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Stochastic Technology, Risk Preferences and Adoption of Site-specific Technologies 

  
Abstract   

     
                                                                                       
This paper develops a model of farmer decision-making to examine the extent to which 
uncertainties about the performance of site-specific technologies (SSTs) and about the weather 
impact the value of these technologies. The model uses the jointly estimated risk and technology 
parameters to examine the impacts of SSTs on returns and nitrogen pollution. The availability of 
uncertain soil information and production uncertainty can lead risk-averse farmers to apply more 
fertilizers and generate more pollution. Ignoring the impact of uncertainty and risk preferences of 
farmers leads to a significant overestimation of the economic and environmental benefits of 
SSTs and underestimation of the required subsidy for inducing adoption of SSTs. The model that 
accounts for uncertainties about soil conditions and production as well as risk preferences of 
farmers provides an explanation for the low observed adoption rates of SSTs. Improvements in 
the accuracy of SSTs have the potential to increase the incentives for adoption.    
 
 
Key words: spatial variability, risk preferences, joint estimation, uncertainty, technology 
adoption, nitrogen runoff.            
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Conventional whole-field management practices apply fertilizers at a single rate 

uniformly across an entire field. These practices can lead to over-application of fertilizers on 

some parts of the field and under-application on other parts of the field because soil conditions 

tend to vary within the field. This can result in lower crop yields than potentially possible in 

under-supplied areas of the field and wasted inputs and nutrient runoff from the over-supplied 

areas of the field. Growing concerns about water quality degradation caused by nutrient runoff 

from fields have led to an interest in finding improved nutrient management techniques that 

farmers would be willing to adopt voluntarily (or be induced to adopt through cost-share 

subsidies). Site-specific technologies (SSTs) have generated interest as an improved 

management technique with the potential to provide both environmental benefits and economic 

benefits to farmers. SSTs gather detailed information about the soil conditions at a sub-field 

level, such as nutrient content and potential yields, and utilize that to precisely determine 

fertilizer application rates that vary across the field to match the spatial variability in the soil 

conditions. SSTs include grid-based soil sampling, yield monitors that provide yield maps for the 

field and computerized variable rate fertilizer spreaders.  

Several studies have shown the potential for SSTs to reduce input use, increase crop 

yields and reduce residues of polluting inputs in soils relative to conventional management 

practices (Thrikawala et al.; Khanna, Isik and Winter-Nelson). Many studies have also evaluated 

the profitability of SSTs for corn production (see surveys by Lambert and Lowenberg-DeBoer; 

Swinton and Lowenberg-DeBoer). These studies show that the profitability of SSTs depends on 

the extent of spatial variability of the soil conditions (Babcock and Pautsch; Schnitkey, Hopkins, 

and Tweeten; Khanna, Isik and Winter-Nelson), the size of the field (Thrikawala et al.), the 

extent of rainfall (English, Mahajanashetti, and Roberts; Fixen and Reetz) and uncertainty about 
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output prices (Khanna, Isik and Winter-Nelson). These results are based on the assumption that 

adoption of SSTs leads to complete certainty about soil conditions and fertilizer needs of the soil. 

They also assume that yields are deterministic and farmers are risk-neutral. 

However, there continues to be considerable uncertainty about the capability of SSTs to 

accurately measure nutrient content of soils and yields. Yield monitor and soil testing 

measurements are often subject to technical difficulties and errors, which can lead to errors in 

maps of potential yield and soil nutrient content of the field (Searcy et al.; Lowenberg-DeBoer 

and Hallman; Babcock, Carriquiry and Stern). Farmers also face other sources of uncertainty 

such as production (yield) uncertainty due to weather that has been shown to influence input 

application decisions by risk-neutral farmers (Babcock; Babcock and Shogren; Just and Pope) 

and risk-averse farmers (Ramaswami; Pope and Kramer; Isik). Annual variations in rainfall and 

temperature can lead to variations in yield of 20% above or below the potential for the same field 

(Bullock and Bullock) and the impact of the weather varies across different parts of the field. 

Uncertainty about production and soil conditions may offset the gains achieved from more 

precise application of inputs and thus the benefits of SSTs. These uncertainties are likely to 

increase the variability of returns with SSTs more than those with conventional practices that are 

based on average conditions in the field. This could reduce incentives for switching to SSTs by 

risk-averse farmers. 

 The purpose of this paper is to develop a framework of farmer decision-making to 

analyze the impacts of risk preferences and uncertainties about weather and soil conditions on 

adoption of SSTs. The paper also analyzes the implications of adoption of SSTs for the potential 

they offer for reducing nitrogen pollution under uncertainty and risk aversion. To the extent that 

uncertainty and risk-aversion create disincentives for adoption of SSTs and for reducing nitrogen 
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use, adoption of SSTs may be induced by providing subsidies, through programs such as the 

Environmental Quality Incentives Program. This paper examines the implications of uncertainty 

and risk-aversion for the design of cost-share subsidies to induce adoption of SSTs. We 

implement this framework by first estimating the stochastic technology and risk preference 

parameters jointly, using survey data from farmers in OtterLake Watershed in Illinois. These risk 

and technology parameters are then incorporated into a micro-level utility maximization model 

to simulate the impacts of risk aversion and uncertainty on adoption decisions and to analyze 

their implications for the cost-share subsidies needed to induce adoption.   

 There is a large theoretical literature showing that risk aversion, in the presence of 

various types of uncertainties, can influence input use (Ramaswami; Pope and Kramer; Leathers 

and Quiggin; Karagiannis; Isik) and technology adoption decisions (Feder; Robison and Barry; 

Just and Zilberman). These studies have used whole-field analysis, assuming that there is no 

variability in nutrient content and soil quality within the field. The empirical literature analyzing 

the impact of uncertainty and risk aversion on production decisions has also been based on 

whole-field analysis only and has either estimated stochastic production functions without 

estimating utility function parameters and used those in a simulation to examine the impact of 

risk on input use (Dai, Fletcher, and Lee; Lambert) or estimated the coefficients of risk aversion 

(Bar-shira, Just and Zilberman). Joint estimation of stochastic technology and risk preferences 

has been done by a few studies only (Love and Buccola; Saha, Shumway and Talpaz; Saha; 

Bontems and Thomas) and is preferred because it leads to gains in efficiency of estimation of 

risk and technology parameters. Most of these studies have however, imposed restrictive 

assumptions on the utility function. Love and Buccola used an exponential utility function that 

imposes constant absolute risk aversion. Bontems and Thomas used a power utility function that 
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imposes constant relative risk aversion. Saha, Shumway and Talpaz proposed the use of a more 

flexible utility function that does not restrict risk preferences. Although this method does not 

impose any restriction on producers’ risk preference, it is difficult to obtain tractable results with 

a larger input set or more flexible functional forms since it requires numerical integration over 

the production error term (Saha). We, therefore, use the nonlinear mean standard deviation utility 

function, proposed by Saha, which does not put any restriction on risk preferences and does not 

require numerical integration while jointly estimating the risk and technology parameters. With 

the exception of Bontems and Thomas, none of these studies have used these jointly estimated 

parameters in a simulation model to examine their implications for input use and/or technology 

adoption decisions. Bontems and Thomas consider a model of sequential nitrogen application 

under risk to compute the value of information about nitrogen availability in the soil and risk 

premium in corn production assuming constant relative risk aversion. In this paper, we estimate 

the risk preferences and technology parameters without imposing restrictive assumptions on the 

utility function. We also analyze the extent to which the impact of risk aversion and uncertainty 

varies across heterogeneous farmers. 

