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ABSTRACT

c:In this paper we evaluate under a squared error loss measure the

risk of a two stage pretest estimator (2SPE) for the two sample problem

when there is uncertainty concerning both the equality of the location

vectors and the scale parameters. Analytical proofs are used to compare

the risk performance of the 2SPE with other traditional estimators.

Key Words: Squared Error Loss, Preliminary Test Estimator,

Aitken Estimator, Gauss Markov Estimator, risk function, Wald Test

Statistic.
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and
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Within the context of a two sample linear statistical model, in

this paper we consider the problem of testing linear hypotheses between

vectors of location parameters when there is uncertainty relative to the

equality of the scale parameters. Exact risk properties are derived for

the two stage pretest estimator (2SPE) that combines the least squares

estimator (OLSE), the two stage Aitken estimator (2SAE) and the Gauss

Markov estimator (GME). The risk surface of 2SPE is developed and it is

shown analytically that this procedure is superior to the GME estimator

for all possible combinations of the variance ratio and location

parameter specification errors. Consequently, if one does testing with

an eye toward estimation when using squared error loss as a measure of

estimator performance, we recommend a two stage testing and estimation

procedure, since it is uniformly risk superior to the GME estimator that

estimates each location vector directly from each sample of data without

testing.

The helpful comments and suggestions by Thomas Yancey, Anil Bera,
Judith Clarke and Reuven Gurevic are gratefully acknowledged.
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1. Introduction

Consider the following normal linear statistical model:

a i

+ 
.

Xa + ea  e . -
, .

e F 0 r I
-1' 11 n

. 1
a
22
I
n21

where yi is (nixl), Xi is (nixp), c..ti is (pxl), .!1. is (nixl), cleot (ai

for expository purposes we assume XiXi I_ .
ui

( 1)

The estimation problem for the linear two sample heteroscedastic

model has been examined before by many authors where it was assumed that

the location parameters were unchanged from one sample to the other.

For example, Othani and Toyoda (1980) examined, under a mean squared

error measure, a pretest estimator after a test for heteroscedasticity.

Greenberg (1980) numerically evaluated the sample moments of the same

estimator with nonorthonormal regressors. The small sample properties

of the two stage Aitken estimator (2SAE) are given by Taylor (1977,

1978) for the same model. All these authors made the assumption of

equal location parameters.

Frequently, two samples of economic data may be consistent with

different scale parameters and location vectors. Consequently, in this

paper, in considering the two sample problem, we relax the assumption of

equal location vectors. A familiar test for equality of location

vectors is the Chow (1960) test. Toyoda (1974) investigated the

accuracy of the Chow test under heteroscedasticity, and found that even

with moderate heteroscedasticity the nominal size the test may 1:t2 quite

different than the true size if both samples are small. SchmiC.t f!0-7)
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redid Toyoda's calculations using the exact distribution of the Chow

test under varying degrees of inequality of scale parameters. Hence,

both authors indicated the lack of robustness of the Chow test under

heteroscedasticity. Othani (1987) considered the bias and power of a

two-stage test involving both the location and scale parameters.

Given uncertainty about the magnitude of both the location and

scale parameters, we specify and evaluate the sampling performance of a

two stage pretest estimator (2SPE) that combines the least squares

estimator (OLSE), the two step Aitken estimator (2SAE), and the Gauss

Markov (GME) estimator.

The plan of the paper is as follows: in Section 2 we define the

2SPE and discuss the corresponding estimators and present the risk

characteristics of each. In Section 3, the risk of the 2SPE is

explored conditional on the estimates of the sample variances. Section

4 contains the unconditional risk of the 2SPE, and in Section 5, the

evaluation of the risk performance of the 2SPE is presented and con-

trasted to the other estimators. A summary and the important conclu-

sions are presented in Section 6. The derivations of the theorems

presented in Sections 3 and 4 are given in the Appendices A through E.

2. Estimators and tests

A traditional way of estimating the location parameters is by using

the OLSE:

a*(1)= f(X'
1
y
1 2

)/21 2 

(X:yi X,;3r2) /2
... 1

This estimator, ct*(1) is biased (unless = c..2), and has a risk (or

expected squared error loss)

(2)
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Ell(a*(1) - a )112 --m R(ct*(1)ya) (p/2)(14-T)a
22 

n'n/2 (3)
- -

where t is the variance ratio
' 

a'
11
/a
22' 

and n = a 
1 -a2' 

is a (pxl) vector- - -

of specification errors.

