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A game theory approach to the Iranian forest industry raw 
material market 

Soleiman Mohammadi Limaei* and Peter Lohmander 

Abstract
Dynamic game theory is applied to analyze the timber market in northern Iran as a duopsony. 
The Nash equilibrium and the dynamic properties of the system based on marginal 
adjustments are determined. When timber is sold, the different mills use mixed strategies to 
give sealed bids. It is found that the decision probability combination of the different mills 
follow a special form of attractor and that centers should be expected to appear in 
unconstrained games. Since the probabilities of different strategies are always found in the 
interval [0,1], the boundaries of the feasible set are sometimes binding constraints. Then, the 
attractor becomes a constrained probability orbit. In the studied game, the probability that the 
Nash equilibrium will be reached is almost zero. The dynamic properties of timber prices 
derived via the duopsony game model are found also in the real empirical price series from 
the north of Iran.

Keywords: Iranian forest industry, game theory, Nash equilibrium, constrained probability 
orbit.

1. Introduction: 
The forest sector is important to the economy in northern Iran. A rather small number of large 
mills dominate the industry in the region. The analysis in this paper is made with the 
ambition to describe the market structure and to analyze the dynamic properties of the 
market. The study also focuses on the theory of duopsony games. The dynamics of such 
games, in particular with conditions typical in the region, will be studied and compared to 
real empirical data series.   

Hence, dynamic game theory will be applied to analyze the timber market in northern 
Iran as a duopsony. 

When timber is sold, the different mills use mixed strategies to give sealed bids. The 
Nash equilibrium and the dynamic properties of the system based on marginal adjustments 
will be determined.  

Game theory is a branch of mathematical analysis developed to study decision making 
in situations of conflict (and sometimes cooperation). Such situations exist when two or more 
decision makers (player) have different objectives, act on the same system or share the same 
resources. Game theory provides a mathematical process for selecting an optimal strategy 
(that is, an optimum decision or a sequence of decisions) in the face of an opponent who has 
a strategy of his own. In game theory, these assumptions are usually made:  

Each player has two or more strategies or specific choices. 

Different possible combinations of strategies available give different payoffs to the different 
players.

In some games the players have perfect information about the game. This is not 
always the case. In some games, the information is not perfect and symmetrical. 

Game theory has applications in a variety of fields, including, operation research, 
economics, political sciences, military strategy, psychology and biology. It has close links 
with economics in that it seeks to find rational strategies in situations where the outcome 
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depends not only on one's own strategy and "market conditions", but upon the strategies 
chosen by other players with possibly different or overlapping goals.
Some typical market situations to be handled within this framework in economics are 
oligopolies and oligopsonies, in particular duopolies and duopsonies.

A game can be classified on the basis of several criteria. Depending on the number of 
players, we may have two-person, three –person or n-person games. 
Depending on the payoff situation a game can be classified as either constant-sum or 
nonconstant-sum. A constant sum game can be classified as a zero-sum or non-zero-sum 
games. 

In a zero-sum game the sum of payoffs at the end is zero since the amounts won or 
lost are equal. In such games, each player knows exactly how the other player is affected by 
different decision combinations as long as he knows how he is affected by the combinations 
himself. As an economic example of this, we may consider two firms in a duopolistic market 
that are striving to increase the number of customers. If the total number of customers is 
constrained, the number of customers won by one firm must be identical to the number of 
customers lost by the other. 

In many real games, the information is incomplete. Player A does not know exactly 
how player B is affected by different decision combinations without a lot of special 
information concerning the (economic or maybe physical or biological) environment of 
player B. Most economic situations are non-zero-sum. 
In many cases, it is necessary to calculate the optimal behaviour of each player for each 
possible position in the physical state space and speed vector and for each possible position, 
speed vector and decision of the other players. The problem is then solved recursively in the 
spirit of dynamic programming for every player conditional on the behaviour of all other 
players. In fact, in a two person difference game, if the decisions of player B or their 
probability distribution are known by player A and the decisions made by player B are not 
affected by the decisions made by player A, then player A may regard his optimization 
problem in the difference game as a common dynamic programming problem. This however, 
is a very special case where we do not really investigate game anymore. We then have a 
“game against Nature”. The dimensionality problem in dynamic programming is well known. 
In difference games, the dimensionality problem is much worse. 

Then, what can be done? 

If we accept low resolution in the state and time space and a low number of possible 
decisions (controls), then the difference games can often rapidly be solved. Furthermore we 
usually have to assume that the game is deterministic: Each player selects a pure position 
dependent strategy. If we let the players use randomized strategies, make different decisions 
with different probabilities in different situations, the computation time grows very rapidly. 

One observation concerning the deterministic differential or difference game is that 
the outcome is known when the initial conditions are known. 

In a deterministic differential game, each player knows exactly what to do and what the other 
players will do in every possible situation. There is really no need to play a game. For this 
reason we may say that we know the outcome of a game. 

