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EVALUATING PRIOR BELIEFS IN A DEMAND SYSTEM:

THE CASE OF MEATS DEMAND IN CANADA

1. Introduction

Widespread use of flexible functional forms in demand analysis has given researchers the

ability to model consumer preferences with no restrictions on the nature of substitution or

complementarity relationships between pairs of goods. Unlike Cobb-Douglas or CES prefer-

ences, the arbitrary utility functions approximated by more general demand systems, such as

the translog or almost ideal forms, do not impose the restriction that all goods are equally

substitutable. Unfortunately, theoretical restrictions automatically met by simpler forms need

not hold with flexible forms.

When restrictions can be imposed using equality constraints on the parameters of the

demand system, estimation and hypothesis testing are straightforward. This applies to sym-

metry and homogeneity restrictions. Curvature restrictions are another story. Even with sym-

metry and homogeneity imposed, a system still may be inconsistent with a well-behaved util-

ity function, if the matrix of substitution elasticities is not negative seriai-definite (implying

that the expenditure function is not concave). It is also possible to find violations of the

monotonicity restriction, in that budget shares predicted for particular combinations of prices

and expenditures may not be between 0 and 1. Curvature or monotonicity restrictions require

inequality restrictions on parameters, not easily handled in conventional estimation

approaches.

In this paper, we illustrate how the Bayesian approach to inference can handle inequality

restrictions in demand systems, using a method based on Geweke's work. He shows how to

make inferences about or impose inequality restrictions in regression models. Chalfant and



White used his method to im I. se curvature and monotonicity restrictions on the transiog cost

function. Here, we apply the same procedure to the estimation of a demand system for meats

using Canadian data.

In addition to these restrictions from consumer theory, we suggest a new set of inequality

restrictions, not generally imposed on a demand system, but which have a fairly compelling

motivation. It seems reasonable to expect that no pair of foods that play essentially the same

role in the diet—sources of protein in the present application—should be complements. One

thinks of beef and gravy, chicken and dumplings, but not beef and fish, say, as complemen-

tary items. Yet, it is common for parameter estimates from a demand system which fits well

by other measures—percentage of variation explained, plausible income or own-price elastici-

ties, etc.—to imply that a particular pair of goods which are natural substitutes are instead

complements. The problem is that using flexible forms to allow elasticities of substitution

between different pairs of goods to have different values also means that they can have

different signs. Similarly, the elasticity of substitution between two goods may be positive at

one set of prices and negative at another. While restrictions on the signs of elasticities of

substitution are suggested by empirical observation, rather than the underlying theory, they

seem just as important as compatibility with theory in judging the degree to which an

estimated demand system conforms to our beliefs about consumer behavior. For applications

such as this one, then, the constraint

requirement that any well-behav

beliefs.

Unfortunately no commonly used flexible form

substitution without also allowing some v ues to

at meats are substitutes can be viewed another

demand system must satisfy, in order to match prior

• ilows arbitrary values for elasticities of

positive while some are negative. To
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restrict all meats to be substitutes thus requires an additional set of inequality constraints.

Therefore, we impose not only concavity and monotonicity, but require the elasticity of substi-

tution between any pair of goods to be positive.

One motivation for the approach comes from the recent literature on testing the stability

of meats demand. Chalfant and Alston found that data from the U.S. and Australia are con-

sistent with stable preferences, using nonparametric demand analysis. Since that method does

.not produce elasticities, it is worth asking if the implied elasticities satisfy prior expectations.

We show below how to impose these inequality restrictions using time series data from

Canada for prices and per capita consumption of beef, pork, chicken, and fish over the 1960-

1984 period. Any of the curvature, monotonicity, or substitutability restrictions can be

imposed alone or together. Thus, the procedure can provide parameter estimates and the pro-

bability that the restrictions are correct for the cases of theoretical restrictions alone; substitu-

tion restrictions alone; and the two combined. We illustrate the method using the almost ideal

demand system (Deaton and Muellbauer).

• 2. The Almost Ideal Demand System

Demand theory suggests that the demand for a good should be a function of its own-

price, the prices of closely related goods, and income. In order to estimate demand relation-

ships in a system of a reasonable size, it is common to invoke weak separability--choices

concerning the allocation of expenditures among a subset of goods consumed are assumed to

be made independently from the prices of goods outside that group. For example, the quan-

tity of beef consumed is likely to be a function of the prices of beef, pork, chicken, fish, and

total expenditure on meat, but is not a function of the price of bananas.'