Alternatively, following Taylor (19779 1978) the 2SAE,

a*(2) = leXiy1 (1-0)X?2 (4)

:OX' (1-0)X2 y' 111 2 2

may be used, where 0 = s
22/(s11+s22), and s SSE./(n.-p) is an

unbiased estimator of a..(i,=-4 9 2). Taylor found this procedure efficient

relative to OLSE and GME. The risk properties of this estimator is

different under our version of the model, since in case a
1 

a
2' 

the

2SAE is biased and has an unbounded risk as the specification error,

Tr goes to infinity. Therefore, in our case the risk of the 2SAE is

= 72 } 4. (2022 
k J 221) + I — 20)701T (5)

The derivation in (5) is given in Ozcam (1987). The distribution of 0,

for the nonorthonormal case is derived by Taylor (1978). If the risk of

(5) is numerically integrated with respect to the density of e, it

reduces to the risk of 2SAE when Tr = 0.

In view of the possible inequality of the location and scale

parameters, a third candidate, the GME,

a*(3) =. X'
• 1Y1

X'y
2 2

is minimax under squared error loss, and has a risk

Eila*(3),(1 11 2 = P(1-1-T Y712

In formulating the 2SPE, we make use of the following

Goldfeld and Quandt (GQ).= SSEI/SSE2, Wald (W) = (Xiy i

(6)

(7)

test statistics:

X?.2Y2)/(XY 1

V iy,)/(s
11

-f-s
22
), and Chow (CH) = ()C

I
y
I 

X'y
2 
) 
'(ry1 

-X
/- 9v1 ' 
) (r1-11"0) 

(SSE,-'-SSE,)

where 11=1.1
I
+n
2
.
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3. The Conditional Risk of 2SPE

Within the context of section 2, the two stage pretest estimator (2SPE)

is defined as follows:

(i) Complete separate regressions on each of the two samples, and

test H
01. 

• a = a
22 

by using the Goldfeld and Quandt (GQ), (1965) test11 

statistic which under the null is distributed as F(p,

(ii) If in step (i) we conclude a
11 

= a22 test H02: !I = a 
2 
(versus

-

a 0 a ) by using the Chow (CH) (1960), test statistic, or test H
02 

by-1 -2

using the Wald (W) test statistic if in step (i) we reject the null

hypothesis of equality of variances. The reason for not using the CH

test statistic in (ii) is the well known non-robustness of CH when the

scale parameters are different (Toyoda (1974) and Schmidt (1977)).

Othani and Toyoda (1985) using Monte Carlo sampling experiments has

examined the small sample properties of the Wald, the Lagrange

Multiplier and the Likelihood Ratio tests. They find that the Wald and

the likelihood ratio tests have an upward bias in the size, while the

Lagrange Multiplier test tends to have a downward bias.

Under this specification the two stage pretest estimator (2SPE) is

0 g GQ c
la*(2SPE) = a*(1) if (

0 CH 5 c
2

a*(3) if f 
5 GQ 5 c

I

c2 < CH <

< GQ <
= a*(2) if 1

0 5. W c

= (1*(3) if (
C
3 

< W <

C1
 
< GQ <

3
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or

a*(2SPE) I(GO
[0,]1(CH)

[0,c2ja*(1) 4- I
(GQ)

[0,c0I
(CH)

(c2,00)a*(3)

I(GO(c
1'

0.3)I
(w)

[0,c la*(2) I
(GQ)

(c,c0)I
00

(c
3,c0)0,*(3) (8)3 ,

where c
1' 

c
2 
and c

3 
are critical values of the GQ, CH and W test.

statistics, respectively, and I is a zero-one indicator function. In

other words, this means that a*(2SPE)is comprised of the GME If we

reject Ho, (whatever the outcome of the first test), or it is the OLSE

if we accept both Hol and Ho2, or it is the 2SAE if we reject Hol, but

accept
Ho2°

All cross products vanish since I
[o,a]

I
(a,..) 

= 0 for all aeR.▪ The

2SPE has risk

E1l(a*(2SPE) a)112 = E(I
(GQ)

[0,c1]i(CH)Nc2
111(a*(1) - a) 11 2?

