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ON THE BEHAVIOR OF THE COMPETITIVE PRODUCER
UNDER MULTIVARIATE RISKS

Abstract

&e examine the behavior of the competitive producer facing multivariate risk. The

prices of both output and of the goods bought with profits are assumed to be random. Under
very plausible assumptions, the objective function of a self-employed individual is shown to
reduce to the usual indirect utility function. bnly for preferences with implausible properties
will the level of output under multivariate risk coincide with the corresponding level under
univariate risk. Using a multivariate risk premium, we derive equilibrium conditions for the
producer for both the short and long runs. We show that for every indirect utility function
. there is a probability distribution of. prices for which output will exceed the level under cer-
tainty. In the vlong run, the greater the aversion to multivariate income risk, the larger the
expected price the producer requires to stay in business. Finally, implications are drawn for -

empirical analysis of attitudes toward risk.




ON THE BEHAVIOR OF THE COMPETITIVE PRODUCER
UNDER MULTIVARIATE RISKS

1. Introduction

The effect of output price uncertainty on the level of production by the competitive producer
is one of the most familiar results in all of the literature on uncertainty. There is a straight-
forward correspondence between a concave utility function defined on profits and a positive
risk premium (Arrow (1965), Pratt (1964)), and between each of those conditions and a lower
level of output than would be forthcoming from the firm facing the same mean price but with
certainty (Sandmo (1971)). Following Sandmo’s influential paper, other aspects of uncertainty
and the competitive firm have been explored in numerous studies. Nearly all of these studies
make use of the expected utility h&pothcsis, in which the producer makes decisions so as to
maximize the expected value of a utility function defined only on the level of profits. The
process by which profits produce utility, presumably through the consumption of goods after

income is received, is left implicit.

There are many situations where the producer’s objective function is multivariate, defined
on several random arguments, so a generalization of the theory of the firm under uncertainty
is necessary. Stiglitz (1969), Kihlstrom and Mirman (1974), Epstein (1975), and Karni (1979)
have examined the effects of multivariate uncertainty on consumer behavior. In this paper,
we apply their results to a generalization of the Sandmo (1971) model, to analyze the

behavior of the firm under multivariate risk; this differs from the case where several sources

of uncertainty affect a single random argument, profits. Our model can therefore be thought

of as a combination of two existing models, Sandmo’s (1971) model of the firm’s behavior
under price uncertainty and Epstein’s (1975) model of consumer choices under uncertainty.
We proceed by extending the Sandmo framework to incorporate multivariate uncertainty about
the prices of consumer goods, or by endogenizing the joint distribution of prices and income

in Epstein’s model.
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There are many examples where firms face multivariate risks. For instance, any enter-
prise engaged in both production and consumption, such as an agricultural household, will
have a multivariate objective function. Such firms face uncertainty about both profits and the
prices of goods consumed from profits. This is especially important in developing countries

where risks may be large relative to total wealth and access to capital markets is limited.

Assuming that the only source of income is profit from production, and that the produc-
tion choice is made ex ante, while consumption decisions are made solely ex post, we show
below that the single-period objective function of the producer is the usual indirect utility
function. It includes profits, as in the standard case, but also includes the vector of prices of
goods consumed. When only the price of output is uncertain (univariate risk), the level of |
output is not affected by ﬁreferences for consumption goods (ordinal preferences), but it is
affected by the degree of risk aversion, which is a cardinal property. However, in the pres-
ence of multivariate ﬁsk, where the price of output and the prices of consumption goods are
uncertain, output decisions are affected by both, and the separability between consumption and
production decisions breaks down.! Thus, cardinal properties of the function representing the
ordinal preferences and the ordinal preferences themselves affect the level of output. This
finding is analogous to the results of Kihlstrom and Mirman (1974) or Kami (1979) for the
analysis of consumer behavior under multivariate risk—in situations involving multivariate

risk, ordinal preferences play an important role in an agent’s attitude toward risk.

The paper proceeds as follows. In section 2, we present the model and discuss the cases
in which the objective function of the producer can be reduced to an indirect utility function
defined on profits and prices. We then examine the conditions under which it will reduce to a
function of profits alone. In section 3, we derive the conditions under which the output level
is the same for both the multivariate risk model and the classic one and show that these con-

didons are very restrictive. Following that, in section 4, we establish the main results of the

U A similar finding conceming non-separability was found by Roe and Graham-Tomasi (1986), in a dynamic
model of an agricultural household facing uncertainty about yields.
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paper concerning production decisions under multivariate price risk. Both the short and long
runs are considered, using a multivariate risk premium. We find that many of the traditional
results concerning the level of output under uncertainty may no longer hold. The paper con-

cludes with a summary of the results and suggestions for further research.

2. Modeling Producer Behavior Under Multivariate Uncertainty

We consider a one-period model of a firm engaged in both production and consumption. A

single period model could be constructed to allow ex ante and ex post decisions with respect

to both production and consumption. The issue of ex post flexibility with respect to produc-

tion decisions has been considered in many studies (e.g. Turnovsky (1973), Epstein (1978),
Wright (1984)) and is beyond the scope of the current paper. Thus, in the model below we
consider ex ante choices of output and some of the consumption goods and ex post choices

of other goods.

Hence, there are two types of goods; those which are precommitted before the realization
of prices, and those which are chosen when prices are known. We denote the M goods of the
first type by z = (zy, Z3 .. 2Zy) 20 and the N goods of the second type by
X = (X1, X2 .., Xy)20. The prices of the goods in z and x are denoted by
9=@1nq2 ...,qy) and by p =@, P2 ..., Dy), respectively. We assume that the
producer’s objective function is his utility function U (z, x), defined over both types of goods.
The output price is denoted by p, and may be contained in p if the producer consumes a por-
tion of his output. U(z, x) is assumed to be continuous in z and x, non-decreasing, and

quasi-concave forx, z 2 0.