I Except, of course, to the extent that the prices of goods outside the group under study affect the total group
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ether or not it is appropriate to assume separability for a panic Tar demand system is

an empirical question. Theory suggests that any partial demand system representing the

separable parts of larger systems should satisfy the conditions of symmetry, homogeneity,

monotonicity, and concavity. Indeed, one interpretation of these conditions not holding in an

estimated system is that the goods included in the demand system do not make up a separable

group—a relevant price has presumably been omitted. Violation of those conditions can also

be treated as indicating the presence of structural change, aggregation bias, or some other

specification error.

Deaton and Muellbauer suggested the almost ideal demand system as a particular •

representation of price-independent, generalized logarithmic (PIGLOG) preferences. Such

preferences are consistent with the aggregation of individual preferences. In addition,, the

functional form they chose is locally flexible, in the sense used by Barnett—it can attain arbi-

trary values for substitution elasticities at a given set of prices. The equations for budget

shares take the following form:

Si =ai In !'1 4- !kin (xIP),
j=1

where 13. is the jth good's price, x denotes total expenditure on the n goods, and P isJ

Stone's geometric price index.2 A system of these share equations can be estimated to obtain

parameter estimates, and simple formulas convert e parameter estimates to elasticities.

expenditure, perhaps in a preliminary stage of allocating expenditures to aggregates such as meats, other foods,
shelter, etc.
2 Use of Stone's index for prices gives rise to an approximate almost ideal demand system. Blanciforti and

Green tamed the linear approximate m",-,• c.11, since unlike the ofitin, I case it is linealr in parameters. r.atoira
and Muellbauer or Blanciforti Ar,d Green can cons lied for details. Tin this paper we use only he linear ap-
proximate ms• el, and refer to it the almost ideal demand system for simplicity. However, the methivo we we
could be ilied to the nonlinear almost ideal" ,01cmarad system, or indc.c41, any function..ti fogin of interest.
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This demand system is easily restricted to satisfy symmetry ( = yii ) and

homogeneity ( yij = 0 V i). The adding-up property holds, given these restrictions, pro-
j=1

vided = 1 and IJ3 =0. Concavity or monotonicity restrictions are more difficult, as

they involve multiple inequality restrictions on the parameters. For concavity, the matrix of

second derivatives of the expenditure function, or equivalently, of elasticities of substitution,

must be negative semi-definite. For monotonicity, predicted budget shares must all be

between 0 and 1, to ensure that predicted quantities consumed are positive. Such restrictions

are difficult to impose using most econometric packages and even harder to interpret statisti-

cally.

3. The Bayesian Approach to Testing Inequality Restrictions

An alternative approach to imposing inequality restrictions in a demand system is made

possible using a Bayesian approach, which permits the formal inclusion of such prior informa-

tion. Often, prior information can be imposed by choice of functional form. An extreme case

is the Cobb-Douglas utility function, which would impose all of the restrictions from consu-

mer theory, plus some less desirable ones, such as additivity of preferences and that elastici-

ties of substitution are each one. Symmetry and homogeneity restrictions from demand theory

represent prior information that is often imposed through equality restrictions on the parame-

ters of less restrictive demand systems.

Such restrictions reduce the dimensionality of the parameter space, when demand sys-

tems are estimated—the symmetry and homogeneity restrictions, for instance, provide consid-

erable gains in degrees of freedom. Prior information taking the form of an inequality restric-

tion is less informative than such equality restrictions, in the sense that this information serves
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to truncate arameter space, rather than reduce the number of e parameters. For

instance, a particular parameter 0 may be restricted to be positive. Conventional approaches

to estimation do not permit the formal inclusion of such information (e.g. Judge et. al.), and

most econometric packages do not permit such restrictions to be imposed.

When flexible functional forms for demand systems are estimated, it is quite common to

observe results which conflict with prior beliefs. Symmetry or homogeneity restrictions may

be violated, when tested, but are generally imposed using equality restrictions on the parame-

ters. The signs of estimated elasticities may be implausible, in which case there are two

choices. One is to search over alternative flexible forms, which has obvious undesirable

consequences for inferences, once a well-behaved demand system has been obtained. The

other is to impose inequality restrictions, through adding constraints to a maximum likelihood

procedure. Such constraints are difficult to interpret statistically—the usual likelihood-ratio

test does not apply without adjustments, for instance. Even if testing the restrictions is not the

goal, imposing inequality constraints in this manner is likely to yield parameter values that lie

on one of the constraints. For instance, constraining a demand elasticity to be non-positive

may well produce a vertical demand curve, if the constraint is binding. Thus, a constrained

maximum-likelihood approach is neither intuitively satisfying nor statistically convenient