• E(I(GQ)(0,c
I 
ji
(CH)

(c
2'

...)11(a*(3) -

▪ E(I
(GQ)

(c
(w)

(0,c
3
)11(a*(2)

▪ E(I(GQ)(c (w)(c
3'
...)II(a*(3) - a)

In order to evaluate (9) we need the following Theorem.

a)

a)

(9)

Theorem A: For the linear statistical model specified in (1), the

conditional risk of 2SPE (conditioned on sli, s22), given in (8) is

R(a*(2SPE), als
11
, s

22
) = ap E(I

(GO
[0, cl] {a/2 p pr(x2(p+2,6) < c*)2

▪ 7'7r/2 pr(x2(134.4,6) < c)-Try7 pr(x2(p+2(5)<q)}

(13 Pr(X44.296)<c3*).41TWa pr(x2(p+4,6)<c3*)1)

▪ E(I(GQ)(c1,c0)27'7/a((1-0)a11 4- 0027)

pr(x2
(p+2,(5) < c3*))° (10)

For the convenience of the reader, the derivation of 10 is shown in

Appendix A, where c*' c* are some stochastic critical values 3nd .22 3 (p,O)
is a noncentral chi square random variable with p degrees (i1 :r.,2vdom,
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•

and a noncentrality parameter of 6. We now turn to the unconditional

risk of the 2SPE. In the proofs we use the procedure of conditioning on

the estimates of the sample variances.

4. The Unconditional Risk of 2SPE.

The unconditional risk of 2SPE is given in the next theorem, and

its derivation is shown in Appendices B, C, D and E.

Theorem B. For the linear statistical model of (1), the

unconditional risk of 2SPE is

R(a*(2SPE), a)

where

= a 22 (I+T)p 
(1T'IT-a

22
(1+T)p/2)H1 1T'1T/2 H1'- 

2p(a11 H2 - a11H3 + a27113) - 2 
ir"/1722 (14-T)

(a
11 

H2' - a
11
H3' -I- 7

22
H3') + a

22 
(1+T)p(H2

+ 2H4 2H3) + 707T(H2' + 2H4' 2H3')

• 2107T/a
22

(1-4-T)(a
11
H2 - a11H3 + a

22 
H3)

H1 = E(I
(GQ) 

[0,c11 
pr(X2(h,(5) < c2*)]

H2 = E(I
(GO 

[0,c1] 
pr(X2

(h,o) < c3*)I

H3 = E[I
(GO

(c (32) (h,(5)6 Pr(X2 < c3*)}

H4 = EEI
(GQ) 

(c 02 pr(X2(h6) 
< c

3
*)]w) , 

and H! (i=1,2,3,4) are the same expressions where the degrees of

freedoms are 1)+4. These four expectations are derived in Appendices B,

C, D and E, respectively. The risk in (11) depends on the specification

error, on the variance ratio and the critical values used for testing

the equality of the scale and location parameters. As the specification

error Tr grows larger the noncentrality parameter of the chi square

random variable grows, and all eight expectations H., H! (i=1,2,3,4) go

to zero, since the probabilities inside the expectations go co zero.
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Consequently, as 6 goes to infinity, all the terms, except the first

one, go to zero. The remaining term a22(14-0p, is the risk of the GME.

5, Risk Performance of 2SPE

This section contains graphs of the risk of 2SPE and a comparison

of its risk to that of the GME, the 2SAE and the OLSE. The risk

function in Theorem B depends on both T (variance ratio) and IT (location

vector specification error). To present the risk characteristics of the

2SPE with respect to the other estimators, we cut the risk surface in

two planes. Figure 1 shows the risk functions at the origin where, 7r=0,

and Figure 2 displays them along the specification error axis for a

fixed value of the variance ratio (log T =

In Figure 1, we have drawn the relative risks of the estimators, in

logarithm form, with respect to the risk of the generalized least

squares estimator (GLS)
a
22 a

II X'y X'y
2 2a

11 
a
22 

a
11 

a
22

when the scale parameters are assumed known. The GLS estimator is more

efficient at the origin than the other four estimators because it uses

the unknown population variances. However, it is biased since it

combines both samples and consequently has unbounded risk as the

specification error Tr grows.

The reason for considering the relative risks is the desire to be

able to reproduce the risk of Taylor's 2SAE within our model. The risk

of the GLS serves as the unit of measurement in Figure 1. Taylor works

with nonorthonormal regressors and uses a transformation which renders

the risk of the Gauss Markov estimator to be one. Here, the relative

risk of generalized least squares (relative to itseif s 'so one.