The producer is subject to the following constraints. Initial wealth is W (assumed to be

non-random) and the budget constraint is given by

]

Wo+r=4qz +px,
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x=py =CQ@)=T,

T denotes fixed costs, C( - ) is a variable cost function with C’ >0, C” 20, and output y is
assumed to be non-stochastic.? Finally, we assume that ex ante knowledge of the producer
concerning ¢, p, and p, can be summarized by a subjective probability distribution function

F(q, p. py) with finitc moments.
The producer must choose output y and the level? of x and z so as to maximize the

expected value of a Von Neumann-Morgenstern utility function:

Jmax  [UGz. x0.0) dp@)

subject to

@) q'(@z + p'(@x(@ < Wy + m(@,y)

and
() m(w, y) = py(@)y - C(y) - T,
where by ® we denote the state of tﬁe world and p is the producer’s subjective probability
measure defined on ®. The maximization problem can be solved in two
stages—maximization with respect to x for a givén realization of prices and prior choices of z
and y, and then maximization with respect to z and y. As Epstein (1975) argued, since con-
sumption plans for x can be revised when prices are realized, the first maximization problem
may be taken inside the integral to obtain a revised objective function, the variable indirect

utility function g (z, s, p), where s is the amount of total wealth available for consumption of

x, and is defined by
s(m 2, q) = Wo+npy.y) - ¢

The objective becomes

2 This assumption is not essential, but simplifies the analysis and allows comparison with Sandmo’s model.
The main results hold under more general forms of stochastic profits.

3 To avoid the - possibility of banlruptcy, we assume that the choice of z is constrained by
Pr(g’z £ Wo+ %) =1 (see also Epstein (1975) and Kamni (1981)).
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max E g(z,s(r,z,9),p)= [ [ [8Gz.s(x. 2z, q).p) dF (g, p. Py)-
y.z20 Py ap

Without additional restrictions the objective function g ( - ) does not reduce to the tradi-
tional objective function of firms (4 ( & )). Both include profit as an argument, but the former
also includes the vector of consumption goods z and the random vectors p and ¢. The max-
imization problem of the producer is therefore a multivariate risk problem; the utility function

depends on more than one random argument.

Two assumptions are required for g( - ) to reduce to the univariate objective function
u( = ). First, all consumption decisions must take place ex post, so z and q can be ignored.
Second, the price vector p must be known when the production (iecision is made. If the first
assumption holds, g ( - ) reduces to the ordinary indirect utility function V(x, p). If, in addi-

tion, p is kndwn to be fixed at some level 7, then the objective function is V (x, p). This, of

course, may be treated as a function of profit alone.

The second assumption is unrealistic, since it is hard to.imagine that only the price of
output is random, while the prices of all consumption goods are known in advance. For
instance, p, may be contained in p, which violates this assumption immediately. The first
assumption is more plausible, since situations which involve ex ante consumption decisions
are relatively rare. For this reason and for the sake of comparability with the conventional
model, we adopt the first assumption in the rest of the analysis and consider the implications

of relaxing the second one.

3. Equality of OQutput Levels Under Univariate and Multivariate Uncertainty

In section 2, we investigated the cases in which the multivariate objective function reduces to
a univariate one, the traditional utility function defined on profits. In this section, we examine
the following question: given that the objective functions of competitive producers will differ
in the two environments, are there cases in which output is the same regardless of the proba-

bility distribution of prices? Since these cases turn out to be quite limited, the results will
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show that the additional uncertainty does affect behavior.

There are also empirical implications of multivariate risk. Suppose interest is in making
inferences about a producer’s degree of aversion to univariate income risk. We show below
that if the prices of consumption goods are random, such inferences depend on knowing the
entire probability distribution of prices and the nature of the producer’s (ordinal) preferences
for goods. Alternatively, knowing the conditions under which the output levels are the same
in the multivariate and univariate models might facilitate correct inferences using only infor-
mation about the marginal probability distribution of the output price and the observed level
of production. We show below that only if the indirect utility fupction is separable in income

and prices will the levels of output under univariate and multivariate uncertainty be the same.

The producer facing univariate income risk is assumed to maximize the expectation, over
the distribution of p,, of an indirect uuhty function defined over income? and fixed prices 7,
taken to be the mean of the marginal distribution of p when it is random (the multivariate
case). That makes the indirect utility function a function of income alone, since nothing else

varies, and yields the conventional objective function.

Under multivariate risk, the producer’s problem is’

max pj’;vm,p)dw,p,)

where F (p, p,) is the joint probability distribution function of all prices. Restrictions on the
form of preferences are needed to establish equality between output undér univariate and mul-

tivariate uncertainty. This is shown in proposition I for the case where py ép.

4 To simpiify the analysis below, we assume throughout the remainder of the paper that initial wealth is con-
- tained in the fixed costs term T and is therefore part of profits.

5 The indirect utility function is assumed to be differentiable, and we assume the existence of unique interior
solutions for the producer’s problem, both in the univariaie and multivariate models, as well as for the choice of
consumption goods. While we have not introduced an explicit numeraire commodity, any of the deterministic
prices in the model (input prices) can serve as numeraire.
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Propeosition I: Denote the optimal output levels under multivariate and univariate risk as y™
and y*, respectively. Then y™ =y* for all probability distributions of prices if and only if
V(x, p) can be written as Vi(x) + }’z(p ). That is, for output levels to be unaffected by the
presence of the additional price uncertainty, the indirect utility function must be additively
separable in ®t and p. The proof is presented in the Appendix.

The assumption of .additive separability of V(- ), required to support Proposition I,

places extreme and implausible limitations on.preferences. We show this in Corollary I
Corollary I: The following statements are equivalent:
(i y™ = y" for every probability distribution of prices.

(i) R =m; =1 for each i, where R is the coefficient of relative risk aversion and m; is the

income elasticity of demand for good i.

(iii) The indirect utility function is of the form

V(m, p) = log(r) ~ log(G(p)),
where G (p) is linearly homogeneous in p. The proof is presented in the Appendix.

Corollary I establishes that a very special form for the .indirect utility function is required
for the output level to be the same in the two environments for all risks. It rules out risk neu-
trality or risk-seeking behavior, as well as differences in income elasticities across goods. The
case of risk aversion is also restrictive, since its extent is determined by R = 1. Each of these

properties can be empirically tested, and is generaily rejected.%

In Proposition I, we assumed that pyép. This does not hold if the producer consumes

some of his own product. The conventional model of univariate uncertainty is no longer’

6 If the set of probability distributions under consideration is such that some prices are deterministic, then the
restrictions on preferences are somewhat less restrictive. The income term in the indirect utility function must
be separable only from the random prices, and income elasticities must equal R only for the goods whose prices
are random. Interestingly, in a different context (measuring the benefits to consumers from price stabilization),
Tumovsky, Shalit, and Schmitz (1980), found a similar functional form necessary for consumer surplus to be ex-
act.
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relevant. Instead, we compare levels of output under muitivariate uncertainty (y™) with the
output level in a model where p, alone is random (y¥). In Proposition II, we establish the
conditions for the two output levels to be the same. Even though y" is the output level under
output price risk, the same risk faced by the producer in Sandmo’s model, we show in Propo-
sition II that both cardinal and ordinal properties of preferences affect output. |

Proposition II: Assume that p, € p, so the producer consumes some of his output and solves

max E, V(R, pys Disy)

where p;,, denotes the vector of goods prices excluding p,. Then yr = y¥ if and only if

the indirect utility function is of the form
V(r, p) = Vi, py)) + Vi)

Thus, V is additively separable in income and all prices except py. The proof follows the
approach used to prove Proposition I; the only difference is that Vi, =0 for all i#y. O

. The form we obtain is slightly less restrictive, since all prices except for p, are addi-
tively separable from income. As a result, fewer limitations are placed on the nature of

preferences, and R = 7; for each i # y, but is no longer required to be constant.