The problem of prior beliefs that take the form of inequality constraints is easily handled

in the context of Bayesian inference, however. The ayesian approach begins wi a prior

density function, defined over the vector .of parameters, 0, call it p( ). This pritr densi

summarizes all of the information the researcher has about 0 prior to estimation. Specifying

p (0) permits the Etnal.1 inclusion of information a6-0ut the parameters. For instance, if a

3 See Winer (197R) or Judge et all, for much more detailed descriptions of the properties of the
mach.

iV)ayesian ap-
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particular parameter is considered equally likely to be positive or negative, a zero median

characterizes the marginal probability density function used to describe prior beliefs about that

parameter. If there is no prior information about 0, p (0) is simply defined to be proportional

to a /constant over all real numbers, thus making it an improper density. Alternatively, p (0)

could be a proper density which reflects various beliefs in the form of probability statements.

A very simple case is the prior p.d.f. which says that 0 is contained in some region D with

probability one:

p(0)occ V OED

D may be an open or closed interval, depending on the application. We consider below how

such a prior density can be used to represent prior information about the parameters of a

demand system.

Bayes' Theorem shows how to combine prior and sample information to obtain a poste-

rior, distribution for the parameters in 0 given a data set y:

f (ely) p(0) L(ely).

where oc denotes "is proportional to" and L 0 is the likelihood function based on the observed

data. Unlike the sampling-theoretic approach to estimation, the Bayesian approach recognizes

that posterior beliefs are conditional on the observed data set, rather than- emphasizing the per-

formance of estimators in repeated samples.

The posterior distribution f (0 ly ) summarizes all information available about 0, both

prior and sample information. It can serve as the end result of an investigation, or it can be

used to calculate various confidence intervals and probabilities related to hypotheses about 0,

or to obtain a point estimate of 0 or some related quantity such as a demand elasticity. The

optimal point estimate for 8 depends on the investigator's objective function. Constrained



maximum41elih..i estimation, which yields the mode of the posterior stribution as ii.int

estimate, corresponds to a "zero-one" loss function (e.g. Miner (1988)). This is an unusual

loss function, in the sense that it places the same weight on being wrong for estimates arbi-

trarily close to the true 0 and for choices very far from that value. More plausible loss func-

tions can certainly be imagined, and different point estimates will result. For instance, if the

investigator's loss function is quadratic, the mean of the posterior distribution for 0 minimizes

expected loss (e.g. Judge et al.). All that is needed, then, to find Bayesian point estimates of

the parameters of a demand system is a means to describe prior beliefs in the form of inequal-

ity restrictions using p (0), a way to obtain the posterior density function, and then a way to

find its mean.

Below we illustrate how this approach can be applied, using the quadratic loss function.

With the inequality restrictions imposed, it is straightforward to obtain the mean of the poste-

rior distribution, call it This serves as the optimal point estimate of the parameters of the

demand system. Also of interest is some measure of how plausible the restrictions might be,

given the data. Suppose prior beliefs are completely uninformative, that is, all parameter

values are considered equally- likely. In this case, the sample information dominates the pos-

terior density function and an optimal point estimate is the mean of the (unrestricted) posterior

distribution. Meanwhile, the probability that the restrictions are correct can be calculated

using the unconstrained posterior density. This probability is inte reted as the degree of

belief that the restlicti*ns are true, bas

at 0 lies within the interval D.

Both restrictions on the S2f. 1

on observed data, found by obtaining the probability

s of substitution elasticities and restrictions on the entire

matth of substitution elasticities, to satisfy curvature restrictions, can be examined by c CU-



lating substitution elasticities. The elasticity of substitution between any two goods in the

almost ideal demand system is

Ti
= +

iis. s •

where Si denotes the ith budget share. Own-elasticities of substitution can be found through

the homogeneity restriction, or by

Yu
"ii = 1 + -Si Si Si

To evaluate these inequality restrictions, then, it is necessary to examine the behavior of elas-

ticities of substitution everywhere in the parameter space where the researcher wishes to

impose them. Similarly, the monotonicity restriction can be evaluated using predicted budget

shares. Each set of restrictions is then imposed by truncating the parameter space so that each

restriction holds. To obtain a Bayesian point estimate, (with a quadratic loss function), the

researcher must find the mean of the truncated posterior distribution for the parameter vector.