Of course in reality, the players do not know much enough or have time enough to 
calculate the optimal decisions in all possible positions. In real world conflicts, the technical 
properties of the equipment and the exact positions of the army units may not be known by 
the opponent. In other kinds of conflicts in a complicated society, the options available to the 
opponent are frequently very difficult to estimate. 
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In many real world games in economics, the physical and economic environment of 
the game problems changes rapidly and often unpredictably. One player may own a factory 
which produces a particular product. If the price of the product is high, this player may be 
very interested to buy a unit of some input factor. This input factor transaction may be a game 
in which the factory owner participates among other potential buyers. In this case, the factory 
owner highly valuates a decision combination which means that he can buy the input factor. 
One month later, the price of the product decreases dramatically. Again, the factory 
participates in a similar transaction game. This time he does not valuate a decision 
combination which makes him buy the input factor as highly as before. Since the economic 
environment unpredictably changes in this game, we can not expect that the players will 
select the same strategy for ever. Hence, we can not be sure that a player who estimates the 
probabilities of the other player’s decisions via the frequencies in the complete historical 
decision observation series, and optimizes his strategy accordingly, will optimize his 
expected result in the changing environment.  

In this paper, dynamic game theory is applied to Iranian forest industry. There are two 
sawmills firms actively involved in the timber market area of the game. A large number of 
forest companies and privately planted forests sell timber to these sawmills.  

In each transaction, each sawmill (player) gives a sealed bid: A high or a low bid. 
Here the situation is a noncooperative game. Our first aim is to determine the optimal strategy 
and Nash equilibrium for each player.  

2. Literature review: 
Cournot (1838) presents a revolutionary contribution to the theory of non cooperative 
equilibria in oligopoly situations. von Stackelberg (1934 and 1938) is one of the persons who 
has contributed to game theory before the concept was established. In particular, he was 
interested in dynamic duopoly theory.

The mathematical theory of games was described by Neumann and Morgenstern 
(1944).
Nash (1950 and 1951) gave us the important concept “Nash equilibrium”. In  
Nash equilibrium, no player has an incentive to deviate from the strategy chosen, since no 
player can choose a better strategy given the choices of the other players. 
The Nash equilibrium has been very useful in most developments of game theory.  
Brown and von Neumann (1950) discussed how to use differential equations in the solution 
of games. Robinson (1951) used an iteration method where each player sequentially 
estimated the probability distributions of the other players decisions and adapted the own 
decision probabilities optimally. Brown (1951) investigated a problem similar to the problem 
in Robinson (1951). Bellman (1953) continued the studies of iterative algorithms and so did 
von Neumann (1954). 

Luce and Raffia (1957) studied many important game problems with mathematics and 
numerical methods. 

Schelling (one of the winners of the price in economic sciences in memory of Alfred 
Nobel 2005) gave a good survey of the field strategy of conflict in 1960. Dresher (1961) 
stressed the time dimension and optimal decisions over time in connection to several games 
of conflict. Isaacs (1965) introduced the theory and several applications of differential games.  

Selten (1975), Kalai and Smorodinsky (1975) and Rasmusen (1990) present a wide 
spectrum of game models from economics and related fields. Aumann and Hart (1992 and 
1994) wrote a useful handbook of game theory with economic applications. (Aumann was the 
other winner of the price in economic sciences in memory of Alfred Nobel 2005). They 
dynamics of Cournot games has been studied by Flåm (1990), Flåm and Moxnes (1991) and 
Flåm and Zaccour (1991). 
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Lohmander (1994) studied the dynamics and non cooperative decisions in stochastic 
markets with pulp industry application. Lohmander (1997) contains a general investigation of 
the constrained probability orbit of mixed strategy games with marginal adjustment. A 
general two person non-zero sum game (with zero as a special case) is analyzed. A doupsony 
application where two sawmills are competing in the timber market is included and the 
dynamic properties of the system are determined. 

Game theory has found new forest sector applications in recent years. Koskela and 
Ollikainen (1998) described a game-theoretic model of timber prices and the capital stock for 
the Finnish pulp and paper industry. Carter and Newman (1998) examined the impact of 
reservation prices on timber revenues from federal timber sale auctions in North Carolina 
from a game-theoretic perspective by recognizing the effect of competition on optimal bid 
strategies.

3. Cooperation or conflict in the timber market: A doupsony discussion. 
Two sawmills buy timber from a large number of independent forest owners in an area. Every 
time a unit of timber is available, the forest owner receives sell bids from the potential 
buyers. Clearly, this is a case where the buyers as a group may benefit from cooperation and 
low bids. The extra profit obtained via the low timber price may then be distributed between 
the buyers in some way.  