In the derivation of the special form of utility function necessary to support the equality
of y™ and y* (or y'/ for the case of pyep), we restricted the level of prices in p (other than
py) in the univariate environment to be equal to the expected price level (p) of the multivari-
ate case. However, if the producer maximizes the expected value of the utility function in
Proposition I, neither the price level (in the univariate case) nor its expected value (in the

muitivariate case) has any effect on the output level. We state this as Corollary 1.

Corollary II: Denote the price level in the univariate model by p and the expected value of
prices in the multivariate model by p. I[nd@pénd@mce of the output level from both the level
of prices (3) in the univariate model and its expected value (@) in the muldvariate model is

implied by y™ = y* for all probability distributions of prices.
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Proof: Proposition I established that a necessary condition for y™ = y“ for all price distri-
butions is additive separability (in ® and p) of the indirect utility function. It is easy to see
that in this case both y™ and y“ are independent of p” and p. Thus, if the output level under |
univariate uncertainty equals the output level under multivariate uncertainty for all distribu-
tions of prices with mean p = p, it is also the same for any other price distribution with
arbitrary mean. A similar result holds if p,ep, for the preferences in Proposition II. O

The forms above are the only utility functions for which y™ =y“ or y™ = y“' for all
price distributions. It may be the case, however, that there are distributions of interest for
which the output levels are equal with less restrictive utility funcdons. A particular case
which comes to mind is the case where p and p) are independent, which, of course, requires

that p,ép. As already noted, this limits the number of applications.

One is tempted to assume that in the case of independence between p, and p, y* is
equal to y™. However, they are not in general equal. Under independence, the joint density

of prices equals the product of the two marginal densities, so the producer solves

max [[V(r, p)g\(p)g2py) dp dp, = max [E,[V(x, p)lg2(p,) dp,.
Y20 pp 20 5

Only for an indirect utility function V( - ) which is linear in p can the expectation over p in

the first integral yield the function the producer would maxixﬁizc in the case of univariate
uncertainty, V(x, E (p)) or V(rn, p). However, even if V() is nonlinear in p, so that the pro-

| ducer facing multivariate uncertainty has a different objective, the choice of output could still

be the same. This requires a special form of utility function, a special case of which is linear

in prices.

Proposition III: If p and p, are independent, then y“ = y™ if and only if the indirect utility

function takes the form

V(r,p)=a(p)+ b()h(n).

The proof is provided in the Appendix.
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Corollary III: Let p and p, be independent. Then y™ = y“ for all probability distributions
of prices if and only if

1 T
1 - R _G(p).

S

H (p)log o)

“

where R is the coefficient of relative risk aversion and G (p) and H (p) are homogeneous of

degrees 1 and 0, respectively, with G positive.
Proof: The form
V(r,p) = a(p) + b(p) - h(n)

" implies a coefficient of relative risk aversion of the form

- b m

b(p)h'(r)

This function does not depend on p. V(x, p) is homogeneous of degree 0 in & and p, and
hence, R itself must also be homogeneous of degree 0 in ® and p (e.g. Deschamps (1973)).
Since R is homogeneous of degree zero in ® and p and does not depend on p, it must be a
constant also with respect to . Stiglitz (1969) and Hanoch (1977) found that R is constant if

and only if the indirect utlity function takes the above form.

Although this form is more general than the ones needed to support Corollary I or Pro-
position II, it still restrictive in both its cardinal and ordinal properties. The main restrictions
on behavior under risk are that R and the proportional risk premium are independent of the
level of wealth. The corresponding measure of absolute risk aversion depends on wealth, but

not on prices.

To see the restriction on ordinal preferences, note that the form we obtained for the case

of R # 1 is a special case of the Gorman polar form

Vr,p) = @[wbp)] + ap).
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An extensive discussion of the implications of these preferences is found in the demand litera-
ture (e.g. Deaton and Muellbauer (1980)). The form which corresponds to R=1 is the Ber-
noulli utility function (Bernoulli (1954)). Stiglitz (1969) showed that for R to be constant
globally, the function H(p) must be constant, so these forms reduce to special cases of
homothetic preferences. Note that Corollary II is valid in this case as well, i.e. the level of
output under the above forms of preferences does not depend on either the price level or its

expected value.

The results established in these propositions make use not only of specific forms of
preferences, but, in the last case, of the independence of p fro.m py. For some cases, the
latter assumption may be reasonable, and then one need only worry about testing the restric-
tions on preferences. If independénce does not hold, we have shown that there is just one
form for the indirect utility function for which production decisions are not affected by ordinal
preferences. It places extreme limitations on both ;)rdinal preferences and risk attitudes, but it

illustrates the key role played by the functional form of the indirect utility function.

4. Equilibrium Output Under Multivariate Uncertainty

The competitive producer facing multivariate risk was shown in the previous section to pro-
duce the same level of output as under univariate risk only under limited circumstances.
When these do not hold, the usual results concemning risk aversion and the level of output
(Sandmo (1971)) need not obtain. Indeed, even characterizing risk aversion, let alone the
relationship between risk attinides and the level of production, is complicated by the presence
of multivariate risk. In this section, we examine in more detail the level of output in the pres-

ence of randomness in all prices.

4.1: A Multivariate Risk Premium for Income Risk

The univariate risk premium and the associated measures of risk aversion which were defined

by Arrow (1965) and Pratt (1964) play an important role in the analysis of many situations in
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which firms face a univariate risk (e.g. Chavas and Pope (1981); Flacco (1983); Flacco and
Larson (1987)). Based on Karni (1979), Finkelshtain and Chalfant (1988) developed a gen-
eralization of the univariate risk premium. They defined the income risk-premium as the
amount the producer would pay to stabilize income with the prices of consumption goods ran-

dom. It is given by S(y, F), where
EV(x,p) = EV(® - §,p).