 While SSTs are making it possible for farmers to do variable rate input applications 

within the field, the gains in expected profits due to adoption of SSTs depend on spatial 

variability of the soil conditions within the field as well as uncertainties about the performance of 

the technology and about weather. This paper shows how spatial variability in the field can 

mitigate the extent to which risk aversion and uncertainty can influence adoption of SSTs. 

Ignoring the impact of uncertainty and risk preferences of farmers could lead to overestimation 

of economic and environmental benefits of SSTs and underestimation of the required subsidies 

to induce adoption of SSTs.  
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Theoretical Model  

Consider a farmer with a fixed land holding A. Suppose that the land can be divided into 

M homogeneous sites of size iA  such that ∑
∈

=
Mi

i AA . The farmer has a choice of two 

technologies, conventional practices and SSTs, represented by superscripts C and S, respectively. 

The constant returns to scale production function is represented by iiii uzxfy += ),( , where ix  

is the applied input per acre, iz  is the level of soil attribute (nutrient content) per acre at site i, iy  

is yield per acre, and iu  is a random error term with mean zero and )exp()( ii xuVar β= . This 

variance specification, introduced by Harvey and used by Asche and Tveteras, ensures positive 

output variance that is a function of the fertilizers applied. It represents the effect of uncertainty 

due to the weather, which affects production using both conventional practices and SSTs. An 

input is said to be risk increasing (decreasing) if 0)(<>β  under uncertainty about weather. It is 

assumed that 0>xf , 0>zf , and 0<xxf . The sign of xzf  can be negative or positive depending 

on whether the applied input and the soil attribute are substitutes or complements. If z represents 

soil fertility, such as soil nitrate level, it is a substitute for applied nitrogen and xzf  is negative 

because an increase in soil nutrient level results in a decrease in the marginal product of input x. 

On the other hand, if z represents organic matter in the soil (which determines the quality of the 

soil and its potential crop yields), xzf  could be positive, since higher quality soils allow plants to 

use nitrogen more effectively and increase the marginal product of nitrogen. It is assumed that zi 

varies within the field with mean z  and variance 2δ . The input price w and output price P are 

assumed that known with certainty.   

 With conventional practices, the farmer lacks information about the distribution of the 

soil attribute within the field and uses a representative sample of soil tests to estimate the average 
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soil attribute level in the field. The farmer then chooses a single rate of input application per 

acre, Cx , for the whole field given the average soil attribute level. This approach to determining 

the input application rate is also referred to as the averaging approach (Khanna, Isik and Winter-

Nelson; Babcock and Pautch). In the presence of uncertainty about the average soil attribute 

level, the farmer considers the production function to be represented by i
C

ii uzzxfy += ),,( ε , 

where Cε  is a random variable with mean zero and variance ( )2C
εσ .  

 Adoption of SSTs imposes a fixed cost of K to undertake detailed soil testing and 

investment in variable rate technologies. This enables the application of the input at a varying 

rate, xi, at each site in the field given the measured level of the soil attribute at that site. However, 

even adoption of SSTs cannot provide complete and accurate information about soil conditions. 

With SSTs the production function is represented by: i
S

iiii uzzxfy += ),,( ε , where Sε  is a 

random variable with mean zero and variance ( )2S
εσ  that varies proportionally with the level of 

the soil attribute. The first-order approximation of this function is += ),( iii zxfy  

i
S

iiiz uzzxf +ε),( , which is similar to the Just-Pope production function, uxhzxfy )(),( += . In 

the case of the Just-Pope specification, the risk increasing (decreasing) effect of an input is 

represented by 0)(<>xh  and represents the effect of production uncertainty. In this paper, the 

risk increasing (decreasing) effect of an input under uncertainty about soil conditions is 

represented by 0)(<>xzf  and depends on whether x and z are substitutes or complements. 

Decision Problem under Uncertainty      

We model the farmer’s decision to adopt SSTs using a procedure proposed by Meyer. 

The decision criterion, ),( σπU  assumes that an agent’s optimal choice is made by ranking 
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alternatives through a preference function defined over the first-two moments of the random 

payoff, mean π  and standard deviation σ  with 0>πU  and 0<σU . The farmer maximizes:    

( ))(),(max
,

CSCCSC

Ix
IKIU σσσπππ −+−−+             (1) 

where I  is the technology choice (1 for adoption of SSTs, 0 for non-adoption); 

( )∑
∈

−=
Mi

CC
i

C wxzxPfA ),(π ; ( )∑
∈

−=
Mi

iiii
S wxzxPfA ),(π ; 

( ) 212)),(()exp( zxfzxAP C
z

CCC
εσβσ += ; and ( )

21

2)),(()exp( 




 += ∑

∈ Mi
iizi

S
ii

S xzfzxAP εσβσ . 

The utility-maximizing adoption decision is obtained by finding the utility-maximizing 

levels of input use with adoption of SSTs and with conventional practices and then comparing 

the maximized expected utility with each technology. Assuming an internal solution, 0>Cx  and 

0>ix , the uniform input application under conventional practices is determined such that 

( ) ( ) 0=∂∂+∂∂ CCCC xUxU σπ σπ , leading to:  

( ) 0),(),()()exp(2/),(),( 22 =+−− zxfzxfzxPRwzxPf C
xz

C
z

CCCCCC
x εσββσσπ      (2) 

where subscripts denote partial derivatives; and 0),( >−= πσσπ UUR CC  since 0<σU  

represents the risk attitude. Under SSTs, the first-order condition of the maximization problem is 

used to obtain the input levels at a point in the field as:  

 ( ) 0),(),()()exp(2/),(),( 22 =+−− iixziizi
S

i
SSS

iix xzfxzfzxPRwzxPf εσββσσπ .      (3) 

 The impact of uncertainty and risk aversion on input use arises from the existence of a 

marginal risk premium, which is the wedge between the input cost and the expected marginal 

product at the optimal input use (Ramaswami; Pope and Kramer). A risk-averse farmer uses 

more (less) of an input having a negative (positive) marginal risk premium. The marginal risk 

premium under SSTs could be greater than that under conventional practices depending on the 
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variability of returns and the magnitude of risk aversion parameters. Even if there were no soil 

uncertainty, the impact of uncertainty and risk aversion on input use could differ with 

conventional practices and SSTs because of differences in the magnitude of risk aversion and in 

the marginal product of x at each site relative to that under average soil conditions.   