In some cases, the strongest sawmill (in the sense of ability to survive high timber 
prices), may prefer not to cooperate and to destroy the input market of other sawmill via high 
bids). This way, both sawmills loose profits during some time period and the strongest 
sawmill has the option to use his monopsony power and to increase his profits even more 
than before via low timber prices. The sawmill example contains two kinds of solutions:  

In the cooperation case, way may expect the sawmills to calculate the timber price 
which maximizes the profit of the two sawmills as a group. Then they distribute the extra 
profit somehow within the group. Sometimes we may expect that the sawmills decide not 
only the timber price but also the distribution of the timber. The forest owners may not notice 
this cooperation directly. They may notice that all bids are low or that only one of the saw 
mills gives a bid on each unit of timber, or finally, that one sawmill gives a low bid and the 
other sawmill gives a very low bid on each timber unit. In the latest case, the very low bid is 
there just to hide the cooperation from the sellers. It does not affect the plan of buyers 
anyway.

In timber price fight case, the timber price bids are high until one of the buyers leaves 
the market. Then the bids instantly fall and the low price level remains until increased 
competition appears. 

In a third case the buyers do not cooperate because they do not believe that other 
buyers will keep an agreement. Maybe they are also aware that the government will discover 
market cooperation and punish cartels. Hence, the buyers act according to the law and 
sometimes deliver sealed bids. (Some countries have such laws.) 
When they decide to give a bid, they first have to inform themselves about the quality of the 
timber and other practical details. This activity is not costless. Then, they have to decide the 
level of the bid. 

Of course, they can give a low bid and hope that the other sawmill will not give a 
higher bid. In that case they will buy the timber cheaply. If they have bad luck, the other 
sawmill buys the timber with a higher bid and the only economics consequence of the activity 
is the cost of the investigation. 

On the other hand, they may give a high bid and hope that the other sawmill will give 
a lower bid. The probability of obtaining the timber is of course higher in this case, but the 
price is also higher. 
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This last version of the game is interesting in several ways and the methodology to be 
used in the analysis is not obvious. Each player has in the example two different possible 
decisions: A high (H) or a low (L) bid. The players are denoted A and B. 

If the sum of the total profit made by the two players is zero (or a constant), it is 
obvious that no cooperation will appear.  If the players know all the economic consequences 
for both players of all decision combinations exactly, then we can use the two person zero 
sum game theory. 

The optimal strategies may turn out to be pure (only one decision) or mixed for each 
player where a mixed strategy means that different decision should be made with different 
probabilities.

In the sense that one sawmill has no (or very limited) information concerning the 
economic consequences in the other sawmill of different decision combinations, the obvious 
way for player A to deal with the problem is to observe and estimate the frequencies of the 
different decision taken by player B. 

4. Timber price (Numerical data analysis): 
Numerical data were collected from two forest companies in the north of Iran (Fig. 1). These 
companies are called Shafarod and Neka Chub. 
They buy more than 70 percent of the timber in the region. We may call this a duopsony 
situation. 

These companies rent some forests from the government. They harvest and manage 
these rented forests but they also buy the timber from other sources such as privately planted 
forests and forest companies. These companies produce different products in their own 
sawmills such as sawnwood, veneer, plywood, pulpwood, firewood and charcoal. 
Now, we denote sawmills Shafarod and Neka Chub, A and B, respectively. 

Figure. 1. The distribution of Iranian northern forests and two sawmills. 

The real timber price series from the year 1990 until 2004 were collected from the two 
sawmills. Appendix A and Fig. 2 show these series. The differences of the real timber prices 
are shown in Fig. 3.
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Figure. 2. Real timber prices in two sawmills in the north of Iran.
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Figure. 3. The differences between real timber prices between 
 two sawmills in the north of Iran.   

As a start, we investigate the prices using autoregressive (AR) time series analysis.   
Timber prices are treated as stochastic and assumed to follow a first order Markov process. A 
Markov price expectation structure refers to any stochastic model in which price is 
conditional on previous prices. Current prices are known, but the future prices are uncertain.
Fifteen years of timber price data were used to estimate the following model: 
Pt+1 = + Pt + t, where Pt+1  is the expected price in period t+1, Pt is price in the current 
period and t is the error term. t is assumed to be independent identical distribution and  

Gaussian, with expected value 0 and standard deviation t .
The estimated parameters ,  are found below: (t statistics in parentheses). 

Sawmill A: 
ttt PP 678.0394.231 (1)

          (1.727)     (3.496) .880.8
t

Sawmill B: 
ttt PP 667.0915.231 (2)

         (1.808)  (3.518) .422.8
t

The parameter estimates of the two first order AR price processes above indicate that prices 
are stationary. Nonstationary Martingale prices, on the other hand, have the property Pt+1 = Pt
+ t.
Detailed inspections of the results however show that the t-values of the constants are too low 
to give a statistically significant indication of stationarity at the 95% level. 
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Furthermore, the estimated first order AR processes do not give any information concerning 
possible dependence between the prices in the two sawmills. Hence, some alternative models 
would be interesting. As a start, we investigate the price difference.  