Also, note that the Gauss Markov estimator for Taylor's model _s he
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generalized least squares which is a linear combination of the OLS

estimators (given above), whereas, in the case of location vectors that

are possibly different, it is just the OLS estimators for each sample.

In Figure 1, the relative risk of the feasible 2SAE is highest

around T = 1 (or log T = 0)9 i.e., when 
all(122° 

As found by Taylor= 

the risk converges to zero as the variances depart from equality. The

2SAE performs quite well relative to the GME, especially when the

variances differ. However, under our specification of the model, namely

under possible unequal location coefficients between samples, the

estimator becomes biased and has an unbounded risk as the location

specification error grows.

The OLS is also biased. The relative risk of this estimator is

zero when the variances are equal, but becomes unbounded as log T

differs from zero. The relative risk of GME is highest at the origin

for all values of Ty because the estimator recognizes the possibility

that a
1 

0 0 and applies the least squares procedure to each sample

separately. Thus the GME remains in the class of unbiased estimators.

Finally, the relative risk of the 2SPE is higher than the relative risk

of the 2SAE, and when log T < 0, its risk lies between the relative

risks of OLS and GM. When log T > 0 the risk function for the 2SPE

crosses the risk functions of the OLS and GM estimators. Since the

pretest estimator is actually some combination of three estimators, as

one would expect, its relative risk is located between their relative

risks. The relative risk of the 2SPE is higher on the right of log T

0 than it is on the left. This results because we used a one-sided

critical region for GQ test and, when indeed a
11 

< u„, the power of the

test is low.
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The sizes of both GQ and the CH tests are set at .05. However,

since the exact distribution of the W is not known, we used its

asymtotic critical value.

The main result of this paper is contained in Figure 2. Not only

does the 2SPE perform better than GM at the origin, but it also performs

better along the specification errror parameter space. As IT I 7 grows,

6=Try7T/2a goes to infinity, and all eight expectations, (Hi, Hi, i = 1,

7, 3, 4) go to zero, since the cumulative probabilities for the

noncentral chi square random variables vanish at different rates as the

noncentrality parameter goes to infinity. Therefore, the risk in

Theorem B converges to the risk of GME staying below it over the whole

parameter space. That is, R(a*(2SPE),a) 6 R(a,*(GME),a) for all 717
ez,

that were evaluated. Consequently, the uniform superiority of 2SPE over

GME for all combinations of (T, TOT) is conjectured. Consequently by

going outside the class of linear, unbiased estimators, we have shown a

procedure to uniformly improve on the Gauss Markov estimator.

Of the three estimators that comprise the 2SPE, only the GME is

unbiased. Consequently both the 2SAE and the OLSE have unbounded risks

as the specification error grows. Therefore, the risk advantages of the

2SAE and the OLSE over the 2SPE at the origin disappear as the location

parameter structure of the first sample differs more and more from that

of the second sample.

6. Summary and Conclusion

In this paper, the exact risk properties of the 2SPE, that is

comprised of the ordinary least squares, the Gauss Markov, and the two

stage Aitken estimators, is evaluated . Under squared error 1,:ss, fo:

the possibly heteroscedastic two sample model, where the 1.,caci.)n
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parameters are not necessarily the same, we have shown that the two

stage testing and estimation procedure is uniformly superior to GME.

Therefore, the 2SPE is recommended over the location and scale parameter

spaces.

The OLS and the 2SAE estimators have risk advantages over the GME

at the origin. However, both the OLS and the 25AE estimators are

biased, and have unbounded risks. Consequently, as the specification

error grows their risk functions cross the GME risk function.