We now examine the impact of soil uncertainty on input use in the field with adoption of 

SSTs and conventional practices by totally differentiating (2) and (3) to obtain:  

xzi
SS

SS
i fPzR

Bd

dx
),(

1 σπ
σ ε

=  and xz
CC

CC

C

fzPR
Bd

dx
),(

1 σπ
σ ε

=                             (4) 

where 0<B  is the second-order condition. Equation (4) is negative (positive) if the input is risk 

increasing (decreasing) represented by 0)(<>xzf . Thus, an increase in the degree of uncertainty 

about soil conditions increases (decreases) the use of a risk-decreasing (risk-increasing) input 

with both conventional and site-specific practices. 

Field-Level Impact of Adoption of SSTs on Input Use and Quasi-rents  

 The first-order conditions in (2) and (3) are used to determine the impact of adoption of 

SSTs on input use and quasi-rents. To obtain the difference in input use between SSTs and 

conventional practices, we assume for simplicity that there is no production uncertainty and 

equate the first-order conditions1: =− ),(),( iixzi
S

iix xzfzRzxf εσ ),(),( zxfzRzxf C
xz

CCCC
x εσ− . 

Define the elasticity of marginal product with respect to z as: 
),(

),(

iix

iixzi
Mi zxf

zxfz=∈  and 

),(

),(

zxf

zxfz
C

x

C
xzC =∈ . Under uncertainty about soil conditions, these elasticities are negative 

(positive) when the input is risk decreasing (increasing) represented by 0)(><xzf . Use Mi∈  and 

                                                
1 In the empirical application of the model however, we consider the case where production uncertainty is present 
both by itself and together with uncertainty about soil conditions. 
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C∈  to obtain ( )S
iiix zxf φ−1),( = ( )CC

x zxf φ−1),( , where 1<∈= Mi
SSS

i R εσφ  and 

1<∈= CCCC R εσφ . By using a first-order Taylor series expansion around z  and Cx  we obtain 

the difference in input use at site i as:  

 
2

2
2)(

2

1)(

)1(

)(

dz

xd
zz

f

zzf

f

f
xx

xx

xz
S
ixx

CS
ixC

i −−
−

−
−
−

≅−
φ
φφ

                                   (5) 

where the derivatives of the production function are evaluated at z  and Cx ; and 22 dzxd  is the 

total second derivative of x with respect to z given by 







−−=

xx

xxxxz
xzzxxxzzxz

xx f

ff
ffff

fdz

xd 2

22

2

2
1

. 

This is consistent with the results obtained by Katz, and by Hennessy and Babcock. The sign of 

22 dzxd  depends on the signs of third own- and cross derivatives of the production function and 

could be positive or negative. Aggregating (5) over all the sites in the field, the per-acre 

difference in the input use between SSTs and conventional practices is: 

 ( ) ∑∑
∈∈







−
−+=−=∆

Si
S
ixx

CS
ix

iZ
Si

CV
ii

f

f
A

Adz

xd
xxA

A
x

)1(

)(1

2

11
2

2
2

φ
φφσ .                              (6) 

 The change in input use with adoption depends on the second and third own and cross 

derivatives of the production function as well as on the degree of risk aversion and magnitude of 

uncertainty about soil conditions with conventional practices and SSTs. Its magnitude also 

depends on the spatial variability in z across the field. The first term in (6) could be positive or 

negative depending on the sign of 22 dzxd . The second term is negative (positive) if CS
i φφ >  

( CS
i φφ < ) for all i. Under certainty and risk-neutrality ( 0=R ), the difference in the mean input 

use is given by 
2

2
2

2

1

dz

xd
x Zσ=∆ . If all the third derivatives of the production function are equal to 

zero, 022 =dzxd . In that case, adoption of SSTs does not affect the mean input use, i.e., 
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0=∆x , as shown by Hennessy and Babcock. However, with risk aversion and uncertainty about 

soil conditions, adoption of SSTs affects the mean input use even when the third derivatives of 

the production function are zero. In this case, the difference in mean input use is 

∑
∈







−
−

=∆
Si

S
ixx

CS
ix

i f

f
A

A
x

)1(

)(1

φ
φφ

. The difference in the mean input use could be positive or negative 

depending on the values of CC
Mi

SS RR εε σσ ,,,, ∈ , and C∈ . Note that even with CS
εε σσ < , x∆  

could be positive or negative. This is because SR  could be greater than CR and Mi
C >∈∈  for 

some i, and Mi
C ≤∈∈  for others. An increase in S

εσ  leads to a decrease (increase) in x∆  if the 

input is risk decreasing (increasing). On the other hand, an increase in C
εσ  increases (decreases) 

x∆  if the input is risk decreasing (increasing).  

 When there is no uncertainty about soil conditions with adoption of SSTs ( )0=S
iφ , 

xx
C

x ffx φ−=∆ , indicating that adoption of SSTs reduces (increases) the use of a risk 

decreasing (increasing) input. However, under risk aversion and uncertainty about soil conditions 

with SSTs, adoption of SSTs could lead to an increase or decrease in the mean input use even 

with zero third derivatives of the production function, unlike the case obtained under certainty 

about SSTs and risk-neutrality by Hennessy and Babcock.  