The first order AR model for the timber price differences between the two sawmills, 
_

, ,t t A t BP P P  is: 
tt PP 084.0368.01                                                                          (3) 

          (0.325)  (0.273) .231.4
t

Also the second order AR process for timber price differences was estimated: 
tttt PPP 21                        (4) 

tttt PPP 21 30816.001548.022369.0

           (-0.1759)    (-0.04678)    (-0.93313) .386796.4
t

We observe that the first and second order AR models of the price differences give very low 
t-values. Such models do not seem to capture the properties and possible dependencies of the 
prices very well. The price difference equilibrium of the price differences according the 
second order AR model can be calculated: 

eqeqeq PPP or eqP)1(

and
.

)1(eqP
                                                                                       (5)

Using the estimated parameter values, we get the equilibrium price €.1690.0eqP

So, if we use the second order process, even if it gives low t-values, it indicates that the 
expected long run difference between the prices in the two mills is very low. This is what we 
find also if we investigate the price differences shown in Fig.3. 

Maybe we could get some interesting results if we estimate the prices of the two mills 
as a function of the earlier prices in both mills? 

ttBBtAAAtA PPP ,,1,                                                                            (6) 
where

tBtAtA PPP ,,1, 952.0177.0148.16

                   (1.249)  (-0.283)       (1.501)            
.562.8

t                                    

and
ttAAtBBBtB PPP ,,1,

                                                                                                                  (7)                                       
Where  

ttAtBtB PPP ,,1, 997.00.280-19.774

             (1.470)   (-0.431)         (1.511) .907.8
t

Again, we observe that the models give very low t-values. Some other approach is needed. 
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 We may also run the following regressions: 
AtBAA PPdP ,321                                                                                     (8)

Where AdP  is defined as tAtA PP ,1, .
BtBAB PPdP ,654                                                                                    (9)

BdP  is tBtB PP ,1, .

Table 1 shows the results of these regressions. 

Table 1. Parameters based on the timber price data.

1 2 3 4 4 6 At ,
             

Bt ,
           

Parameter 
value

16.148 0.952 -1.177 19.774 -0.003 -0.280

Standard
deviation

12.933 0.634 0.625 13.454 0.660 0.650 8.562 8.907

t- statistics 1.249 1.501 -1.883 1.470 -0.005 -0.431

 We conclude this section by the following observations: 
The AR process estimations of different types gave low t-values. The two price processes 
seem to be stationary but no definite results were obtained this way. Hence, we will move 
over to a dynamic game theory approach and investigate if we can interpret the empirical 
findings that way. 

5. Expected pay off and Nash equilibrium
The profit in one of the mills may be calculated by the following function: 

TTPPSS VPVPVPF                                                                                     (10) 

Where  is the net profit, F is the fix production cost, TP is the timber price, SP  is the net 

sawnwood price, PP  is the net pulpwood price SV  is the volume of sawnwood production, 
PV  is the volume of pulpwood production and TV  is the purchased timber volume.  

Below, we ignored the fix cost, because it has the same effect in two sawmills. 
We assume that from 1.2 m3 timber it possible to produce 1 m3 sawnwood and pulpwood (0.7 
m3 sawnwood and 0.3 m3 pulpwood). 

We may rewrite equation 10 like: 

VPVPVP TPS 2.13.07.0                                                                                  (11) 

Where V is the sum of sawnwood and pulpwood )( PS VVV .
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Sawmill A has higher capacity than sawmill B. They are both located close to the forest, 
about 500 km away from each other. The independent forest harvesters and privately planted 
forests sell their timber to these two sawmills.  
Here the situation is a non cooperative game. Each sawmill uses a mixed strategy and gives a 
high or a low bid. Compare Table 2.

We determine the elements of the profit (pay off) matrix this way: 

In case the timber price is high: 

Ps = 110 (€/m3), Pp = 20 (€/m3), PT = 65(€/m3), V=1 m3

If we substitute these values into equation 11, the profit is 5 €/ m3 

In case the timber price is low:

Ps = 110 (€/m3), Pp = 20 (€/m3), PT =55 (€/m3), V=1 m3

By substituting these values into equation 11, the profit is 17 €/ m3. 

Table. 2. The payoffs matrix for two sawmills.
 Low (Y) High (1-Y) 
 VA = 126     (1.) VA =  120 
 VB = 108 VB = 336 
Low (X) PA = 55 PA = 55 
 PB = 55 PB = 65 

A= 1785   (2.) A = 1700
B= 1530 B =  1400 

 VA = 456 VA = 360 
 VB = 84 VB = 300 
High (1-X) PA = 65 PA = 65 
 PB = 55 PB = 65 

A = 1900 A = 1500 
B = 1190 B = 1250 

V is the timber volume (1000 m3).
 is the net profit (1000 €). 