The interpretation of S as an "income-risk" premium under multivariate risk is analogous to
that of the regular Arrow-Pratt risk premium, which appears as a special case of §, when
goods’ prices are also fixed. This can be illustrated nicely for small risks.” As shown in the ,
Appendix, a Taylor approximation of the above expression yields

12 V== &
S = 2 o.'ZP’ y Vﬂ Zcp‘p‘, y Vu

i=

where 6, is the variance of p, (so that ozp, y?2 is the variance of revenues, or profits with
costs fixed) and ©,,, is the covariance between p, and the i % price in p (s0 Gp,p ¥ is the
covariance of income with the i price). The first term in this expression is the regular
Arrow—Pratt risk premium, the amount that the producer is willing to pay to stabilize income
when prices are fixed. The second term can be thought of as a monetary measure of the
producer’s aversion to the stochastic interaction between prices and income. If prices are
fixed, the second term vanishes, and S reduces to the Arrow-Pratt (univariate) risk premium.
However, S need not be of the same sign as the Arrow-Pratt risk prerﬁium when prices are

random.

7 Following Karni (1979), we define small risks as those risks such that Pr((py, ... .p,) € b] = 1 where
b is an n—dimensional ball centered at 7y, . . . , P, ), with radius € which is arbitrarily close to zero.
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4.2: The Short Run: Optimal Behavior for a Single Firm

The necessary condition for maximization of the producer’s objective function

E[V(r(y, py), )]

E[Vn(py = C’(y»] =0.

The sufficient condition holds trivially for the case of an individual who is averse to univari-

ate income risk, with a convex cost function, since Vg < 0 and C"(y) > 0 guarantee that
E[VimP, - C ) - VL )] <0.

We assume that it holds for other cases as well. The necessary condition can be rewritten as

E[V, py] =E[V,C'O)]

E[Vxpy - 5y)] = E[VA(C O) - 5.

The left-hand side is the covariance between the marginal utlity of income and the output
price. In the univariate case, when V., < 0, this covariance is clearly negaﬁvc. This
implies that the expected price of output exceeds marginal cost @y, >C°(@)). It is exactly
this observation that leads, in the Sandmo case, to the conclusion that output is strictly less

than the expected profit maximizing level.

In the multivariate case, the above expectations are taken with respect to the joint distri-
bution of all prices, and V. depends on the random vector p as well as ®. As a result, we are
unable to determine the sign of Cov(Vy, p,) without considerably more information about
preferences and/or the distribution of prices, and the level of output is not necessarily below
the expected profit-maximizing level. However, for distributions there p and p, are indepen-

dent, a less ambiguous result can be obtained.




- 14 -

Proposition IV: Denote the output under certainty by y¢. Then univariate income risk aver-
sion (Vo < 0) and independence of p and p, are sufficient for y™ < y°.

To prove Proposition IV, we need the following Lemma, which is analogous to a result
involving the conditional variance (e.g. Mood, Graybill, and Boes (1974, p. 159)).

Lemma I: Let xe R!, ye RV be random variables, and let g: R¥*! —> R! be an arbitrary
function. Then

Cov[g(x,y), x] = E;{Covig(x,y). x]ly} + Cov{E[g(x,y)Iy], E(x1y)},

so that the unconditional covariance is equal to the expected value of the conditional one plus
the covariance between the conditional expectations. Lemma I is proven in the Appendix.
We now prove Proposition IV.

Proof: It was shown above that

Cov (V, y)
E[Va(®,p)l

€o™ - B =

From Lemma [, it follows that this covariance can be expressed as

Cov(Vy, Py) = E,Cov[(Vy, py)1p]1 + Cov(E, |, (Viip), E, 1, @y D]

The first term in this sum is the expectation, taken over all values of p, of the conditional
covariance between Vq(x. p) and p,, for a given p. As long as p is fixed (at any point) and
Ve < O, this term is negative. If it is always negative, so is its expectation over all p.

If" p and p, are independent, the second term will be zero. . This holds because
E, 1,y |p) does not depend on p and is equal to p,. Hence, the unconditional covariance is
negative, p, > C’(y™), and y™ < yc .80

As a result of the independence of p and py, the covariance between V, and py is

always negative for producers who are risk averse in the univariate sense. Once more, then,

8 The cases wherg Ve > 0 and Vi = 0 can be shown, similarly, to result in y™ > y¢ and y® = y°.
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expected price exceeds marginal cost at the optimal output. As in Sandmo, aversion to
univariate income risk causes output to be less than under expected profit maximization.
However, the level of output is not, in general, the same as under univariate risk, even with
independence. As we showed in section 2, those levels coincide only when the indirect utiiity

function takes one of the homothetic forms of Proposition III.

The result of Proposition IV relies on the independence of p and p,. When p and p,
are not independent, the second term in the expression for the covariance is no longer zero. It
could be positive, and may well exceed the first term in magnitude. When that occurs, it will
be optimal for the producer facing multivariate risk to produce more than the level which
maximizes expected proﬁts; In Propositions V and VI, we shov;' that this does not rely on
special preferences and that, for any indirect utility function, except for the very restrictive

forms of Propositions I and II, there is a price distribution that guarantees it.
Proposition V: Assuming that p, ¢ p,
(i) y™ < y°¢ for every probability distribution of prices if and only if the indirect utility

function is of the form

V(r, p) = log(m) — log(G (@)).
Thus, for any other indirect utility function, there is always some probability distribution
that implies y™ 2 y°€.
(ii) There is no indirect utility function such that y™ > y¢ for all distributions of prices.

Proof: First we prove part (i). (Sufficient) Proposition I established that, for this form,
y™ = y“, but since this utility function is concave in &, y* < y©, as shown by Sandmo
(1971), and the result follows for y™.

(Necessary) To establish the necessary condition, we show in the Appendix that, unless

Va, = 0 for each i, it is always possible to find a distribution of prices for which

y™ > y©. Part (ii) is proved similarly in the Appendix. O
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The result that, for almost every indirect utility function, there is always some distribu-
tion of prices such that output under uncertainty will exceed output under certainty is surpris-
ing enough to justify some discussion. For illustration, let us assume that Cov (p,, p;) > O for
each i. In such a case, the producer’s income lottery turns into a multidimensional one in
income and prices. The producer is facing a "package deal": a high income with high prices
or low income with low prices. The fundamental reason for risk aversion is the decreasing
marginal utility of income (V. < 0), which means that, in a fair lottery, the "high income"
result is not enough to offset the “low income" outcome, because in terms of utility the "low
income dollars” are worth more than the "high income dollars”. If V., > 0, then the
increasing consumption prices that go along with the "high income" outcome of the lottery
leads to an increase in the value (in utility terms) of the "high income dollars” and decreases
the value (in utility terms) of the "low income dollars”. The net result is an output level
which appears to indicate less risk aversion. In an extreme case, the producer may even
appear to behave as a risk seeker. We turn now to Proposition VI in order to examine the

case where p, € p.