 The quasi-rent difference between SSTs and conventional practices is obtained by: (a) 

taking a second-order Taylor series expansion of the production function around z  and Cx , (b) 

plugging (6) into this approximation, and (c) aggregating over all sites. The per-acre difference 

in the quasi-rents between SSTs and conventional practices is then estimated as: 

 ( ) ( ) ( )
( ) 






















−
−−+−−−=∆ ∑

∈ Si
S
i

S
i

CCS
i

CS
i

i
x

xz
xx

A
A

f
f

f

P
2

22
22

1

1)(2)(

2 φ
φφφφφφδπ .          (7) 
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When there is no uncertainty about soil conditions with adoption of SSTs ( )0=S
iφ , the per-acre 

quasi-rent differential is ( ) ( )[ ] 0)(
2

2222 >+−=∆ C
xxz

xx

ff
f

P φδπ , which is greater than (7). Thus, 

Adoption of SSTs always leads to an increase in the quasi-rent differential under certainty about 

soil conditions with SSTs. An increase in the degree of uncertainty about soil conditions with 

conventional practices ( Cφ ) increases the quasi-rent differential. Note that when there is no 

uncertainty about soil conditions 
( )
xx

xz

f

fP
2

22δπ −=∆ . The quasi-rent differential increases with 

an increase in the variability of the soil attribute within the field, an increase in output price, and 

an increase in the concavity of the production function.  

 Ceteris paribus, an increase in risk aversion and/or degree of uncertainty about soil 

conditions with SSTs increases the value of S
iφ  in (7), thereby decreasing the quasi-rent 

differential. This impact, however, varies with the nature of input and value of the elasticity of 

marginal product. Risk aversion and uncertainty about soil conditions have a greater impact on 

the quasi-rent differential if the input is risk increasing, i.e., 0>xzf . The higher the elasticity of 

marginal product, Mi∈ , the higher is the absolute value of ( S
iφ ), and therefore the higher the 

impact of risk aversion and uncertainty on the quasi-rent differential.  

Adoption Decision and Cost-share Subsidy  

 Using the utility-maximizing input rates, the farmer adopts SSTs if ( )SS KU σπ ),( − > 

( )CCU σπ , . Otherwise, the farmer would continue to use conventional practices. The incentives 

to adopt SSTs are a positive monotonic transformation of the increase in the expected utility with 

adoption. Expected utility increases with an increase in the returns from adoption and a decrease 

in the cost of adoption. As shown above, the returns from adoption of SSTs, in turn, increase 
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with an increase in the variability of soil attribute within the field. Incentives to adopt decrease as 

the variability of returns with SSTs increase, which occurs with an increase in the degree of 

uncertainty about soil conditions. These results indicate that an improvement in the accuracy of 

SSTs has the potential to increase the incentives for adoption of SSTs, particularly by risk averse 

farmers. 

 A cost-share subsidy may be used to induce adoption of SSTs when it is not otherwise 

profitable to adopt. When there is no uncertainty about soil conditions with risk neutrality, the 

required cost-share subsidy to induce adoption of SSTs is the difference between the cost of 

investment and the returns when the former is greater than the latter, i.e., 
( )

xx

xz

f

fP
K

2

22δ+ . Thus, 

the incentive payment a farmer needs to induce adoption of the technology depends on field-

specific factors such as spatial variability and the characteristics of the production function and 

economic variables such as output price.    

The required subsidy to induce adoption of SSTs under uncertainty about soil conditions 

and risk aversion is given by: π∆−K + ( )[ ] ( )[ ]CCSS UUKUU σπσπ ,,( 11 −− −− . Thus, the 

required subsidy depends on the magnitude of uncertainty about soil conditions and risk aversion 

(utility function parameters), and the distribution of soil characteristics within the field. The 

magnitude of the impact of uncertainty and risk aversion on the returns with adoption of SSTs, 

adoption decision and required cost-share subsidies to induce adoption of SSTs is an empirical 

question and we examine that by developing an empirical model applied using data for Illinois. 

Empirical Method    

To operationalize the framework developed above, we assume the following flexible 

utility function proposed by Saha:    
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γθ σπσπ −=),(U                     (8) 

where π  and σ  are defined above; and 0>θ  and γ  are parameters. This function, also called a 

nonlinear mean standard deviation utility function, provides flexibility in representing alternative 

risk preferences (Meyer). With this utility function, the risk attitude measure is given by the 

marginal utility ratio of the utility function, 11)(),( −−= γθσπθγσπR . Risk aversion, neutrality, 

and affinity correspond to 0>θ , 0=θ , and 0<θ , respectively. In the case of risk aversion, the 

magnitude of ),( σπR  represents the degree of risk aversion. Decreasing absolute risk aversion, 

constant absolute risk aversion, and increasing absolute risk aversion are represented by 0>θ , 

1=θ , and 1<θ  while decreasing relative risk aversion, constant relative risk aversion, and 

increasing relative risk aversion are represented by γθ > , γθ = , and γθ < , respectively. The 

widely used linear mean-standard deviation model is a refutable special case of the MSD 

function, wherein γ =1 and 1=θ . 

 The farmer observes past realization of the random returns to form a perception about the 

mean and standard deviation of the return distribution. Prior to the availability of SSTs all 

farmers use conventional practices and choose input use by maximizing (8) to find input 

application rates as:   

( )),(),()()exp(2/)(),( 221 zxfzxfzxPwzxPf C
xz

C
z

CCC
x ε

γθ σββσπθγ +=− − .              (9) 

If the farmer is risk neutral, i.e., 0=γ , the right-hand side of (9) is zero and the above first-order 

condition simply equates the expected marginal product to the input price. 

To solve the model numerically we need to estimate the utility function and production 

function parameters. We obtain these parameters econometrically by specifying a production 

function uzxfy += );,( α , where )exp()( xuVar β=  as assumed in our theoretical model above 
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with α  and β  representing vectors of technology parameters. We obtain the first-order 

conditions in (9) for three inputs, nitrogen, phosphorus and potassium, which are then estimated 

jointly with the production function. The implicit estimation form of (9) is obtained by taking 

logarithms as:  

        
( ) ( )[ ]

0lnln)1(ln2

)(ln);,();,()()exp(2/);,(ln 2

=+−−−−

−+−

jjjj

jjxzjjz
C
jjjjjjxj

P

zxfzxfzxwzxfP

ωσγπθ
θγαασββα ε

  (10) 

where the subscript j corresponds to the jth observation; jω  denotes the error in optimization; and 

( ) 22 ));,(()exp()()( αβσ ε jjzjjj
C
j zxfzxyVar −= . The expression for C

εσ  is derived from the 

variance of y  ( uzzxfzxfy CC
z

C ++= ε),(),( ). For efficiency gains, the system of three 

equations defined by (10) can be estimated together with the production function while 

recognizing the potential for correlated errors across the set of four equations.   

To determine the technology structure several specifications of the Just-Pope function 

were estimated. These include the translog, Cobb-Douglas, and quadratic production functions. 

To keep our empirical model consistent with the theoretical framework above, we restricted the 

choice of specification to functions with a non-zero second derivative for all levels of input-use. 