Let us determine the Nash equilibrium: 

The expected payoff of mill A is: 
)1)(1(15)1(19)1(1785.17 YXXYYXXYEA                                     (12) 

XYYXEA 15.34215                                                                                      (13) 

015.32/ YXEA                                                                                              (14) 

From this, we conclude that firm A has no reason to change X if Y = 0.634 
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The expected payoff of mill B is: 

)1)(1(5.12)1(9.11)1(143.15 YXXYYXXYEB                                (15) 

XYYXEB 9.16.05.15.12                                                                               (16) 

09.16.0/ XYEB                                                                                          (17) 

Hence, firm B has no reason to change Y if  X = 0.316 

The mixed Nash equilibrium is (NX , NY) = (0.316, 0.634) 

We may with the mixed Nash equilibrium values of NX and NY, determine the expected 
payoffs of mills A and B:  EA = 1753708  €   and    EB = 1313382 €

Hence, we realize that both mills expect to get these payoffs if both buy the timber 
according to the mixed Nash Equilibrium. 

6. The dynamics of the mixed strategy game 
As we mentioned, it is not likely that the managers of the two mills have complete 
information concerning the properties of the other mills. The costs and revenues of the 
competitor are not perfectly known. The mixed strategy frequencies are however observed. 
Now, we introduce the dynamic rules of the game: 

Each mill continuously observes the frequencies of the other mills action.  
The expected marginal profits, XEA / and YEB / are calculated based on this 
information. In case the marginal profit of mill A is strictly positive (zero or strictly 
negative), mill A increases (leaves unchanged, decreases) X. In case the marginal profit of 
mill B is strictly positive (zero or strictly negative), mill B increases (leaves unchanged, 
decreases) Y. We assume that the speed of adjustment (of X and Y) is proportional to the 
expected marginal profits and that both mills A and B have the same relation between speed 
of adjustment and expected marginal profit.  
We assume that W1and W2 are the speed of adjustment for mills A and B, respectively and 
W1=W2. 

We may rewrite the Eq. (14) like: 

)/(1 XEWX A                                                                                                 (18) 

or )15.32(1 YWX                                                                                          (19) 

We can rewrite the Eq. (17) like, 

)/(2 YEWY B                                                                                                  (20) 

or )9.16.0(2 XWY                                                                                      (21) 

The resulting mixed strategy trajectories are found in Fig. 4. 
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Figure. 4. The dynamics of the mixed strategy probabilities of the timber game.

We can make the following observations in Fig. 4. 
The trajectories found in Fig.4 show possible time paths of the strategy combination (X, Y).

Region a: 
 X>0.316, Y<0.634. Sawmill A often gives a low bid, and sawmill B often gives a high bids. 
Since A frequently gives a low bid, B finds it profitable to increase the frequency of low, so 
he decides to give low bids more often and the system moves upwards and to the right and 
soon reaches the region b. 
Region b: 
X>0.316, Y>0.634.Both mills often give low bids. 
A realizes that it profitable if he increases the frequency of high bids, so he gives high bids 
more often and the system moves upwards and to the left, reaching region c. 

Region c: 
X<0.316, Y>0.634. Sawmill A often gives high bids, and sawmill B often gives low bids. 
B finds that it profitable to give high bid more often and the system moves down reaching 
region d. 

Region d: 
X<0.316, Y<0.634. B prefers frequently give high bids.

A finds that it profitable if he more often gives low bids. He decides to increase the frequency 
of low bids and the system is moved to the right reaching region a again.  
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7. Formal analysis of the dynamics  
The aim is to show that the mixed strategy probabilities follow the trajectories in Fig. 4. The 
formal analysis of the differential equation system is found in the Appendix B. 

YX 11                                                                                                 (22) 
XY 22                                                                                                (23) 

 The following assumptions are satisfied: 
)0( 21 , )0( 11 , )0( 22

The solution is: 
X(t) =  A1 cos( t) + A2 sin(  t )+ NX                                                         (24) 
Y(t) =  A3 cos( t) + A4 sin( t )+ NY                                                         (25) 

(NX , NY) is the Nash Equilibrium and XN - 2

2

, YN - 1

1

.
X(0)= X0
Y(0)= Y0

A1= X0+ 2

2

 , A2=
31 A

 ,  A3= Y0+ 1

1

 , A4=
12 A

, 21 .

The trajectories X(t) and Y(t) are shown in Fig. 5 and 6. 
(X(t), Y(t)) will follow an orbit around the Nash equilibrium (NX, NY). This is called a center 
in the theory of dynamical systems. 

Figure. 5. The dynamics of the mixed strategy probabilities of the
timber game for two players A and B.  
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Figure. 6. The probability path of the mixed strategy timber game. 