Proposition VI: Assuming that p, € p, y™ % y¢ for every probability distributioh of prices
if and only if

() Vix,p) = Vix,p,) + Vip),
and

Sy

> Ky -
@) N, = R [_inj
<
where P is the share of expected revenue from production in total wealth, s, is the expected
budget share of the good x, (the quantity of the output good being consumed by the pro-
ducer), and My is the income elasticity of the demand for x,. For any other udglity functon,

y™ will exceed y¥ for some distributions and will be less for other, regardless of condition

(id).
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Proof: (Sufficient) Given the indirect utility function in (i), a necessary condition for the
producer’s maximization problem is
E[Vixx, p,)p, - C'ON = 0.

The total derivative of V with respect to p, is

==V v LT ( R)]
= <+ = o — + s - .
dpy nn Y TPy l—fy y 11)’

Rearranging the above expression, we obtain

AV

0 ifandonlyi
a, if yif m,

dVy
dpy

0 <= Cov(Vypy) =0 <=> p C'ly) <= y™

the sufficient part is established.
(Necessary) The proof follows the same line as in the necessary part of Proposition V. O

Proposition II established that for the above indirect utility function, y™ = y“’. Hence
condition (ii) of Proposition VI also determines the relationship between the certainty level of
output (y°) and the level of output under uncertainty (y*) about the output price alone, when
the producer consumes the good he produces. Since this is a typical case in many developing
economies (e.g. Wright and Williams (1988)), it ié interesting to use condition (ii) to derive
some qualitative results regarding the relationship between these output levels. Even though
Piwy is treated as fixed in Corollary IV, and the only random variable is p,, the utility func- -
ton has two random arguments. As a result, the problem is one of multivariate risk and

preferences for goods affect the response to the uncertainty.
Corollary IV: Let only the output price be random and let p,ep.

(i) If the producer is a net supplier (buyer) of his output (i.e., Xy < (>)y) and averse to

univariate risk (V ,<0), then a non-negative (non-positive) income elasticity of demand
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for x, is sufficient for y"' <()y°. If x,=y, then the proposition holds with the condi-
tions on T, changed to positive (negative), respectively. Thus, in the typical case where
farmers are net suppliers, it is sufficient for x, to be a normal good for Sandmo’s result
to hold.

av
—= increases (is constant) (decreases) with R if and only ifycy >(=)(<) y. Thus
Y

if the producer is a net buyer of the good being produced,? then the larger is R the
larger is the change of marginal utility of income with a change in p,.
Proof: From Proposition VI,

dVy

0 if and only if

and the Corollary follows. O

Propositions I to VI established the relationships of y™, y“, and y4" with y¢. To study
the factors that affect output under multivariate uncertainty, it is convenient to express the
necessary condition in terms of the risk premium S, defined above. As in studies which focus
on univariate risk (e.g. Chavas and Pope (1981); Flacco and Larson (1985)), the producer’s
maximization problem can be reformulated in terms of the certainty equivalent. Using the

income risk premium S,

max E[V(r,p)] = max T-S.
y20 y20

The first—order condition for the producer can then be rewritten in terms of S:

9 Which requires of course that there are alternative sources of safe income to finance the purchase of
(%, = y) and other consumption goods.
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py = C’(y) = 0S/dy.
Using a Taylor series approximation of dS/dy, at an optimal output level we obtain

as o2 Varn N Vi,
—=- — - Y¥0,, —.
3y LT El L

This can be written in unitless or elasticity forms as

?_gi =Py [sz,RB - Zi:‘Yp,msi R - ﬂi)] = Py |:R(‘YZP,B - %:Yp,p,si) + ;Yp,msini]

where ¥, is the coefficient of variation (C.V.) of p,, B is the share of the expected revenue in
the total expected wealth, ¥, ,, is the coefficient of covariation of py and p;, and s; is the
expected share of the expenditure on good i in the total budget. Examination of these expres-
sion reveals that if o, , > 0, the output level decreases with the income elasticity of the
deﬁzand for the i good,lo the C.V. of p,, and the share of expected revenue in total
expected wealth, which is a measure of importance of the risky income. These results are
reversed if Opp < 0. The coefficient of covariation between p, and p; and the share s;
have ambiguous effects, depending on which is bigger, R or 1;. Finally, the most surprising
result is the effect of the index of relative risk aversion, which is ambiguous! If
yzp’B < Zyp, pSi » then y™ increases wi_th R. In other words, the larger the aversion to
univariate income risk, the larger is the producer’s output under multivariate uncertainty. If

the above relationship is reversed, then a larger R is associated with a smaller y™.

A similar qualitative result holds without the assumption of "small risk" and a Taylor
approximation, if prices follow the multivariate normal distribution. In that case, the general-

ized Stein/Rubinstein covariance formula (Wei and Lee (1988)) can be used to find that

Cov( Vg, py) _ 95 _ —oty

EVig N  ElVgl
—— e o .
V (%, D) oy P Va = 0 Ve

10 This should be interpreted carefully since a greater income elasticity for one good means a smaller one for
others. However, if prices of other goods are certain or uncorrelated with p,,, then the statement is correct.
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There are even more complications due to multivariate risk. One involves possible
changes in the cost of production. Suppose that there is a change in the cost of production, so
that C’(y) is altered. It is then possible that dS/dy changes sign, and equilibrium output may
actually move from one side of y¢ to the other, without any change in risk attitudes or the
probability distribution of prices. This observation is illustrated by Figure I, in which the
short-run equilibrium of the firm is described. It is drawn under the assumption of small risk,
using the Taylor approximation. Under certainty and cost structure mc?, the firm produces
Yo’ - The multivariate risk effect causes an increase in the production level to y,™. So, given
marginal cost mc% y™ > y°. A shift in marginal cost to mc! would yield production levels

¥:€ and y;™ under certainty and multivariate risk, respectively. Hence, after the shift in mar-

ginal cost, y™ < y©. Thus, comparisons of the uncertain output to the certain one across pro-

ducers or over time could reflect technological changes and not differences in risk attitudes.