Given this base it would be interesting to replace the Wald test

statistic with the Lagrange Multiplier or the Likelihood ratio test

statistics and to compare the risks of the two-stage pretest estimators

that result. A non-diagonal error variance-covariance matrix often

exists in practice. Results for the cortelated samples case are

discussed in Oicam (1987). Finally, it should be noted that the

assumption of orthonormal regressors can be eliminated, and the risk

properties of the 2SPE can be explored using the techniques presented.
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APPENDIX A

To start the risk evaluation of 2SPE, we take the four expectations

in (9) two at a time (define them as El and E2). Conditioning on the

estimated variances s
11 

and s
22 

the first two give

El = E(I
(GQ)

[0,c1jE(I
(CH)

[0,c,]11
2
Is11,s22)

-1- E(I
(GQ)

[0,c0E(I
(CH)

(c2,00)II(a*(3) - 01121

s
11
,s
22
)) = E(I

(GQ)
[0, cllE(I

(CH)
• (0,c1)11

(a*(3) VRa*(3)72 Oil
2

I sn,s22))

Since a*(1)

+ E(I(GQ)(0, ci1E(I(CH)(c2,03)11(a*(3) - a) 11 21

s
11' 

s
22
)) (13)

= a*(3) VRa*(3)/2, where R = (I - I ) is a (p x 2p)
P P

restriction matrix. Dropping the outside expectations and the term

I
(GO

momentarily for convenience, and expanding the first term in

(13) we obtain

(
(CH)El = arRiR all a22)P Ea [0,c21(a*(3)

a*(3)) 1/2 E(I(CH)[0,c2p*(3)'111Ra*(3)) (14)

The CH test statistic for our orthonormal heteroscedastic model is

CH = (n-2p)(XI'Y1 X2tY2)1(X1fYI X2'y2)' (X1'Y1 - X
2

1Y)/2 p s

= (n-2p/2 p s)(Ra*(3))(Ru*(3)) (15)

where s=(111--p) 
sll (n2-P)s22' 

and n=n1-i-n2. Define w = Ra*(3)

X
2
"I
2 

and a = a Then w/Va is distributed as N(7/Va, I ).11 a22°

Inserting the value of the CH statistic in (15) we obtain

El = ap - a/2 E(I
(www/a)

(0,c2*1
w'w/a)

la Tr' E(IWw/a) w/isc) (16)[0,c2*1

where c
2
* = c

2
2ps/((n-2p) a). Now using the theorems in Judge and Bock

(1978, p. 321), we obtain

c,'1)El = c p -(a/2) p pr (x2p4.2, 6 < c2*) 7'77/2 prW-- <
ON
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717 pr(X2p1.2, 6 < 02*) (17)

where x2(ho6) is a noncentral chi squared random variable with h degrees

of freedom and the noncentrality parameter 6 = 7'71-/20. This completes

the evaluation of the conditional expectation of the first two terms in

(9).

We now turn to the derivation of the conditional expectation of the

last two terms in (9).

E2 = E(I
(GQ)

11 (a*(2) -I
(100

,co) [0,c
3
]

E(I
(GO 1(W)

II (a*(2)(c
l'

co) (c
3' 

co)

a p - 2E(I
(cl'w) (c

1, 
co)

E(I(W) (a*(3) - a)' M a*(3)I S
11' 

S
22
))(0,c

3
)

+ ECI(GQ) E(I(W) a*(3)'M'Ma*(3)(c
1, 

co) [0,c
3
]

...
1 S

11' 
S
22
))

(GO

a) 11 2) 4'

a)112)

(18)

In (18), the second equality follows because a*(2) = a*(3) M

i.e., 2SAE can be written in terms of GM. M = (1-e)1

01

where R'R is a (2px2p) matrix. Again we drop the outside expectations

and the term I
(GQ)

momentarily for simplicity, and we get

E2 = ap 2E(I04)
[0,c3](a*(3) a)' EQ'QE

(1-0)1 E Q'QZ RIRE Q'QE
PK

pi
(W)a*(3)) E(I

[0, c

In (19),

E Q'Q E (1-021

Q'Q a*(3))

Q'QER'R
3]

P021
E Q'Q R'R

F -Jai Li/alp /a
22
//aI

p

= la,2//aip 
ic

11
//at

p
,is a (2px2p)

(19)

symmetric orthogonal matrix that diagonalizes R'R 2- (2px2p). Thus
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Q El R'R Q' where 0 I
II P ia

22p

is a (2px2p)

symmetric matrix. Inserting these values in (19), we obtain (define m

a*(3) and Q E-1 a = u) 
r -
II

E2 = ap - 2aE (I(W) (m - u)' A P m) +[0,c3] I

az E(I
[0,c3]

where A--.. Q
P 6

rip

0.
Pth

0

P:

m) (20)

Q' and B = Q E-1 r(1-6)2
Pe2IP! PL ., L

1m - ru! 1Partition m and u into two (pxl) vectors, m = ! 1 and u =, and Au
2: m2!