Now, we may determine the expected price, the expected profits and marginal profit for the 
two players. A simulation model programmed in Lingo found in Appendix C was used to 
determine these values. The results show the dynamics of the expected prices, the expected 
profits and the expected marginal profits for each player. 
  Fig. 7 shows how the expected price difference changes for two players when the high 
and low price offers are 55 and 65 €/m3 respectively and W1=W2=1 for both players.
Now, it is time to recall the price differences in the real world, found in Fig. 3. 
To obtain a price differences path similar to the empirical data found in Fig. 3, we consider a 
price difference of 15 €/m3 between high and low bids and W1=W2=1 for both players. We 
assume that the Nash equilibrium is still the same as in the case with high and low prices of 
65 €/m3 and 55 €/m3, respectively. 
Now, however, we assume that, for different reasons, there are differences between the two 
areas where the two mills A and B are located. A high price is 4 €/m3 higher in the area of 
mill B than in the area of mill A. this is quite reasonable since there may be all kinds of local 
reasons why the conditions are different. We do not have documented reasons for such 
possible differences in cost and revenue background data, however.
Now, we determine  such that the period of the system fits the empirical data. 

The period is 4 years according to the data found in Fig. 3. That means that 4
2

= , which 
gives  = 1.57 
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Figure. 7. The expected price difference path with the first game model version.                             
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Figure. 8. The expected price difference path when the parameters have been adapted 
           to fit the empirical price difference data. 

8. Dynamic sensitivity analysis of the timber market game 
Now, we will partially modify the initial Nash equilibrium to investigate the behavior of each 
sawmill under these new assumptions. 

Case 1. 
According to the duopsony game formulated above. 
Equilibrium: (NX, NY) = (0.316, 0.634). Illustration: Fig. 4 and 5. 
Case 2. 
We assume that the equilibrium is (NX, NY) = (0.5, 0.5). In this situation, A and B will have 
equal probability to participate in the game with high or low bids.  
Illustration: Fig. 9.  

Case 3. 
We assume that the equilibrium is (NX, NY) = (0.7, 0.3). 
Compared to case 1, the probability that A gives high bids decreased and low bid increased. 
In this case the probability that B gives high bids increased and low bids decreased. 
Illustration: Fig. 10                                                    

Figure. 9. The mixed strategies of timber game             Fig. 10. The mixed strategies of timber 
 when the Nash equilibrium is                                          game when the Nash equilibrium is                
  (NX, NY) = (0.5, 0.5).                                                      (NX, NY) = (0.7, 0.3). 
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According to our investigation we may write the following observations: 
Each player optimizes his expected payoff via a mixed strategy conditionally on the 

decision frequencies of the other player. In the mixed strategies, every decision should have a 
strictly positive probability. 

The differential equation system governing the simultaneous optimal adjustments of 
the decision frequencies of the two players give cyclical solutions, sine and cosine functions. 

The Nash equilibrium solution, (NX, NY) = (0.316, 0.634), will never be reached 
unless that happens to be the initial state of the system. 

If the system follows a trajectory, an orbit or a center that passes through the four 
different regions without touching the boundary of the feasible area, then the system will 
follow this orbit for ever. 

If the system follows a trajectory that somewhere touches the boundary of the feasible 
area, then the system will follow the boundary for some time. Finally the system will start to 
follow an attractor, a center, for ever. This attractor will be the largest center that can be 
constructed around the equilibrium, without touching the boundaries, which is consistent with 
the unconstrained differential equations. Note that most of the small circles in Fig. 4 have 
been trapped for ever in the respective attractors. 

Conclusion 
In this paper, a dynamic two person, non - zero sum game was applied in a duopsony 
situation in the timber market in the northern part of Iran where most of the industrial forests 
are located. The trajectories of the decision probability combination were investigated. It was 
found that a large number of initial conditions make the decision probability combination 
follow a special form of attractor and that centers can be expected to appear in typical games. 
The probability that the Nash equilibrium will be reached is almost zero. 

Real world games are complicated. Hopefully, the reader has found the analysis in 
this paper to be a step in the right direction. When we find a game in reality where the players 
use mixed strategies and change the frequencies over time, we have an indication that the 
present theory is relevant. The properties of the empirical observations, found in Fig. 3, 
should be expected if our game model is relevant. 

In Fig.7, the corresponding model results are shown. Our interpretation is that the 
game model results closely match the real world data. Since we have not found any other 
model that gives more realistic results, we conclude that our game approach may be the best 
choice.