A second complication involves the relationship between the risk premium S and its -
derivative with respect to output y. In the univariate case when the risk premium is positive,
so is the marginal risk premium (e.g. Flacco and Larson (1987)), so output is always less than
under certainty. In the multivariate case the sign of S is not necessarily equal to that of
dS/dy, which can be seen from the two Taylor approximations. For example, it could be the
case that S is negative, implying that the producer prefers income fluctuations with random
prices, yet dS/dy could be positive, and he would still produce less than under stabilization of
all prices. |

The implications from these results for determining preferences from behavior should be
emphasized: comparisons of the level of observed output to the one which maximizes
expected profits do not, in general, reveal anything about aversion to univariate income risk.
Estimates of coefficients of risk aversion, similarly, m'cAa.t least biased, and possibly not even
of the comrect sign, if the observed level of output is used in the framework of a univariate
model to obtain them. Only for the special cases discussed in Section 3 can any conclusions

about income risk preferences be revealed by observed output. However, even then, strong
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assumptions about the probability distribution of prices (for instance, independence of p, and
p) may be needed. The only preferences for which observed output can be used for estima-
tion of the risk aversion functions for any distribution of prices are next to useless, since they
imply that R = 1. |

4.3 Long Run Output

To relate the attitude towards risk and the long run behavior of the producer, we define below

aversion to multivariate income risk.

Definition 1: A producer is said to be averse to a specific multivariate income risk if and only
if S 20 where S is evaluated at the optimal level of y.

Finkelshtain and Chalfant (1988) showed that S 2 0 for all risks if and only if the
indirect utility function takes the form of Proposition I, and that there is no indirect utility
function suéh that S <0 for all risks. Thus, in general, aversion to multivariate income risk is
a meaningful notion only if the discussion is restricted to a specific risk, since in some cases
agents will prefer stabilized income and in others they will not. In Proposition VII, we estab-
lish the conditions for the ihdustry to be in a long run equilibrium, with each producer just.

indifferent between the alternatives of producing a positive output level or quitting business.

Proposition VII: Expected profits are larger (smaller) than average cost if and only if the pro-

ducer is averse to (seeks) multivariate income risk in the sense of Definition 1.

Proof: In long run, fixed costs (T') do not exist and the producer is indifferent between his

two alternatives if and only if
E[Vir+Wo,p)l =E[V@+W¢=S,p)l = E[V(Wq, p)]

or T—S§ =0. In other words, the expected value of profits, ¥, which equals p,y - C(»), is

just equal to the risk premium S.11 O

11 In section 4.2, we assumed an interior solution. However, the global maximum could be not to produce at
all, and then the local maximum identified in section 4.2 is meaningless. The condition for staying in business
in the short run is identical to the long run condition with a positive level of fixed cost (T').
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Since in the long run, the necessary condition for a short run equilibrium holds as well,

the coinplete long run condition is

5 <L) S _ACH)+SO)]
i y y dy '

In the long run, therefore, the average risk premium drives a wedge between expected price

average cost. This is analogous to results derived by Flacco and Larson (1987) for the
univariate case. As is true in the univariate case, production does not take place where long-
run average cost is at minimum. Moreover, since in general S could change its sign with the
distribution of prices, so could the wedge between average cost and the expected price of out-

put. It follows that risk aversion in the univariate sense (V, ,,.<0) is neither sufficient nor |
necessary for average cost to be less than expected price, yet aversion to multivariate income
risk, in the sense of Definition 1, is both necessary and sufficient to ensure that expected price
is larger than average cost. We turn now to the question of comparisons between different

producers.

Definition 2: Producer i is said to be more averse to a specific multivariate income risk than
producer j if and only if Si(y) > S/ (y) for all y.

Once more, the definition is restricted to a specific risk, since except for very limited cases
discussed in Finkelshtain and Chalfant (1988), S¢ - S/ will vary in sign with the distribution
of prices. In Proposition VIII, we establish the relationship between the notion of "more
averse to income risk” defined above and the expected price which is required by each pro-

ducer to enter the market.

Proposition VII: Given identical cost functions and probability beliefs, a producer with
greater aversion (o income risk, in the sense of Definition 2, will enter the market at a higher

expected price than a producer with smaller aversion to the specific income risk.

Proof: Let y/ and y¢ be the long run optmal output levels of producers j and i, respectively.
From the condition for entering the market, producer j is just indifferent between entering and

not doing so if and only if
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where y/ is the long run optimal level of output for producer j. Since y/ is the optimal out-

put level, for every other level of output, including y*, and it must be true that

7 < SO0, S0
By assumption, S%(y‘) > S/(y?). Upon substituting S’(y’) in the above inequality, we find
that producer i will not enter the market unless the expected price is greater than p,.0
Flacco (1983) found similar results in the context of univariate uncertainty about the
output price. In the univariate case, if technology, probability i)eliefs, and the Arrow-Pratt
risk aversion measures are all identical, all firms will enter (exit) the market at the same
expected price. However, under multivariate risk, even if the above conditions hold, produc-
ers will require different levels of expected price according to their ordinal preferences.
Flacco (1983) notes that differences in risk attitudes between firms can explain the empirical
observation that different producers will exit the market at different levels of expected price.
Our result that the ordinal preferences also matter provides an additional explanation. It also
shows once more how the existence of multivariate uncertainty makes it difficult to generalize
about risk attitudes from observed behavior, when that behavior is interpreted in the context

of models of univariate risk.

6. Conclusions

This paper has examined the behavior of a competitive firm facing multivariate risk. We
examined the multivariate risk which is present when there is uncertainty about the price of
output and the prices of goods bought for consumption, a case which seems relevant for any
self-employed individual. In this case, the usual indirect utility function of the consumer
replaces the typical producer’s objective function defined on profits alone. As a result, many |

of the familiar results from models of output price uncertainty may no longer hold. Only for
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very limited cases will the output under multivariate risk be the same as in the univariate case
examined by Sandmo. While we considered neither the effects of multivariate risk on input
choices, etc., nor the reactions to other examples of multivariate risk, these cases also require

generalizing the theory of producer behavior under univariate risk.

A multivariate risk premium was used to characterize producer behavior. Neither the
Arrow-Pratt risk premium nor the multivariate one is sufficient to determine the relationship
between the output levels under multivariate risk and certainty. As a result, inferences about
a producer’s aversion to univariate income uncertainty that are based on comparisons of the
level of output to the expected profit maximizing level require information about both ordinal
preferences and the pfobability distribution of all prices. Otherwise, such inferences will be
biased by the effects of multivariate risk.