Thus, linear-plateau and quadratic plateau functions were not used. Using Pollack and Wales’ 

likelihood dominance criterion for testing non-nested hypothesis and Akaike’s information 

criterion of model selection, the quadratic function was found to dominate the translog and 

Cobb-Douglas functions. Since the estimation procedure described above yields a nonlinear 

system of equations, convergence to a final set of estimates is difficult. Success in convergence 

and log likelihood dominance were key criteria in selection of the production technology.  Using 

Pollack and Wales’ likelihood dominance criterion for testing non-nested hypothesis and 
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Akaike’s information criterion of model selection, the quadratic function was found to dominate 

the translog and Cobb-Douglas functions.               

The following quadratic production function specification for three inputs; nitrogen (N), 

phosphorous (H) and potassium (K), and soil attribute, average potential yield, ( )Z  was chosen:  

      uNZZZKKHHNNy NZZZKKHHNN +++++++++= ααααααααα 2
21

2
21

2
21

2
21       (11)          

where )exp()( 0 KHNuVar KHN ββββ +++= . In many areas, such as Illinois, soil nitrate tests 

have not been found to be successful in accurately measuring and predicting the available 

nitrogen in the soil. Recommendations for nitrogen application are instead based on the soil 

types in the field that determines its average maximum potential yield (Illinois Agronomy 

Handbook; Khanna, Isik and Winter-Nelson). We therefore include this average potential yield 

as an explanatory variable in the production function. We also examined the validity of including 

interaction terms between each type of fertilizer and average potential yield of the field. Only the 

interaction term between nitrogen and average potential yield was found to be significant; hence 

the other interaction terms were not included in the regression equation.  The estimation of three 

first-order conditions obtained in (10) jointly with (11) provides efficient estimates of utility and 

production function parameters, with correlated errors and cross equation restrictions imposed 

during estimation.  

The Data Set  

The data set used to estimate the risk and technology parameters is obtained from a 

survey of farmers in the OtterLake watershed in Macoupin County, Illinois. All the farmers in 

the watershed, that includes about 7,370 acres of cropland, were contacted to obtain information 

about their field boundaries and about their yield and input application decisions at the field level 

for two years, 1993 and 1994. A 60% response rate limited our sample to 99 fields (covering 
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3,799 acres). All the fields were being cultivated using conventional practices. The survey 

provides data on the use of nitrogen, phosphorous and potassium, crop yields, average potential 

yields, average slope, topsoil thickness, and total soil thickness of each field. The spatial 

distribution of potential yields within each of the field boundaries was obtained using digitized 

soil maps. Each soil type has an associated estimate of corn yield potential (Olson and Lang). 

These maps provide distributions of soil quality represented by the potential crop yields. The 

summary statistics of the variables used in the estimation are given in Table 1.  

Estimation Results  

 The nonlinear three-stage least squares procedure was used to jointly estimate (10) and 

(11), with the observations related to physical soil characteristics, total soil thickness, surface soil 

thickness and slope, being the exogenous variables (instruments) in the system. Initial values of 

the parameters in the system are crucial for obtaining convergence with a non-linear system of 

equations. These initial values of the production function are obtained using maximum 

likelihood estimation methods that provide a set of consistent estimates. The results from the 

joint estimation provide technology ( βα , ) and risk preference parameters (θ ,γ ). Most of the 

parameters of the mean and variance part of the production function are significant at 1% level 

(Table 2). The signs of the parameters in the term determining the variance of yield show how 

nitrogen, phosphorous, and potassium affect the variability of output.   

The negative signs on the coefficients Nβ  and Hβ  show that nitrogen and phosphorous 

are risk-decreasing inputs, while potassium is a risk-increasing input ( 0>Kβ ) under production 

uncertainty. Therefore, an increase in the use of nitrogen and phosphorous leads to a decrease in 

the variability of output while an increase in potassium use results in an increase in the 

variability of output. This is different from risk increasing/decreasing effect of an input with 
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respect to uncertainty about soil conditions. In the literature, the empirical evidence with respect 

to risk-fertilizer relationship (under production uncertainty) is mixed. For example, Lambert 

found nitrogen to be risk decreasing with respect to production uncertainty while Nelson and 

Preckel and Love and Buccola found nitrogen to be risk increasing. Love and Buccola found 

phosphorous to be risk reducing while Nelson and Preckel found it to be risk increasing. On the 

other hand, potassium has been found to be risk increasing (Nelson and Preckel; Love and 

Buccola). The results from this study are similar to those of Lambert for nitrogen, Love and 

Buccola for phosphorous, and Nelson and Preckel and Love and Buccola for potassium. The 

implication of the results from this study is that a risk-averse farmer tends to increase the 

application of nitrogen and phosphorous while he tends to decrease the application of potassium 

under production uncertainty. The coefficient of the interaction term, NZα  given in Table 2 is 

negative and statistically significant, indicating that soil quality represented by potential yield 

and applied nitrogen are substitutes each other. Since 0<NZα , nitrogen is considered to be a 

risk-decreasing input under uncertainty about soil conditions when SSTs are adopted.  

 The risk-preference parameters given in Table 2, θ  and γ , are found to be significantly 

greater than zero and equal to 1.13 and 1.64 respectively, rejecting the null hypothesis of risk-

neutrality. Risk-neutrality would obtain as a special case if the parameter θ  approaches one and 

γ  approaches zero. The measure of risk aversion evaluated at the sample means is equal to 1.48 

and shows that the degree of risk aversion does differ among farmers as shown in Table 2. The 

estimated risk-preference parameters are close to those found by Saha. To analyze the nature of 

risk aversion, several hypothesis tests are employed. First, the most commonly used linear mean 

standard deviation hypothesis, :0H 1== γθ , is tested. The null hypothesis of linear mean 

standard deviation is rejected in favor of presence of nonlinear mean standard deviation. We also 
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test whether farmers exhibit constant absolute risk aversion, 1:0 =θH . The null hypothesis of 

constant absolute risk aversion is rejected. Another hypothesis tested is whether the farmers’ risk 

preference is represented by constant relative risk aversion, i.e., γθ =:0H . The null hypothesis 

of constant relative risk aversion is also rejected. This implies that farmers in the OtterLake 

watershed exhibit decreasing absolute risk aversion and increasing relative risk aversion since 

1>θ  and γθ < . These findings are supported in the literature by a number of studies (Wolf and 

Pohlman; Saha, Shumway and Talpaz; Saha; Bar-Shira, Just and Zilberman). For example, 

decreasing absolute risk aversion and increasing relative risk aversion were also found by Saha, 

Shumway and Talpaz, and Saha for risk preferences of Kansas wheat producers and Bar-Shira, 

Just and Zilberman for risk preferences of Israeli farmers.   