Appendices:

Appendix A. Real timber purchase price in two sawmills in north of Iran during 1990 to 2004. 

year

Timber 
price in 
Shafarod
(€/m3) 

Timber 
price in 
Neka
Chub
(€/m3) 

Consumer 
Price index 
in Iran 

Real
timber 
price in 
Shafarod
(€/m3) 

Real
timber 
price in 
Neka
Chub
(€/m3) 

Timber price 
differences 
between two 
sawmills 
(€/m3) 

1990 4.2 4 18.6 59.61 56.77 2.84 
1991 4.5 4.3 22.4 53.03 50.67 2.36 
1992 6 5.5 27.9 56.77 52.041 4.73 
1993 6.6 7 34.3 50.79 53.87 -3.08 
1994 9 10 46.3 51.31 57.01 -5.70 
1995 14 15 69.2 53.41 57.22 -3.82 
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1996 27 26 85.2 83.66 80.56 3.10 
1997 29 27 100 76.56 71.28 5.28 
1998 34 36 118.1 76.00 80.47 -4.47 
1999 42 40 141.8 78.19 74.47 3.72 
2000 48 50 159.7 79.348 82.65 -3.31 
2001 56 58 177.9 83.10 86.07 -2.97 
2002 61 60 206 78.17 76.89 1.28 
2003 65 63 238.2 72.04 69.82 2.22 
2004 70 64 264 70 64 6.00 

Appendix B: 
Formal analysis of the dynamics: 

YX 11                            (1) 
XY 22                            (2) 

 We assume )0( 21  , )0( 11 , )0( 22 .

X = Y1

)( 221 XX
XX 2121        and 2121 XX                                                          (3) 

In general form we have X + aX-b = 0 where a = - 21 and b= 21

Homogenous solution of equation (3): 

0aXX                                                                                                                       (4)
 Let X(t)=AeLt                                                                                                                                                    

X =LAeLt                                                                                                                                                           

and
X = L2AeLt                                                                                                                                              

AeLt (L2 + a)=0

 L= 21    ; i= 1

then L= 21  i                                                                                                       (5)

Particular solution of equation (3): 

X(t)=m+nt. 
X =n and X =0   By using this results in equation (4), we get: 
0+a (m+nt)=b               

n=0 then am=b and m= a
b

 so we get m= 21

21

 or m= 2

2
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As a consequence, we have X(t)= Ae
21 i t + ( 2

2

)
Hence,

      X(t) =  e0t(A1 cos ( 21 t) + A2 sin( 21  t ) 2

2

or   X(t) =  A1 cos ( 21 t) + A2 sin( 21 t ) 2

2

                                         (6)

XY 2                                                                                                                    (7) 
By substituting equation ( 2) in equation (7) we get: 

)( 112 YY
YY 2112

1221 YY
Finally we get this solution: 

Y(t) =  A3 cos ( 21 t) + A4 sin( 21 t ) 1
1

                                 (8)

We define  as 21 .
We rewrite equations (6) and (8) like this:     

X(t) =  A1 cos( t) + A2 sin( t ) 2

2

                                                         (10) 

Y(t) =  A3 cos( t) + A4 sin( t ) 1
1

                                                        (11) 
The first order derivatives of these equations are: 
X = -A1 sin( t) + A2 cos( t)                                                                  (12) 
Y  = - A3 sin( t) + A4 cos( t)                                                                (13)

If we substitute equations (10) and (11) into equations (1) and (2), we have: 

11X ( A3 cos( t) + A4 sin( t ) 1
1

)                                             (14) 

22Y ( A1 cos( t) + A2 sin( t ) 2

2

)                                               (15) 
After simplifying, we get: 
X = 1 A3cos( t) + 1 A4sin( t)                                                                  (16) 
Y = 2 A1cos( t) + 2 A2sin( t)                                                                   (17) 

From equations (12, 13) and (16, 17) we get the following equalities: 
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A=A
A=A-

A=A
A-

124

223

312

411 A

                                      (18) 

From equation (18), we get: 

3

4

2

1

A
A

A
A

   , 1

2

4

3

A
A

A
A

,  A2=
31 A

 , A3= 1

2A

, A4=
12 A

                     (19) Consequently, 
the following equations can be written: 

1

11222

2

2
21

)sin()()cos()()(

)sin()cos()(

tAtAtY

tAtAtX

                                            (20) 

or

1

112
3

2

231
1

)sin()()cos()(

)sin()()cos()(

tAtAtY

t
A

tAtX

                                                      (21) 
Then:

2

2
1)0( AX

 A1= )0(X + 2

2

 Y(0)= A3 - 1

1

 A3= Y(0) + 1

1

 . 