and B into four submatrices of dimensions (pxp) each, i.e., A = 
A
1 

A
2

- 
A
3 

A
4B

1 
B
2B = 

B B Note that m is distributed as Normal (u,
2p
), since2 

QE-10 E- Q' = Where is the variance-covariancem "(3) 7 ° 4'
(')

matrix of (°). (Also note that u
1 
= 1r/470) Now using these partitioned

values, (20) becomes

E2 = ap 2aE(I
(W)

[0,c3 
(m

I
'm

1 
A
1 
+ 

m2'm1 
A
2 
- u

1
'

M
1 

A
l 
- u

2
' m

1
A
2
))  2

E(I
(4) 

(
MI 

m
1 

B
1
)) (21)

The evaluation of .the risk function now requires a reformulation of the

Wald test statistic (W), which appears in the argument of the indicator

functions.

W = (Ra*(3))' Ra*(3)/d = a*(3)' Q'Q E l R'R

Q'Q E-1 a*(3)/d = a
P 0 'mid = m1 '1111Gid

PIWe can now place this new equivalent value of (W) in the argument of the

Indicator functions with c
3
* = c

3
d/a. (d=s

LI
+s

22
)

(22)
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E2=
(m

I
'm

I
)

ap - 2 aE(I
(0,c3*](m'I'mlAl m2'm

1
A2

(mi'm )
- u

1
'm

1
A
1 u21m1A2)) °2E(I

m
I
'm

I
B
I
) (23)

Using the independence of m
1 
and m

2' 
we see that the second term in the

first bracket in (23) cancels the fourth term. Also straightforward

matrix multiplication gives AI = ((1-03)a11 
ea22/a)i 

and B1 = (1+202p

26/a)I , hence

E2 = op + (-2 
((1-0)a11 0a22) 

+ a(1+202 2e))1

(mliml)E(I 
[0,c31c](mItml)) 

+ 2 u
1
'(1-0)a11

 
+ 0022)

(rem )1 1
E(I m (24)(0, c3*]-I'

Referring to the theorems in Judge and Bock (1978, p. 321), we obtain

the final form of the evaluation of the inside expectations in (9).

E2 = op +. (-2 
((1-8)alI e022) (5(1+282 

20)

{p pr(x2p+2,6 < c3*) + n'IT/a pr(x2p+4, 6 < c3*)1

+ 2 r'7T/a ((1-e)(1/1 0a22) Pr(X2p4.2, < c3*) 
(25)

Putting El in (17) and E2 in (25) together, we finish the risk eval-

uation of the 2SPE for the inside expectations. Hence the conditional

risk of 2SPE (conditioned on 
$II 

and s
22
) is

a p a/2p pr(X2(p+2, 6)R(a*(2SPE), a l s11's22) =
< c

3
*)

▪ 'n/2 pr(X2(0.4,6) < c3*)

• 7'7r pr(x2(p+2,6) < c3*)

▪ (-2 ((l-e)all 4- 0022)

+ (3.0+202-201[13 Pr(X2(p+2,6) < c3*)
+ 
7rWapr(X2(p+405) < c3*)1

+ 2 7'r/a ((1-0)01/

< ci*)▪ ea,,,,) pr( 
(p+2,5) .25)
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and the unconditional risk, recovering the outside expectations that we

dropped earlier, is

R(a*(2SPE), a)--..- a

+

(GQ)
p-E(I [0,c11

(a/2 p Pr(X2(0-29
IT9112 pr(X2(p+405) < c2*)

pr(X2(0.205) < c2*)1 + E(I(GQ)
(-2((1-e)a

II 
+ ea22) + a(1+202-20))

(1) Pr(X2(0.2,6)< c3*) + Tr'lla pr(X2(044,6) <

+ Ea
GO

(ci, .0) 2 TryTria ((1-6)(711 + 
ea2

2)

<c*
26)

(c., 0.)
i

pr(x2(0.29 6) < c3*)) (27)

This completes the derivation of the conditional risk function of 2SPE.