While these calculations are in principle straightforward, requiring that integrals over the

posterior density function be -evaluated., the analytic solutions cannot be obtained in practice,

except for fairly simple models. The dimension of the posterior density is likely to be too

great, even if the density function and the region of the parameter space of interest can be

described easily. Instead, it is necessary to evaluate the integrals using Monte Carlo integra-

tion. This permits estimating the solutions to integrals by random sarnpling.4

To describe the method, we begin by specifying a data-generating process. We assume

4 Kloek and van Dijk (1978), van Dijk and Kloek (1980), and Geweke (1986) provide the foundations for the
Monte Carlo integration and importance sampling, described below. The application to demand systems follows
the discussion in Chalfant and White.



ces and expenditures may be treat

of n —1 equations of the form

'a+ Or, as ex genous, so tat the parameters of a system

4
+ yii In(Pi) +13i in(xIP)

j=1
could be estimated using seemiz) igly-unrelated regressions (SUR). As is well known, the equa-

don for the nth budget share cannot be included without implying a singular contemporaneous

covariance matrix for the error terms in the n share equations (Buten), but deleting the nth

share and using restrictions on the parameters allows the complete set of parameter estimates

to be obtained. Use of iterated SUR was shown by Buten to lead to estimates that are invari-

ant to the equation chosen for deletion.

We assume that the n —1 vector of errors, and therefore the shares themselves, follow the

multivariate normal distribution. Strictly speaking, one might prefer a distribution more com-

patible with the fact that observed shares are bounded by 0 and 1 (e.g. Woodland, Rossi), but

we prefer to stick with the more widely used distribution to illustrate our method. The

approach we take could easily be adjusted for non-normal errors.

To illustrate Monte Carlo integration, suppose that E, the variance-covariance matrix of

t he errors, is own. Suppose also that p (0), the prior information we have about the ai's

Yi , and Pi , indicates that some region D a proper subset of RP, contains the true param-

eter vector, where p denotes the number of free parameters in the model and RP denotes the

1°) titension real numbers. Finally, suppose at e investigator has quadratic loss func-

don, and desires a point estimate of 0; as noted earlier, the mean of e posterior density for 0

imizes expectcii loss.

The steps involved in finial mg an estimate of the mean, 8, are strai

prior information about 0, the posterior ii

htforward. With no

stribution from iterated SUR would be the



multivariate normal, centered at 6 with variance-covariance matrix V(e), where O and V(o)

are obtained using iterated SUR. Given our prior information, the posterior distribution for 0

then becomes the truncated multivariate normal, since 0 is known to lie in D. Our task

becomes finding the mean of a truncated, p -variate normal:

E(9) = f f • - • f 9 N p[0 I 6, v(6)] de1de2 • • • den
OieD 02ED OWED

Needless to say, such a calculation is infeasible for all but trivial examples.

Monte Carlo integration is based on the idea that an expectation such as the one above

can be estimated (arbitrarily accurately, given the Law of Large Numbers) using random sam-

pling. One way of estimating the mean of a random variable with p.d.f. (9) is to generate a

large number of replications in a random sample from that distribution, and calculate

where N is the number of replications. .6 serves as an estimate of E (0), of course. Since N

is determined by the investigator, E (0) can be obtained with an arbitrarily high degree of

accuracy. To apply that approach using the multivariate normal requires 5 steps.

1. Estimate the parameters of the share equations, obtaining O and 11(6).

2. Treat these as parameters of the posterior distribution for 0 which would be con-
sistent with no restrictions on O's range, the p -variate normal density.

3. Use Np [O, V(6)] and a random number generator to obtain a random sample
from this multivariate normal. Omit those draws Oi which are not contained in D,
leaving a random sample of size n from the truncated multivariate normal.

4. Estimate E (0) using the average of the n replications in D:

ei
-6. i=i
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5. A by-product of the procedure is that ,t3 at, nIN estimates the area under the mul-
tivariate normal density contained in D, i.e., the probability that the restrictions
hold, given no prior information. If either p or E (9) are estimated with less than
the desired precision, increase N and repeat the process.

While computer-intensive, these steps are certainly feasible. They can be performed

using the commonly available statistical packages (e.g. SHAZAM, SAS), for any posterior

distribution that the researcher specifies. All that is required is a random number generator

and some simple calculations.