Economic and Environmental Impacts of SSTs under Uncertainty  

 The risk and technology parameters obtained above are used to examine the potential 

incentives for adoption of SSTs and its implications for fertilizer use by developing a simulation 

model. As shown in the theoretical model, the potential incentives for adoption of SSTs depend 

upon the uncertainty about soil conditions. The standard deviation of the random variable related 

to the uncertainty about soil conditions with conventional practices ( C
εσ ) is estimated using 

( ) 22 )),(()exp()()( zxfzxyVar C
z

C βσ ε −=  for each field. The value of C
εσ  varies across the 

fields and is equal to 0.199 at the sample mean. The noise in the soil characteristics ( Sε ) with 

adoption of SSTs is assumed to vary with the level of potential yield ( S
iz ε ). The standard 

deviation of this random variable ( S
εσ ) is assumed to be 0.1. This value implies that standard 

deviation of the level of the soil attribute is equal to iz1.0 , indicating that the level of potential 

yield could be 10% more or less than the measured level due to the measurement errors. For 
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instance, for a section of the field with a true potential yield of 130 bushels/acre (that is unknown 

to the farmer), the farmer would consider it to lie, with a 68.3% probability, between 117 and 

143 bushels/acre (which represent one-standard deviation levels on either side of the true level).  

Because there is no information about distribution of soil fertility level (phosphorous and 

potassium) in the fields examined here, two alternative distributions of phosphorous and 

potassium (25% and 50% coefficients of variation) are generated using a Beta distribution as in 

Khanna, Isik, and Winter-Nelson. This study does not consider the possibility of measuring 

residual nitrogen in the soils (Illinois Agronomy Handbook; Khanna, Isik, and Winter-Nelson). 

However, nitrogen application rates vary with variations in the potential yields across the fields. 

We examine the environmental implications of SSTs in terms of reducing nitrogen 

pollution. It is assumed that 0.75 lbs. of the applied nitrogen are absorbed by a bushel of corn 

and corn stover and that all excess nitrogen in the soil is available for leaching (Barry, Goorahoo 

and Goss; Khanna, Isik and Winter-Nelson). Thus, polluting run-off of the applied nitrogen per 

acre is given by yNr  75.0  −= .          

 We assume that the farmer hires professional custom services for variable rate fertilizer 

applications. The per-acre cost of soil testing and mapping is assumed to be $1.6 while the 

annual cost of variable rate fertilizer application is $5.0 per acre (Illini FS). Thus, the per-acre 

annual cost of adopting SSTs is $6.6. This value is within the range of $3/acre and $10/acre that 

is typically cited for the cost of SSTs (Swinton and Lowenberg-DeBoer). Prices of nitrogen, 

phosphorus and potassium are assumed to be $0.2/lb, $0.24/lb and $0.13/lb, respectively while 

price of corn is set to $2.5 per bushel (as in Khanna, Isik and Winter-Nelson; Pautsch, Babcock, 

and Breidt).   
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Quasi-rent Differentials under Risk-neutrality 

The empirical model first examines the farm-level impacts of adoption of SSTs under 

risk-neutrality for the 99 fields with 25% coefficient of variations in the soil fertility 

distributions. In this simulation, adoption of SSTs is assumed to completely eliminate uncertainty 

about soil conditions, while conventional practices do involve uncertainty about soil conditions. 

Quasi-rents (revenue minus variable fertilizer costs) with conventional practices and SSTs are 

estimated by maximizing expected profits to find the optimal fertilizer applications. Table 3 

presents the per-acre quasi-rent differentials of SSTs over conventional practices. The per-acre 

quasi-rent differentials with 25% coefficient of variations in the soil fertility distributions range 

between $3.1 and $18.2 across the fields examined here and the average quasi-rent differential is 

$10.0 per acre2. Comparing the expected quasi-rent differentials to the per-acre costs of adoption 

($6.4) indicates that it would be optimal to adopt SSTs on 85.8% of the fields considered here 

under certainty about soil conditions with SSTs and risk-neutrality.  

To examine the magnitude of the effect of the parameters of the distribution of potential 

yields on per-acre quasi-rent differentials of SSTs, ∆π, as shown by (7) we estimate the 

following regression for these 99 fields: 

 ∆π=6.168-0.04 Z +0.246 ωδ +         R2 =0.76                         (12) 

                 (5.05)  (0.01)*  (0.03)*                                

where δ  is the standard deviation of the potential yield distributions; standard errors are given in 

parenthesis; and * indicates that the estimated coefficient is significant at 1% level. It shows that 

fields with higher variability in soil quality distributions and a lower average level have higher 

                                                
2 We also examined the impacts of an increase in the variability of soil fertility distribution on the quasi-rent 
differentials. An increase in the coefficient of variation from 25% to 50% leads to an increase in the per-acre quasi-
rent differentials from $10 per acre to $12.3 per acre. Throughout the rest of the paper, we report results obtained 
with 25% coefficient of variation, which is reasonable because soil samples collected in the fields of the two Illinois 
farms indicate that coefficient of variations of soil fertility distributions range between 22% and 45% (Ochai et al.)  
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quasi-rent differentials than others. Fields with lower average potential yield are likely to gain 

more from adopting SSTs. This could be because fields with lower quality soils and a lower 

average potential yield also have greater variability in soil types as observed by Babcock and 

Pautsch for fields in Iowa.  

We now incorporate uncertainty about soil conditions with SSTs into the model with 

risk-neutrality. Under uncertainty about soil conditions with both SSTs and conventional 

practices and risk-neutrality, the quasi-rents of conventional practices and SSTs are estimated by 

maximizing expected profits. The per-acre quasi-rent differentials now vary between $2.7 and 

$15.3 across the fields. Comparing the quasi-rent differentials under certainty to those under 

uncertainty about soil conditions with SSTs we find that incorporation of uncertainty into the 

model leads to a reduction in the quasi-rent differentials. The average quasi-rent differential 

decreases from $10.0 per acre under certainty about SSTs and risk-neutrality to $8.5 per acre 

under uncertainty about soil conditions with SSTs and risk-neutrality. This occurs because 

uncertainty about soil conditions leads to an increase in the use of all fertilizers considered here, 

which increases the input costs and therefore reduces the quasi-rent differentials. In this case, 

77.7% of the fields would find it to be profitable to adopt SSTs. We also examined the impact of 

an increase in S
εσ  on the value of SSTs. An increase in S

εσ  from 1.0  to 15.0  decreases the 

average quasi-rent differentials from $8.5 per acre to $6.7 per acre.   