The next appendix gives the unconditional risk of the 2SPE.
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APPENDIX B

To free the risk in (27) from the expectation terms, we distinguish

4 types of expectations:

i) HI = Eli
(GQ)

[0,c1] Pr(X2(h,(5) 
< c

2'9]

ii) H2 = E[I 2
(GQ)

[0,c1i Pr(x(h,cs) 
< c *)13

iii) H3 = Eli
(GQ)

(c1' co) ° pr(X2(h,6) < c3'91

iv) H4 = E[I
(GQ)

fc, 
.1 82 pr( X2

1 
(h,6) < c3*)]

1
for h =(p+2, p+4.)

We present the derivation of (i) here, and leave the derivations of

(ii), (iii), and (iv) to the Appendixes C, D, and E, since the deriva—

tions are more or less similar.

The derivation of (i):

We follow procedures similar to the ones outlined in a paper by

Lauer and Han (1972) which derives formulas for the computation of the

joint distribution of certain ratios of x2 random variables.

Define GQ = Yl = s11/s22 = X1/gX2

Y
2 
= s

11 
V
1 

s
22 

V
2 
= a

11
X
1 

4- a
22 

X
2

where g = V
1
/TV

2' 
V
i 
= n —p (1=1,2) and X

1 
and X

2 
are two independent

chi square random variables. Also write the stochastic critical value

c* as the product of the random component and the fixed component, i.e.,2

= (c22pY2)/((n-2p)a) = rY2 where r = (c22p)/((n-2p)a). The H1

becomes

c
HI = I fif(Y

1
, Y

2
) pr(x2(hos)

0 0
< r Y

2
) dY

1 
dY

2 (28)

where f(.) is the joint distribution of ratios of two independent chi

square random variates. We use the following transformation with the

Jacobian

z
l 
= X

I 
and z

2 
= a

11
X
1 

-4-
22

X
2 
= Y

2 (20)
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Then H1 becomes

HI / 1/022 Y(zI' z2 allz1/(722)"(X2(h,6)‹ r z2)
dzi dz2 (30)Area 

where y(.) is the joint distribution of two independent chi square

variates, Area = {z1,z2 > 0, 
z1(c722 clg cc11) 

< cig z2, or z1 < 131 z2

with b
I 
=or

cl-e- -/C- 22 clgall)/* 
Writing out the joint density y(.)

b
1
z
2 q

2
+1 q

1H1 = f f k*/ 022 z
1 
(z
2
-0

11
z
I
)

0 0

q,

-exP(-i(z1+ (z2-c1Iz1/(322)))

pr(x2hos < r z2) dzi dz2 (31)
(v

I
+v)

2/2 -Iwhere qi = v./2 - I, k* = (r(v1/2) r(v /2) 2 ) , for i = 1, 2.

allz2 (722
Assume v. is an even integer, then (z2 

/ 
)(12can be expanded as

a binomial since q2 is an integer when v. is even. Take
a22'

otherwise the argument of the exponential function is zero in (31), and

integrate z
1 
out directly.

co b
1
z
2 (1

(12
+1 2 

c12-i q
1
+q2+iHI = f f

k*/ 022 (120 0 i=0

z2
exp(-z/(1-.0/2) exp 

(-z2/2a22)

r z
2
) dz

I 
dz
2

Make the following transformation, m
1 
= b

2
z
1 

and m
2 
= z

2 
where b

2 
=

(1-.0/2. Then

b1b
2
m
2 

q
2
+1 q

2 
(12-i cl1+q7-i+1

HI = f f k*/
22 E c12 (-(711) 

(1/b7)
0 0 i=0

(11÷(12-iexp(-m2/2a72) ml

(32)

exp(-mi)pr(x2(hos)‹ r m,) dm i dm, (33)

by successive integration by parts
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+q2 q2-i 
q
1
+q

2
-i+1

111 = / k*/ 022 E c12 (-all) 
(1/b

2
)

0 i=0

[(ci1i-q2—i)! in 
exP(-m2/2a22)

((q1412—i) !/(q1+q2—i—j)!)

c11412—i
m2

q +q

- 
IE 2

j=0

c11+
(b1b2) 

exp(-m2 (1/2°22+ b
1
b2))]

pr(x2(h,6)< r m2
) dm

I 
dm
2

We can write the cumulative probability of a noncentral )(z(h,6)

in terms of the probabilities of a poisson random variable and the

-.4(h+2k) 'cumulative probability of a central Y where k follows a poisson

(34)

distribution, i.e.,
••

00m2 9
-pr(x2

ChM 
< rm

2
) = E exp(-6) d

k
/10 u()dX-

k=0 0

variable

(35)