4. Importance Sampling for Exact Results

The procedure outlined above relies on the asymptotic properties of the estimation pro-

cedure, by making use of a normal approximation. While this is comparable to what is done

using non-Bayesian approaches, it will not yield results consistent with the exact posterior

density function. Unfortunately, the posterior distribution for 0 is only of the multivariate

normal form if the variance matrix E is known, rather than estimated jointly with the parame-

ter vector. Effectively, the procedure outlined above substituted a conditional distribution

f (0 y , t) for the marginal distribution f (0 I y

Such a marginal distribution for 0 can be obtained from a joint posterior density for 0

and the parameters of 1,, by integrating over a posterior density for E. Following Zellner

(1971, p. 242) and Judge et al. (p. 478), for a diffuse prior density for both Z and 0, the

resulting posterior density for 0 is ven by

typie(41

f(6 y) ccM 2 .

element of the G by G matatt. A is given by

Re (9)Vej
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where ei(9) is the vector of residuals for equation i evaluated using any value of 0 where the

posterior density is defined. This density function corresponds to the posterior density for 0

with no prior information about likely values. Should one wish to impose the restriction that

6 could take on only values consistent with the inequality restrictions, a truncated version of

this posterior density must be used. In this framework, imposing the Bayesian restrictions and

finding a posterior mean '6* requires sampling from the truncated density fR (0 y), but this is

not a familiar density, and therefore it is difficult to obtain an appropriate random sample.

The procedure outlined above, whereby the untruncated density f (0 ly) could be used, also

cannot be applied, for the same reason.

Instead, it is necessary to modify the steps outlined above, correcting for the fact that the

multivariate normal is at best only approximately the correct posterior density. The technique

for doing so is called importance sampling (Kloek and van Dijk (1978), van Dijk and Kloek

(1980)). The concept which underlies importance sampling is relatively straightforward.

Before returning to the problem at hand, we illustrate its use with a simple example.

Consider estimating the mean of Y, a Beta random variable with a=9 and 13=1 and den-

sity function f (y). Such a random variable has

E(Y)=fy f(y)dy = = .9

Of course, this is an example where the integral could be evaluated, and where random draws

can also be obtained from the correct distribution, but suppose that we had available only a

Uniform random number generator, whose density function we denote g(y). How might we

calculate the mean of the Beta distribution, using random draws from U(0, 1)?

The sample mean of replications drawn from the U(0, 1) will underestimate E (Y), since

it will tend toward 1/2. The reason, of course, is that values close to zero for Y occur more



often under (0, 1) and values closer to one will occur less often than under the eta distri-

bution we have chosen. Importance sampling corrects for this, by adjusting the "importance"

given to each replication. It turns out that the appropriate weight for each replication yi is the

ratio of the probability density function of the Beta distribution at yi, f (yi), and the density

of the uniform at yi, g(yi). In this way, those values draw which are closer to one will

receive a large weight while those closer to zero will receive a smaller weight.

To see why this works, note that the expected value of Y using the density function

given by f (y) can be found by integrating over g (y) instead:

E(Y) =sfY i'(y) dY =
ry dy

g(y) °

In the first instance, E ) is taken with respect to f and in the second, E[Y f (IP )Ig (Y)] is

taken with respect to g. Just as E(Y) could be estimated using a sample mean of replications

from f (y), then, so could it be estimated by drawing from g (y) and calculating

N f(y)yi
i=1 g (Yi

N °

One surprising aspect of this procedure is that any density function can be used as g (y), pro-

vided it is strictly positive over the range of Y, determined from f (y). Otherwise, division by

g (y) within the integral is not allowed, and the implication would be that some values of Y,

which do occur when sampling from f (y), would never be 41-awn using g (y). Naturally, if

the weights applied to each yi are close to one, so that f (y) and g (y) are similar, fewer

draws will be required to obtain g• • II esti ates of ;e v—ues of 1_

van Dijk (1978), van Dijk and Kip& (1980); Geweke (1986, 1988)).

ese inte ,`,41 :_•1 1s (Kioek and
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P.

This procedure can be applied for estimating the mean of the exact posterior density for

0. That distribution plays the role of the Beta distribution in the case above, in that it is the

correct density but difficult to work with. Meanwhile, the multivariate normal is used as was

the Uniform, to generate replications for 0. In the case of uninformative priors, draws from

the multivariate normal can be adjusted by the ratio of the two density functions to obtain an

estimate of the probability that the inequality restrictions hold. Alternatively, the inequality

restrictions can be imposed, so that the posterior density is truncated or restricted. To find the

posterior mean, find the solution to

E(0) = SO /R(:fly) de.

At the same time, to calculate the probability that the restrictions hold, find

p =f I (0) f (01y) dO
Ye

where 1(9) = 1 if the restrictions hold and 1(9) = 0 otherwise.