Quasi-rent Differentials under Uncertainty and Risk-Aversion 

We first examine the impacts of SSTs on the quasi-rent differentials under risk aversion 

with production uncertainty and uncertainty about soil conditions with conventional practices. 

We assume that there is certainty about soil conditions with SSTs. We find in this case that per-

acre quasi-rent differentials range from $1.7 to $10.8 across the fields examined here (Table 3). 



23 
 

  
                                                                                                                                                         

The average quasi-rent differential decreased from $10.0 per acre under certainty and risk-

neutrality to $6.5 per acre under production uncertainty and risk aversion. Risk aversion and 

production uncertainty result in a decrease in the quasi-rent differentials of all the fields since the 

applications of nitrogen and phosphorous increase while the application of potassium decreases. 

This increases fertilizer costs more than the revenue gains from increases in crop yields. Under 

production uncertainty and risk aversion, only 41.4% of the fields would switch from 

conventional practices to SSTs.  

 We now add uncertainty about soil conditions with SSTs to the model and present the 

results in Table 3. Uncertainty about soil conditions along with production uncertainty cause 

risk-averse farmers to increase the use of nitrogen and phosphorous and decrease the use of 

potassium. The average quasi-rent differential decreased from $10.0 per acre under certainty 

about soil conditions with SSTs to $5.0 per acre under uncertainty about production and soil 

conditions. The addition of uncertainty about soil conditions with SSTs to the model leads to 

further reductions in the quasi-rent differentials. Comparison of the expected utility with SSTs to 

that with conventional practices indicates that it would be optimal to adopt SSTs on only 15.2% 

of the fields considered here. Thus, risk aversion and uncertainties about soil conditions and 

production result in a substantial decrease in the quasi-rent differentials and adoption rates of 

SSTs. This implies that ignoring uncertainty about soil conditions with SSTs and production 

would lead to overestimation of the quasi-rent differentials and adoption rates of SSTs.  

Environmental Implications of SSTs under Uncertainty  

We now examine the impact of adoption of SSTs on nitrogen pollution generation. Under 

risk-neutrality and complete certainty about soil conditions with SSTs, adoption of SSTs leads to 

a reduction in the nitrogen pollution generation compared to the level with conventional 
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application practices on all fields. Pollution reduction with adoption of SSTs as compared to 

conventional practices ranges between 1.1% and 42.3% across the fields (Table 4). Under 

uncertainty about soil conditions and risk-neutrality, pollution reduction with adoption of SSTs 

ranges between 0.8% and 40.9% across the fields. Average per acre pollution reductions with 

adoption of SSTs decreases from 19.8% under certainty about soil conditions with SSTs to 

16.3% under uncertainty about soil conditions. Under production uncertainty and risk aversion, 

pollution reduction decreases substantially compared to the case of certainty and risk-neutrality. 

Adoption of SSTs now reduces nitrogen pollution between 0.5% and 24.7% across the fields. 

Average reduction in nitrogen pollution with adoption of SSTs decreases from 19.8% under 

certainty about soil conditions with SSTs to 12.5% under production uncertainty and risk 

aversion. This occurs because adoption of SSTs leads to an increase in the application of 

nitrogen and phosphorous while it leads to a decrease in potassium use. These changes in 

fertilizer use do not lead to a significant increase in crop yields and therefore in input uptake by 

crops to offset the increases in the nitrogen use. Hence, nitrogen pollution with adoption of SSTs 

increases substantially relative to the case with no uncertainty. However, it is still lower than that 

with conventional practices on most of the fields.  

Pollution reduction under uncertainty about production and soil conditions is much lower 

than in the case of certainty about soil conditions with SSTs and risk-neutrality and on a few 

fields pollution increases with adoption of SSTs (Table 4). This occurs because uncertainty about 

soil conditions results in an increase in the nitrogen application while crop yields obtained do not 

increase as much to offset the increase in the application of nitrogen due to changes in other 

inputs. Therefore, adoption of SSTs could lead to an increase in the nitrogen pollution under 

uncertainty about soil conditions and risk aversion. Average reduction in nitrogen pollution with 
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adoption of SSTs decreases from 19.8% under certainty about soil conditions with SSTs and 

risk-neutrality to 8.3% under both production and soil conditions uncertainty with risk aversion. 

Hence, ignoring uncertainty about soil conditions and production would lead to overestimation 

of nitrogen pollution reduction with SSTs.    

Cost-share Subsidies Under Uncertainty and Risk Aversion  

 Table 4 also presents the cost-share subsidy required to induce adoption of SSTs. The 

required subsidies to induce adoption of SSTs vary across heterogeneous fields as shown above.     

Under risk-neutrality and no uncertainty about soil conditions with SSTs, the quasi-rent 

differentials of most of the fields examined here exceed the per-acre cost of adoption; thus there 

is need for cost-share subsidies to induce adoption of SSTs for only a few fields. The average 

subsidy as a percentage of the total cost in this case is 5.2%. Under uncertainty about soil 

conditions and risk-neutrality, average subsidy required to adopt SSTs increases to 6%. 

However, under production uncertainty and risk aversion, a much higher subsidy is necessary to 

induce adoption of SSTs. The average subsidy rate estimated as a percentage of the cost of 

adoption of SSTs is 23.2%. The average subsidy rates required increased from 5.2% under 

certainty about soil conditions with SSTs and risk-neutrality to 50.1% under uncertainty about 

production and soil conditions. Under uncertainty and risk-aversion, higher subsidies are 

necessary to induce adoption of SSTs due to the need to compensate for the risk premium, which 

also varies across heterogeneous farmers.  

Conclusions 

This paper develops a model of farmer-decision making to analyze the incentives for 

adoption of a technology that provides information about spatial variability in nutrient 

availability within a field and enables corresponding variable rate applications of fertilizers 
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within that field. It examines the extent to which risk aversion and uncertainties about production 

and the accuracy of the technology have impacts on input applications and adoption decisions of 

SSTs and how these impacts vary with the characteristics of the soil distribution in the field. The 

paper also examines the potential policy relevance of considering uncertainty and risk-aversion 

by examining the design of cost-share subsidies to achieve reductions in nitrogen pollution. By 

taking into account uncertainty about soil conditions and production as well as risk preferences, 

it provides an explanation for the low observed adoption rates of SSTs among farmers.  