The Nash Equilibrium values for X and Y are XN - 2

2

, YN - 1

1

, respectively. 
Appendix C.The Lingo code is found below. 
Model:
sets:
time/1..60/:x,y,EA, EAd, EB, EBd,MA, MB, EPA, EPB, EPDIFF; 
endsets
! Speed of adjustment coefficients; 
wA = 0.005; 
wB = 0.005; 
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step = 0.1; 
! Initial conditions; 
x(1) = 0.35; 
y(1) = 0.50; 
! Parameters; 
PAM = 60; 
PAD = 5; 
PBM = 60; 
PBD = 5; 
SSawnw = 0.7; 
Spulpw = 1-SSawnw; 
Use = 1.2; 
PSawnw = 110; 
PPulpw = 20; 
! Calculations of profit per cubic metre finished; 
ProfPm3A_LOW = SSawnw*PSawnw + SPulpw*PPulpw - Use*(PAM-PAD); 
ProfPm3A_HIGH = SSawnw*PSawnw + SPulpw*PPulpw - Use*(PAM+PAD); 
ProfPm3B_LOW = SSawnw*PSawnw + SPulpw*PPulpw - Use*(PBM-PBD); 
ProfPm3B_HIGH = SSawnw*PSawnw + SPulpw*PPulpw - Use*(PBM+PBD); 
! Volume calculations; 
VolA_Alow_Blow = 105*Use; 
VolB_Alow_Blow = 90*Use; 
VolA_Alow_Bhigh = 100*Use; 
VolB_Alow_Bhigh = 280*Use; 
VolA_Ahigh_Blow = 380*Use; 
VolB_Ahigh_Blow = 70*Use; 
VolA_Ahigh_Bhigh = 300*Use; 
VolB_Ahigh_Bhigh = 250*Use; 
! Profit calculations; 
ProfA_ll = ProfPm3A_LOW*VolA_Alow_Blow/Use ; 
ProfA_lh = ProfPm3A_LOW*VolA_Alow_Bhigh/Use ; 
ProfA_hl = ProfPm3A_HIGH*VolA_Ahigh_Blow/Use ; 
ProfA_hh = ProfPm3A_HIGH*VolA_Ahigh_Bhigh/Use ; 
ProfB_ll = ProfPm3B_LOW*VolB_Alow_Blow/Use ; 
ProfB_lh = ProfPm3B_HIGH*VolB_Alow_Bhigh/Use ; 
ProfB_hl = ProfPm3B_LOW*VolB_Ahigh_Blow/Use ; 
ProfB_hh = ProfPm3B_HIGH*VolB_Ahigh_Bhigh/Use ; 
! Simulation of the system;  
! The expected profits per period for players A and B are denoted EA and EB; 
 EA(1) = 0; 
 @FOR( time(t) | t#GT#1: EA(t) = ProfA_ll*x(t-1)*y(t-1)           + 
                                 ProfA_lh*x(t-1)*(1-y(t-1))       + 
                                 ProfA_hl*(1-x(t-1))*y(t-1)       + 

        ProfA_hh*(1-x(t-1))*(1-y(t-1)) ) ; 
 EB(1) = 0; 
 @FOR( time(t) | t#GT#1: EB(t) = ProfB_ll*x(t-1)*y(t-1)           + 
                                 ProfB_lh*x(t-1)*(1-y(t-1))       + 
                                 ProfB_hl*(1-x(t-1))*y(t-1)       + 

        ProfB_hh*(1-x(t-1))*(1-y(t-1)) ) ; 
! The expected profits per period for players A and B are changed by  
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  EAd and EBd if X or Y are increased by 0.001; 
d = 0.001; 
 EAd(1) = 0; 
 @FOR( time(t) | t#GT#1: EAd(t) = ProfA_ll*(x(t-1)+d)*y(t-1)           + 
                                 ProfA_lh*(x(t-1)+d)*(1-y(t-1))        + 
                                 ProfA_hl*(1-x(t-1)-d)*y(t-1)          + 

      ProfA_hh*(1-x(t-1)-d)*(1-y(t-1)) )    ; 
 EBd(1) = 0; 
 @FOR( time(t) | t#GT#1: EBd(t) = ProfB_ll*x(t-1)*(y(t-1)+d)          + 
                                 ProfB_lh*x(t-1)*(1-y(t-1)-d)         + 
                                 ProfB_hl*(1-x(t-1))*(y(t-1)+d)       + 

       ProfB_hh*(1-x(t-1))*(1-y(t-1)-d)  )  ; 
! The marginal expected profits per period for players A and B are
  MA and MB if X or Y are increased; 
@FOR( time(t) | t#GT#1: MA(t) = (EAd(t) - EA(t))/d ); 
 @FOR( time(t) | t#GT#1: MB(t) = (EBd(t) - EB(t))/d ); 
@for(time(t): @FREE(MA(t))); 
@for(time(t): @FREE(MB(t))); 
! Now, X and Y are increased (or decreased) in case MA and MB are positive (negative); 
 @FOR( time(t) | t#GT#1: X(t) = X(t-1) + MA(t)*wA*step  ); 
 @FOR( time(t) | t#GT#1: Y(t) = Y(t-1) + MB(t)*wB*step  ); 
! The expected prices of A and B and the expected price difference are calculated; 
@FOR( time(t) | t#GT#1: EPA(t) = (PAM-PAD)*x(t) + (PAM+PAD)*(1-x(t))    ); 
@FOR( time(t) | t#GT#1: EPB(t) = (PBM-PBD)*y(t) + (PBM+PBD)*(1-y(t))    ); 
@FOR( time(t) | t#GT#1: EPDIFF(t) = EPA(t)-EPB(t)                       ); 
@for(time(t): @FREE(EPDIFF(t))); 
END
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