0.0267* 0.0074

U8 0.0001 0.0037

vs -0.0018 0.0047

Continued on next page
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Table 7 (continued)

Description 

Main Effects

of

Price Ratios

Interactions

with

Output

Interactions

with

Network

1

Parameter Estimate Std. Error 

uog 0.0144* 0.0051

ug -0.0028* 0.0016

V9 -0.0026 0.0017

Limo -0.0065' 0.0023

Lilo -0.0010 0.0018

v10 -0.0044* 0.0020

u,, -0.0040* 0.0015

VII 0.0004 0.0018

U12 0.0009 0.0010

V12 -0.0018 0.0014

U013 -0.0158* 0.0048

U13 0.0017 0.0024

V13 -0.0011 0.0022

Ui4 -0.0001 0.0030

V14 -0.0009 0.0037

u015 -0.0173' 0.0038

U15 -0.0015 0.0013

vls 0.0006 0.0011

U016 0.0023 0.0015

U16 0.0027 0.0021

V16 -0.0029 0.0022

U17 -0.0046* 0.001.8

V17 0.0048* 0.0017

Um 0.0002 0.0011

1/16 0.0003 0.0014

U19 -0.0008 0.0025

V19 -0.0086* 0.0022

U020 0.0111' 0.0043

u20 0.0057 0.0037

v20 -0.0028 0.0032

U021 0.0014 0.0019

U2i 0.0017 0.0012

V21 -0.0003 0.0013
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Table' 8: Parameter Estimates-Fourier Cost Function, 1981 Model IV

Description Parameter Estimate Std. Error

Intercept 1)0 9.9042* 0.8596

b, 0.0697* 0.0381

b2 0.6054* 0.0429

b'x b3 0.1296* 0.0154

b4

bo 1.9934*

0.8952

0.7063*

0.3570*

v, -0.1166

uo2 1.140 *

Covariates U2 0.2914

V2 0.2771

-0.3440*

0.0591

V3 0.2271*

u04 0.0156

-0.0223

V4 0.0031

u05 0.0126

Us -0.0049

Main Effects v5 -0.0028

of uos -0.0036

Price Ratios U6 0.0014

'vs -0.0022

U07 -0.0078

0.0042

V7 -0.0093*

uos -0.0200

U8 -0.0102

V8 0.0090

Continued on next page

0.8204

0.8433

0.2523

0.1899

0.1106

0.3021

0.1854

0.1906

0.0791

0.0606

0.0741

0.0469

0.0240

0.0114

0.0142

0.0071

0.0046

0.0033

0.0022

*0.0030

0.0232

0.0132

0.0041

0.0121

0.0068

0.0065
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Table 8 (continued)

Description Parameter Estimate Std. Error 
-%. 

Main Effects u0, 0.0085 0.0069

of u9 -0.0002 0.0028
*

Price Ratios v9 -0.0027 0.0023

uolo -0.0080' 0.0033

A U 1 0 0.0011 0.0024

- v10 0.0010 0.0022

0 u„ -0.0018 0.0019

vl, -0.0016 0.0019

U12 -0.0023 0.0016

V12 0.0001 0.0017

Interactions U013 -0.0110* 0.0062

with U13 0.0054* 0.0029

Output V13 • 0.0013 0.0026

U14 0.0074* 0.0040

V14 0.0005 0.0042

U016 -0.0151* 0.0053

u,s -0.0006 0.0016

V16 -0.0007 0.0017

U016 0.0050' 0.0027

U16 0.0067' 0.0030

V16 0.0002 0.0035

U17 -0,0031 0.0029

V17 -0.0013 0.0024

U18 0.0000 0.0022

V18 0.0046* 0.0022

Interactions 1)19 -0.0013 0.0033

with Via -0.0052 0.0035

* Network U020 0.0046 0.0059

u20 0.0054 0.0051

v20 -0.0098* 0.0050

U021 0.0052* 0.0028
_

U21 -0.0007 0.0025

V21 0.0017 0.0020



Table 9: Elasticities of Substitution
Model IV: Output and Network Effects

1979 Data

Translog Fourier

Substitution Elasticity Mean Min. Max. Mean Min. Max

-8.70 -9.10 -7.05 -9.41 -26.37 -1.72

(Y12 0.44 0.20 0.58 0.48 -0.13 1.57

a13 1.42 1.20 1.87 1.27 -3.70 4.78

4314 0.43 -0.05 0.66 0.64 -1.26 2.17

a22 -0.29 -0.43 -0.18 -0.29 -0.63 -0.14

(3.23 0.57 0.34 0.64 0.70 -0.12 1.63

au 0.69 0.65 0.78 0.70 0.40 1.01

a33 -5.23 -6.80 -4.07 -6.12 -13.27 -2.40

au 1.03 1.02 1.05 0.81 -0.48 1.81

0144 -4.43 -5.15 -3.10 -4.71 -7.35 -2.59

NOTE: Fourier mean values include the 31 (of 60) firms for which the concavity restriction was satisfied.
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Substitution Elasticity

an

a12

a14

a22

a23

a24

a33

sa44

Table 10: Elasticities of Substitution
Model IV: Output and Network Included

1981 Data

Translog

Mean Min. Max.

-6.15 -6.44 -5.11

0.24 -0.06 0.39

1.86 1.43 2.47

0.88 0.81 0.93

-0.26 -0.43 -0.15

0.42 0.15 0.51

0.58 0.51 0.69

-5.92 -7.26 -4.69

1.16 1.10 1.26

-3.38 -4.02 -2.45

Fourier

Mean Min. Max

-6.04 -17.53 -0.77

0.46 -0.14 1.88

1.21 -2.04 4.86

0.13 -1.03 1.30

-0.32 -0.68 -0.10

0.58 -0.29 1.41

0.64 -0.03 1.07

-6.26 -14.85 -1.19

0.73 -0.04 1.82

-2.79 -4.90 -0.75

NOTE: Fourier mean values include the 47 (of 60) firms for which the concavity restriction was satisfied.
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