 The model uses jointly estimated risk and technology parameters to estimate the impacts 

of SSTs on returns and nitrogen pollution generation. The quasi-rent differentials vary across the 

fields due to the differences in soil quality distributions. The gain in quasi-rents from SSTs is 

higher on fields with low potential yield and high spatial variability. Adoption of SSTs under 

uncertainty about production and soil conditions would lead risk-averse farmers to apply more 

fertilizers and generate more pollution on the fields with low variability in soil quality 

distribution. Ignoring the impact of uncertainty about soil conditions with SSTs and risk 

preferences leads to a significant overestimation of the economic and environmental benefits of 

SSTs and underestimation of the required cost-share subsidies for adoption of SSTs. Improving 

the technical accuracy of SSTs through reducing the uncertainty about soil conditions has the 

potential to improve the economic and environmental benefits of SSTs as well as to increase the 

incentives for adoption of SSTs.     

The results obtained herein show that SSTs have the potential to reduce nitrogen 

pollution relative to conventional practices but in the presence of uncertainty about weather and 

soil conditions in the field, the incentives to over-apply nitrogen can considerably reduce the 

environmental gains from SSTs. Hence, improved information about weather patterns and 
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reduced uncertainty about technical accuracy of SSTs would enable better realization of the 

potential benefits of SSTs. While the feasibility of reducing these uncertainties and their costs 

are not examined here, this paper shows that the potential benefits of reducing these uncertainties 

should include both the private benefits for farmers through increased profits from adoption and 

the social benefits through reduced nitrate run-off from agricultural production practices.   
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Table 1. Summary Statistics on Data Used to Estimate the Risk and Technology Parametersa 

Variables Mean (Standard Deviation) 

Yield (bushel per acre) 158.17(30.72) 

Potential Yield (bushel per acre) 163.41(22.11) 

Nitrogen (pounds per acre) 172.09(47.40) 

Phosphorous (pounds per acre) 61.45(47.57) 

Potassium (pounds per acre) 106.96(71.01) 

Surface Soil Thickness (inches) 8.06 (1.42) 

Total Soil Thickness (inches) 63.07 (11.63) 

Slope (%) 5.54 (5.27) 
a The number of observations is 198. 
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Table 2. Parameter Estimates and Test Results 
 
Parameter Description Estimate 

N1α  

N2α  

H1α  

H2α  

K1α  

K2α  

Z1α  

Z2α  

NZα  

Production Function 
Parameters-Meana 

1.166(0.3489)* 

-0.009(0.0029)* 

0.5268(0.1361)* 

-0.0047(0.0013)* 

0.2243(0.0576)* 

-0.0011(0.0002)* 

1.0244(0.2526)* 

-0.0022(0.0012)*** 

-0.0009(0.00042)** 

Nβ  

Hβ  

Kβ  

0β  

Production Function 
Parameters-Variancea 

-0.0041(0.0014)* 

-0.0142(0.0032)* 

0.00859(0.0049)** 

6.7054(0.5971)* 
θ  
γ  

Utility Function Parametersa 1.1263(0.0204)* 
1.63676(0.0304)* 

1:0 == γθH  Linear MSD Modelb 2780.226(0.000) 

1:0 =θH  CARA Preferencesc 6.1912(0.000) 

γθ =:0H  CRRA Preferencesd 29.6256(0.000) 

),( σπR evaluated at the 
sample mean 

Risk Aversion Measurea 1.479(0.423)* 

*Significant at 1%. **Significant at 5%. ***Significant at 10%. 

a Standard errors in parentheses.  
b Asymptotic Chi-square square statistics, P-value in parentheses. 
c Constant Absolute Risk Aversion, asymptotic t-statistics, P-value in parentheses. 
d Constant Relative Risk Aversion, asymptotic t-statistics, P-value in parentheses.   
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Table 3. Per Acre Quasi-rent Differentials of SSTs, Adoption Rates, and Difference in Risk  
   Premiumsa  

 
  

 

 

Certainty 
About Soil 
Conditions 

with SSTs and 
Risk-

Neutrality  

Uncertainty 
About Soil 
Conditions 
with SSTs 
and Risk-
Neutrality 

Production 
Uncertainty 

and Risk 
Aversion 

 
 

Uncertainty 
about 

Production 
and Soil 

Conditions 
with Risk 
Aversion 

 
 
Quasi-rent 
Differentials 
($ Per Acre) 

 
Min 
 
Average 
(Standard 
Deviation) 
 
Max 
 

3.1 
 

10.0 
(3.3) 

 
 

18.2 
 

2.7 
 

8.5 
(3.0) 

 
 

15.3 
 

1.7 
 

6.5 
(1.7) 

 
 

10.8 
 

1.1 
 

5.0 
(1.6) 

 
 

7.6 
 

Adoption 
Rates (%)b 

 85.8 
 

77.8 
 

41.4 
 

15.2 
 

a Coefficient of variations in the soil fertility distributions is 25%. Conventional application practices 
involve uncertainty about soil conditions. 

b Represents the percentage of the 99 fields that would switch from conventional practices to SSTs after 
taking into account the costs of adopting SSTs.  
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Table 4. Percentage Per Acre Nitrogen Pollution Reductions with Adoption of SSTs as  
  Compared to the Pollution Level under Conventional Practices and Required Cost-   
  Share Subsidiesa 

 
  

 

 

Certainty 
About Soil 
Conditions 
with SSTs 
and Risk-
Neutrality  

Uncertainty 
About Soil 
Conditions 
with SSTs 
and Risk-
Neutrality 

Production 
Uncertainty 

and Risk 
Aversion 

 
 

Uncertainty 
about 

Production 
and Soil 

Conditions 
with Risk 
Aversionb 

 
 
 Percentage 

Nitrogen 
Pollution 

Reductions 
with SSTs 

 
Min 

 
Average 

(Standard 
Deviation) 

 
Max 

 
1.1 

 
 

19.8 
(7.9) 

 
42.3 

 
0.8 

 
 

16.3 
(7.7) 

 
40.9 

          
0.5 

 
 

12.5 
(6.6) 

 
24.7 

 
 

 
-2.0 

 
 

8.3 
(6.0) 

 
19.0 

 
 

 
Required 

Cost-Share 
Subsidies as 
Percentage 

of Total 
Costs (%) 

 

 
Min 

 
Average 

(Standard 
Deviation) 

 
Max 

 
0.0 

 
5.2 

(4.8) 
 

53.0 

 
0.0 

 
6.0 

(5.5) 
 

59.1 

 
0.0 

 
23.2 
(9.0) 

 
74.2 

 
 

0.0 
 

50.1 
(9.8) 

 
83.3 

 
 

a Coefficient of variations in the soil fertility distributions is 25%. Conventional application practices 
involve uncertainty about soil conditions. 
b Negative numbers indicate that adoption of SSTs increases nitrogen pollution. 
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