We showed that characterizing aversion to income risk under multivariate uncertainty or
making comparisons between producers concerning levels of risk aversion must be limited to
a specific price risk. An individual may be averse to income risk under one pricé distribution
and prefer it with another. Similarly, one producer may have a larger risk premium than
another under one probability distribution for prices, and a smaller one under a different dis-
tribution. |

Finally, we showed that a producer with greater aversion to a specific multivariate
income risk requires a larger expected price to enter the industry. Depending on both prefer-
ences and the price distribution, average cost may be greater than, less  than, or equal to the

expected price, even if the producer is averse to univariate risk.



-25-

APPENDIX

Proof of Proposition I: (Sufficient) Let f (p, py) denote the joint probability density function
of py and p, and let f;(*) denote the corresponding marginal densities. If the restriction on

preferences holds, the maximization problem becomes12

max [[(Vi®) + V¥@)If 0. py) dp dp, = max E,[V(m]+E,[Vip)].
y20 2P y20

The solution to the above maximization is identical to that of the univariate problem
1 2
max E, [Vi(m)] + V@),
since the objective functions differ only by terms that are constant with respectto y.
(Necessary) We assume two particular distributions, G! and G2. Let G! be given by

p, =p,% and p=p® with probability

py =p,1 and p=p! with probability 3,

where p? and p! differ only by the fact that a particular element of p takes on values p,-o or
p,-l, respectively. Let each O superscript denote a low value and each 1 superscript denote a
high value. Also, assume that the two values for p; are each A/2 away from its mean value,

given by the i4 element in 5. Let the second distribution be given by

py = pyo and p=pl with probability /2

py =py" and p=p® with probability ‘.

For both G! and G2, all pricés except p; are assumed to remain fixed at the levels defined by

12 The proof of this part is given for the case where the relevant distribution function is assumed to have
proper densities. The proof of the discrete case would be similar. This comment is applicable to proofs of other
propositions as well.
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P: When p, is low, profits equal n° = n(p,”) and when it is high, profits are x! = (o, ).
The necessary conditions for maximization of expected utility under G! and G2 are

V% 0% 0,0 - C'0) + VoxLpH @, ~C'y) = 0
and

V@, pHp, 0 = C'0)) + V!, pO0,! - C' ) = 0,
respectively. Assuming that V( - ) > 0, it follows from these that

p’-C()<0 and p,'-C@)>0.

Subtracting the second condition from the first and rearranging, we find that

@° = CONVA B + 5.Fjw) = V@ B = 5.0

@' - C'ONVx', 5 + -‘;—,i,-,.') - Vil B - % Pj=i)]

where p;,; denotes the prices in p that are assumed constant. Dividing both sides of the
equation by A and letting it approach 0, we obtain the following partial derivatives as the lim-

its of both sides of the above equation:
Vi@ ) @,° = C'0)) = Vg, &', P) (0, ' = C' ).

Using the relationship between p, 0 Py !, and marginal cost, this result implies that either the
two cross derivatives have different signs, or that they are equal to zero for every value of =°
and ntl. The former could not occur for choices of #° and =! arbitrarily close together, given
that V; is continuous. Thus, the latter alternative must hold, and Vi, () =0. We can
repeat the above argument for each { =1, .., N and hence V., =0 for each i, which
implies the separable form above. O

Proof of Corollary I: To show that (ii) follows from (i), note that by Roy’s Identity the fd]l=
lowing expression can be derived (e.g. Newbery and Stiglitz (1981, p. 117)):

Si
Vg = FVR(R = ;)

8
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where S; is the share of the i good in total expenditure. Proposition I established that (i)
implies that the left-hand side is zero for every i, and so, each ; must equal R. The budget

constraint implies that

N
Y Sn =1,
i=1

and hence each 7;, and R, must equal one.

We show now that (iii) follows from (ii). By (ii), R equals 1. Hanoch (1977) character-
ized all indirect utility functions consistent with constant relative risk aversion. In his Corol-

lary 3 (p. 424), he showed that, for the case of R =1,

-vmp)=Hwnu[G;J

where G and H are homogeneous of degrees 1 and 0, respectively. V is increasing in &, and

its income elasticities of demand are identical to 1 if and only if H(p) = H > 0. Hence,

V(r,p) = H [log(r) — log(G@))]
which is equivalent (both in the ordinal and cardinal sense) to the required form. To see that
(i) follows from (iii), note that the form in (iii) is additively separable in ® and p. O
Proof of Proposition III: (Sufficient) Using the special form for V and the independence of
p and p,, the producer’s maximization problem is

max Ela@)] +EB®)] Elhy, p,)].

Monotonicity of V in =, for every p, implies that the sign of b(p) is the same for every p .

and hence, the maximization problem above is equivalent to the univariate problem
t;lgt la@)] + [b®@)] E[h(r(y, py))].
(Necessary) We establish this using a particular price distribution. Let py equal either pyl or

py", each occurring with probability 1/2. Profits then will be either n'=n(y,p,’) or
m=n(y, p,"). Similarly, let p equal either p! or p”, each occurring with probability 1/2,
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where all prices are now assumed to vary between low and high levels.

The necessary conditions for the multivariate and univariate maximization problems are:

Py C' O™ Vamh, ph) + V(at, p')

P -C'O™) Vi, ph)+ Vo, pl)

' CO" __ Va5
p,*-C' (v*) Vo, p)

If the output levels are equal, then the left-hand sides of the two conditions are the same, so

we can rearrange the two right-hand sides, to obtain

Va®*, p') + Vo(x*, p*) V!, p!) + Vo, p)
Va(r*, mean (", p*) V', mean(p*, p')) -

Note that these ratios, which we designate r(r , p/, p*), must not depend on =, since for any
arbitrary choice of =* and «/, r(n*, p!, p*) = r(x!, p!, p*). If r does not depend on ,
while its components, the derivatives of V do so,!3 then the numerator and denominator must
have a common factor, such that any term involving © cancels:

x(m, p!, p*) IM@’) + L(p™)]
x(m, p!, p*) [0(0*, p™)]

r(z, p', p*) =

(i) xm, p!, p")@', p) = Vi(r, mean(p*, p')),

@) w(m, pl, pPIAMP’) = Vi(m, o),

@) w(m, p', pP)@*) = Vo, p).

B It might be that V (w, p) is linear in %, in which case V is independent of =, so r itself is independent of
7. However, this is simply a special case of the form a(p) +b(p) - h(xw), where h(®) = ®.