Each of these could be accomplished by sampling from the exact posterior density

f (0 I y ), if it were of a known form, and the steps outlined earlier could be used. Since these
•

integrands are too complicated to permit analytic solutions, importance sampling must be

used. To reiterate, notice that the posterior mean can be found by

E(01y)= 0 
f
"

1 )
gR (01y) de

D gR (9IY)

where gR (0 ly) is the truncated multivariate normal (or any other convenient) p.d.f. and D is

the region of the parameter space consistent with the concavity and monotonicity restrictions.

Again, the density gR (0 ly) must have the same range (D) as the posterior density f R (01y) 

We use the multivariate normal p.d.f.



(Oily) expF 1/2( EY v(6)-1 el

The modified steps now required for the calculations, taken from Chalfant and White, are

given below:

1. Estimate the parameters of the demand system using iterated seemingly unrelated
regressions, to obtain maximum likelihood estimates 0 and the estimated covariance
matrix V(0), in this case a 12 element vector and a 12 by 12 matrix.

2. Calculate a matrix H such that HH' = V(6). Draw a random vector of length 12
from the standard normal distribution -

w —N(0, /)

where I is the identity matrix of order 12. Replications of 0 can be generated using

0A =6-1-HW

and its "antithetic replication"

= —

The latter step was suggested by Geweke (1988) to improve convergence.

3. Check each replication to see if it violates concavity, monotonicity or substituta-
bility. For each, note whether concavity and monotonicity hold jointly, and whether
concavity, monotonicity, and substitutability all hold or whether there is some viola-
tion.

To do so, we calculated elasticities of substitution using each replication and the
means of observed budget shares for the 4 meats. We checked concavity and sub-
stitutability using these elasticities. To check monotonicity, we used each replica-
tion to obtain new predicted shares for all 25 data points.

4. Estimate the mean of the posterior distribution using the n draws of OA or
which satisfy the restrictions:

fR(9klY) 
R

k=1 g (ekbP)
=

fR(ekb7) 
gR (Ok y)

As not rtI by Ch ,Ii-ant and White, if f(6 ) and : (0 ft y) were proper density func-
dons, a den*minator of N w id suffice. *1 I terwise, the denominator serves as a
nomalizing constant to correct for the fact that we use only the kernels of proper
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densities.

5. To estimate the probability that the restrictions hold, use all replications, letting
the first n be those consistent with the restrictions, and calculate

f (okly) vn fR (ekly) 
1(ek) R

k=1 g(eklY) k=1 g (ekly) 
41, f (ekly) N f (ekly) 
2.4
k=1 g(OklY) k=1 g(eklY)

ft

In addition to seci and p , standard deviations of the posterior distribution are easily
calculated. Interval estimates or histograms can also be used to summarize the
information about these values that is contained in the posterior distribution. Fol-
lowing Geweke, a numeric standard error for j3 can be calculated using the formula

s.e.(P) = 13. V  (1-0) 

6. Check to see if the number of replications is large enough to wive at stable esti-
mates of 0 or /3 and of their standard errors. If not, increase N.

We calculated the quantities of interest for several sample sizes, as the number of
replications is increased.

S. Application to Aggregate Meat Consumption in Canada

In this section, an almost ideal demand system5 for meat and fish products is estimated

using aggregate Canadian data for the years 1960 to 1984, taken from Van Kooten. The

demands for four goods were examined—beef, pork, poultry, and fish—henceforth, the meats

group. It was assumed that consumer preferences for the meats group are weakly separable

from all other goods. Prices and per capita quantities consumed for each meat are given in

Van Kooten. Real expenditures were obtained by deflating total meats expenditures by

Stone's geometric price index, as suggested by Deaton and Muellbauer.

5 Other applications of this system to agricultural data include Blanciforti, Green, and King, Chalfant, and
Hayes, Wahl, and Williams. The latter case, which examines Japanese consumption of meat products, also con-
siders the restriction that all meats are substitutes.
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A check for consistency with the generalized axiom of revealed preference (Varian)

revealed no violations of the axiom, adding support to the notion that meats are indeed

weakly separable from other goods. As did Chalfant and Alston for 1nited States and Aus-

tralian data, we interpret this as evidence consistent with the stability of demands for the

meats gimp over time. As a result, one is justified in fitting a demand system which includes

only prices and expenditures, without trends or other "taste shifters", in explaining patterns of

consumption through time.