-29.

Condition (ii) implies that x does not contain p", while condition (iii) implies that it
does not contain p’, and hence from (i) it follows that V is of the form b(p) - A’ ().
Integrating with respect to & yields the form

V(rp)=a@)+bp) h(x). O
Derivation of S: S is defined by

E[V(r,p)l=E[V(®-S, p)].

By a second-order Taylor expansion of the left hand side of the equation around the point

(®,p)
N+l N+l

EV(r,p) = V@&, p) + ‘EZ Yo,V + o(r'¥)
i=1l j=1

where ¥ is the covariance tpatrix of the arguments of AV. A second order approximation of
the right hand side yields
1 N+L N+1
EV(@-S,p) = V™, p) - S, VﬁﬁH—%j% ;i + o (Pl
where W! is the covariance matrix of the prices of consumption goods. We ignore terms that
contain S2 since those are of the same order as the remainders. Now, by the assumption that

the risk is small,!* we can ignore the reminder terms and by setting the two expressions equal

we can solve for the re&juircd representation of S. O

* Proof of Lemma I: The conditional covariance is defined by

Cov{lgx,y),x]ly} = E[gx,y) xly] — E[g(x,y)ly]l-E(xly).

Ey(Cov([gx,y), x1ly}} = E{(E[g(x,y) xIy]l} - E{E[g(x,y)ly]-E(xly))

=E{g(x,y) x})-E[gkx,y)Ex)]-E(E[g(x,y)ly]l-Elx1yl} + E[g(x, y)IE (x)

14 See Kami's definition above.
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= Covig(x,y), x] — Cov{Elg(x,y)iyl, E(xly)}
By rearranging, we get the required formula. O

Proof of the Necessary Part of Prof;osition V: Let the price of output be perfectly correlated
with the vector of consumption prices. This assumption implies a linear relationship between

py and p;, fori =1,.,N:
pi = a + bp,

av
We will show that y™ can exceed y° by showing that # and hence Cov (Vy, p,) can be
Y

positive. The change in V. resulting from a change in the level of p, is given by the total

derivative

on

dVa = th?p"""'znm dpy.
op: (o]
From the definition of profits, 9% = y, and for this special case, Di - _bo . To see
. . . api 2 2
this, note that p; = a; + b;p, implies -5;- = b;. It follows that czp‘ = b;" 6, ° By the
y
assumption of perfect correlation,
ﬂpp‘p,ﬂ = 16p,,/0,Cp | = 10, /b0, 2 =1,

Since sign(b‘-)=sign(o’mp,), the term ©

pipy!0i Op, 2 is always positive and thercfore

b; = o, py/opyzﬂ Substituting these expressions into dV ,, we obtain
. N o]
7 Py Pi
= Vmy + 3V
p
dp, =1 o

Py

We assume now that b; = b for each i and therefore Gp,p. = Op,p fOr €ach i, hence



if Cpp < 0 <0
Pyp

In both cases, we assume that V . is negative. The proof for the cases where V2 0 is simi-

lar. The right-hand side expressions in the above inequalities will have the same sign as the

numerator, which depends on the both profits and prices and could be positive or negative.

To show that the producer could produce more than the certainty level, we must show
that there is always some price distribution such that the above inequalities hold. This means
that we must find a price distribution such that b satisfies one of the inequalities above. A
necessary condition for this is that b and the numérator have the same sign. We show below
that the support of the distribution can be chosen so that the sign of the numerator is either
always positive or always negative, independent of the value of b. Thus, the sign of b could

always be chosen to be of the same sign as this numerator.

. N
Assuming that the term ) V“p‘(ﬂ:, p) is continuous, there is some neighborhood (8) of
i=1

N
(%, p) in which the sign of Y, Vrp, 1s the same as at (T, p), regardless of the value of b.

i =1

Thus, once we find a distribution of prices for which (% , p) € 3 holds with probability one,

N
we can choose b to have the same sign as Y, V(T , D) and the right magnitude to satisfy
i=1

the required inequality.

The problem with finding such a distribution is that the distribution of prices does not
determine the distribution of ® and p by itself. Rather, every price distribution induces a dis-
tribution for the random variables © and p, through the producer’s optimization problem.

Hence, we need to show that the distribution of prices can be chosen to guarantee that
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(z , p) € & with probability one, independent of the producer’s choices.

Let B be an N+1—dimensional closed ball, centered at (B, py, - ** , Py). We show
that the support of the probability distribution of prices can always be restricted so that
Pr{(py,p1, ..., py) € Bl=1, and that, for every (@y,p) € B, it is also true that
(x, p) € 3. To do so, we show that for a given B, the boundaries of output y, and therefore

=, depend solely on B; hence, by choice of B we can ensure that (t, p) € 3.

Let py and p be bounded, where p,™* = max( py) and py = n}jn( py). If the pro-

ducer is rational, the corresponding values of profit are also bounded, independent of the
producer’s choices. To see that, note that the maximum output level which would be chosen -
by the producer is the one which for p,™™ = C’(y), which we denote by . As a result, the
maximum profits associated with B are n(§, p,™"). The minimum profits are the minimum
befween =¥, py miny and (0, py) =-=T. Thus, the choice of B, over which the producer has
no control, implies that profits are bounded for any (rationally chosen) level of output, which

ensures that a B can be found so (®, p) € 8.

The above steps justify the claim that there is always some price distribution such that

N
the term 3 V., does not change sign as prices change anywhere in B, regardless of the
i=1

producer’s choices and regardless of the ‘value of b. Without loss of generality, we can

assume now that g (p,, p) was chosen so that 2 Vi, > 0. We then need only choose
i =1 .

2
0%, and Cp,p > 0, so that

o’

Sk

max |=————
Spp (mp)e 8| ~Vny

Similarly, if E Vs, <0, we choose G, < 0.1

i =1

!5 Note that the choice of the required B mgmm restrict the choices of 6%, and G, ,. However, we still have

the freedom to choose an arbitrary value for |— by choice of b.
Pyp
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dv
Thus, we have established that we can find a distribution of prices such that Z>0
y

with probability one. Part (i) is now established, since

dVe
dpy

>0 <=> Cov(Vypy) > 0 <=> p, < C'(y) <= y* > y‘.

dv
To prove (ii), note that the only preferences for which 7‘;1‘- has the same sign for every risk
y

are those for which V,,P‘ = 0 for each i. It was already established in part (i) that, for these

preferences, y™ < y©, so the proof is completed. O
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FIGURE 1 : Short run equilibrium under multivariate risk
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