Recall that the expression for the share of the budget allocated to the ith meat is

4

Si = ai + yii In(P1) + I3i ln(x /P ).
j=1

A system of three such equations was estimated using the nonlinear regression (NL) procedure

of Version 6 of SHAZAM (White et al.). The fourth equation was deleted due to singularity

of the variance matrix for all four equations, and parameters of that equation were obtained

through the homogeneity and symmetry restrictions. By iterating over both the parameters

and the error variance-covariance matrix, the estimates are obtained are invariant to the equa-

tion chosen for deletion (Barten). The parameter estimates are not in themselves of any

interest and are used only to calculate elasticities or obtain predicted budget shares, and so are

not reported. Elasticities of substitution are reported in Table 1, in the column denoted

"Unconstrained". These were calculated at the mean budget shares observed in the sample,

and were obtained wi out

in(II 1

t e inequality constraints.

The negative own-elasticities are as one would expect. The positive cross-elasticities

cate that t e meats tend to be substitutes for one another at the midpoint of the sample.

The unrestricted results which are conii- to prior belief are the negative substitution elasiici..
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ties, indicating complementarity, between fish and beef and between fish and pork, though the

magnitudes of these elasticities are rather small. Concavity and monotonicity also hold with

these estimates at every point in the sample.

Using the procedure outlined earlier, we estimated the probability that the concavity and

substitution restrictions hold for this demand system. By applying the Bayesian approach

with this application, we illustrate an important point. When the restriction does not hold "in

sample", as is the case with our substitution restriction, the approach is necessary to find

parameter estimates consistent with the constraint. However, concavity does hold. That does

not mean, however, that the posterior probability that the restriction holds is one, nor is it zero

when the maximum likelihood estimate violates concavity. We still must obtain the posterior

distribution of the parameter estimates to find the probability that concavity holds, and to .find

the posterior mean to use as a parameter estimate.
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Beef
Pork
Nan"

Fish

O'beef beef
abet, pork
abeef poultry

abeef fish

Crpork pork
Cfpork poultry

apork fish
apouftry poultry
apoultry fish
apish fish

Table 1: Elasticity of Substitution

Unconstrained

Restricted

Concavity Substitutability

Normal Importance Normal Importance
Approx. Sampling Approx. Sampling

-0.867 -0.870 -0.874 -0.935 -0.909
1.057 1.056 1.054 1.037 1.016
0.711 0.708 0.705 0.623 0.597
-0.207 -0.197 -0.182 0.051 0.047
-2.138 -2.140 -2.137 -2.078 -2.106
0.839 0.837 0.845 0.583 0.649
-0.116 -0.110 -0.117 0.078 0.102
-5.789 -5.954 -5.832 • -5.094 -5.098
2.524 2.537 2.567 2.441 2.411
-1.676 -1.770 -1.767 -2.438 -2.436

Table 2: Price Elasticities With Concavity Imposed

Quantity i

Price j Beef Pork Poultry Fish

Beef -0.350 0.422 0.282 -0.078
Pork 0.267 -0.540 0.214 -0.029
Poultry 0.112 0.139 -0.962 0.423
Fish -0.033 -0.021 0.462 -0.321

Table 3: Price Elasticities With Concavity and Substitution Imposed

Quantity i

ce j Beef Pork

-0.363 0.407
0.257 -0.532
0."*8 0.107

0.01Z

0.239
0.164
-0.4;41
0.438

Fish

0.019
0.026
0.398
-004--42
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Table 4: Replications and Parameter Values7

Parameter 2000 5000 10000
Estimate Replications Replications Replications

el

02

93

04

95

06

07

648

09

e10

ell

°12

ficm

Psubs

-.447 -.450 -.450
(.0046) (.0052) (.0069)

.1001 .101 .102
(.00020) (.00019) (.00029)

.0063 .0059 .0062
(.0000066) (.0000078) (.0000079)

-.019 -.019 -.019
(.000012) (.000011) (.000019)

.206 .206 . .206
(.00083) (.00094) (.00121)

.718 .721 .726
(.010) (.012) (.016)

.052 .055 .052
(.000059) (.000060) (.000056)

-.0066 -.0068 -.0072
(.000011) (.000018) (.000014)

-.094 -.095 -.096
(.00021) (.00025) (.00033)

.541 .535 .530
(.0069) (.0069) (.0076)

-.020 -.020 -.019
(.000035) (.000046) (.000040)

-.093 -.092 -.092
(.00024) (.00024) (.00026)

.926 .914 .909
(.0000357) (.0000164) (.00000865)

.00773 .0116 .00847
(.000767) (.000326) (.000147)

7 Standard errors are shown in parentheses. ficm is the probability that concavity and monotonicity hold
Jointly. Aubs is the probability that concavity, monotonicity and all meats are substitutes hold jointly.
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We followed the procedure outlined earlier to obtain a sample of size 10, Si from the

multivariate normal, again using SHAZAM. We used our in-sample results for 9 and V(Ô) to

specify the parameters of this distribution. We checked concavity for each replication by cal-

culating substitution elasticities using the parameter values given by each replication. For

each matrix of elasticities of substitution, we calculated the eigenvalues. We found con-

sistency with the concavity restriction (a substitution matrix without positive eigenvalues) over

95% of the time.8 This turns out to be slightly larger than our estimate of the probability that

the restrictions hold when the exact probability is calculated using importance sampling—the

probability that concavity and monotonicity holds falls to .91. These results, imply that the

demand system is certainly well behaved by this criterion; imposing the restriction by remov-

ing the 464 trials which violated this condition is likely to have little effect on the parameter

estimates given by the posterior mean, Elasticities of substitution calculated using the con-

cavity restriction are given in Table 1; note that there is not much difference between the con-

ditional results from the multivariate normal and those obtained using importance sampling.

Price elasticities calculated using -6 are shown in Table 2.

The system was not consistent with the restriction that all meats should be substitutes. In

our random sample, out of 10,000 draws only 57, or .57 percent, met this restriction, slightly

less than the probability of .0085 obtained with importance sampling. This strong rejection of

our prior liefs casts some doubt on the estimated system being a valid representation of

preferences. Nonetheless, we calculated posterior means for the remaining elasticities. These

numbers are shown in Table 1 for the substitution elasticities and in Table 3 for the price

1 ticities. ite of the Row posterior pr bability associat

don, 1 -1e ma itudes of elasticities are not ect dramatically.

41 with the substitution restxic-
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It is important to note that violations of the substitution restriction are not due solely to

the cases of complementarity relationships implied by O--beef and fish or pork and fish. Any

elasticity could be responsible. Unless the posterior density for any particular elasticity of

substitution implies that it is positive with probability one, each can be responsible for any

particular replication violating the constraint

In order to examine whether a sample size of 10,000 was sufficiently large to get an

accurate measure of the posterior distribution via importance sampling we examined parameter

estimates for 2,000, 5,000, and 10,000 draws. These estimates are show in Table 4. The

10,000 replications seemed to be sufficiently large to estimate the posterior mean of 0. The

estimates for 13 seemed to be more sensitive to sample size, although there is only a small

difference in the estimate between the sample sizes of 5,000 and 10,000. These results sug-

gest that 10,000 replications gave a reliable estimate of the desired quantities.

6. Summary and Conclusions

An unfortunate by-product of the use of demand systems which do not restrict substitu-

tion elasticities is that theoretical restrictions such as symmetry or homogeneity, which are

automatically met by the simpler forms, are often violated. More difficult to cope with, we

have argued, are those restrictions that involve inequality restrictions. The familiar problem

of curvature restrictions is the best example, but we suggested in this paper that the signs of

elasticities of substitution between goods were also good examples. In order to determine

whether an estimated demand system is entirely consistent with our prior beliefs, at least for

cases such as the present application where substitution relationships seem fairly likely, it is

important to be able to impose or make inferences about inequality restrictions.
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We showed that a Bayesian procedure handled this problem nicely. I uces con-

strained parameter estimates and also an estimate of the probability that the restrictions are

true. For the demands for beef, pork, chicken, and fish in Canada, we found substantial sup-

port for the concavity of the consumer's expenditure function underlying an almost ideal

demand system. By itself, this is an encouraging finding, and lends support to the non-

parametric results we obtained. On the other hand, the sample information is not consistent

with prior beliefs about substitution relationships, since it reveals a very low probability that

these four goods are all substitutes.

Because the necessary integrals over the exact posterior density were quite complicated,

it was necessary to use Monte Carlo integration to estimate parameter values. The p.d.f. of

the exact posterior was known but not recognizable, which made sampling from the exact

posterior difficult. This problem was overcome by the use of importance sampling. As a by-

product of using the multivariate normal to perform the steps involved in importance sam-

pling, we found that there is not a great difference between the exact and conditional posterior

results. This finding may not hold in other instances. In any event, the method of importance

sampling is not difficult to apply to the estimation of inequality-constrained demand systems.

Our findings are conditional not only on the observed data but on the specification of the

almost ideal demand system. All such inferences in demand systems are also conditional on

separability and aggregation assumptions (Chalfant and Alston), but if these are valid, the

results must be interpreted as questioning either the prior belief that all these goods are substi-

tutes, or the functional form for the demand system. Further research with other functional

forms can help to answer this question. In that light, the proc

restrictions we suggest serve n t only as a means to inte

ure we have outlined and

ret the data, but as a way of

A

evaluatih .I 1temative function forms for demand systems.
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