Where u(.) is the density of a central chi square with h+2k degrees of

freedom. Furthermore, using the expression in Abromowitz and Stegun

(1972, p. 941, 26.4.21), for the cumulative probability of a central x2

variable, assuming h is even

Pr(x2h,6 < rm2 )
co h/2+k-1

= E exp(-6)
k
/k! (1 - E

k=0 y=0

k h/241(-1
exp(-m2r/2)(mW2r//y!) = (1 E exp(-6)6 /k! E

k=0 y=0

exp(-m?r/2)(m,r/2)'/y!) (36)

Inserting this value in (34), carrying out the multiplication inside the

integral and then integrating to gamma functions we obtain the final

:'orm cF HI.
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+1
(12 q2c12-i q

1
+12

-i4-1
H1 k*/a

22 E '2 (-all) (1/
b2
)

i=0
q
I
41
2
-i

((ci1+q2—i)! r(i+1)/(1/2022)1+1 E
j=0

((c11412—th

i(c141
2
-i-j)!) (b

I
b
2
) 1 c12 (r(c1I+cl2-Pa1)/

h/24-k-1
(1/2(722+b1b2)q1+c12-J+1)Z exp(-06

k
/k! E

k=0 y=0

(q1-112-i)!/y! (r/2)Y r(1.417+1)/(r/2+
1/2022)i+Y+1

co
k

E d exp(-0/k! E
k=0 j=0

h/24-k-1
(I)

1
b
2
)

41 42

y=0

(I/2a
22

+I)
1
b
2
+r/2)(114-(12--147+11

(q1412-1)11(q1+c12-i-j)!

(r/2)Y/y! (r(q/+q2-j+y+1)/

(37)

This completes the evaluation of Hl. The derivation of 112, H3 and H4

are shown in Appendices C, D and E, respectively.

Substituting these values in (27), we obtain the unconditional risk

of 2SPE (note that(14.-r)a ).a --a all a22 22

R(a*(2SPE), a) = a
22 

(14-0 p (ir'n - a
22 

(14-0p/2)111 17/2

HI° - 2 p(all 112 - all 113 
022 H3) - 2

w'ff/a
22
(14-0 (a

11 
112' - a

11 
H3 .4- a

22 
H3') 022

(14-T) p (H2 2 114 - 2 113) Tr 27 (112' 2 114'

2 1r'1Tl0
22 

(14-T) (a
11 

112 - a
11 

113
22 

H3)

- 2 H3')

(38)

where the Hi are the evaluated values of the expectations with x2 random

variables with p+2 degrees of freedom and Hi' are the values of

e:wectations with x2 variables with p+4 degrees of freedom. (i=1,2,2,:,)
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APPENDIX C

In this appendix we derive the expectation

132 = E(I(CQ)
(cc.)Pr(X2(h,6) < c3*))

Define Y
1 
= s

11 /s22 
= 

X1 - 
/2X

2 
= (GQ),

Y
2 
= s

11 
s
22 

= a
11
/n

I
-p X

1 
a
22
in
2
-p X

2

with g=v1/v2, 1=1,2 and v 1/n.-p, where Xi are independent x2 random

variables. Consider the following transformation

z
1 
= X

1'

z
2 
= v

1 
X
1 

4- v
2 
X
2

Also write c* = = c
3
(s

11 
s
22
)/a = r z2 

(a stochastic component z2 
and

3

a fixed component r = c3/a). Then H2 becomes

H2 = I f 1/v2 h(zi, (z2-v1z1)/v2) Pr(X2(h,c5)
Area (39)

< r z2)dz1 dz2

where Area = (zz
2 

z
1
,z
2 

> 0, 
z1(v2 

4- c
1 
g v

1
) > c

1 
g z

2
, z

I 
> b

1 
z
2

with b
1 

= c
1
gi(v

2 
cigvi), z2 > z1 v11 and h(°) is the joint

distribution of two independent x2 variates. Define qi = n.-p/2

(assume qi is integer as before i=1,2). Then writing the h(v) density

out and expanding the ((z2-v1z1 )/v2 
)
(12 

term, we have

co z2/vi .
q2+1 q? q2 q2-1 ql+q2-i

H2 = I f k*/ v2 (-v ) z
1 1

0 b
1
z
2 

i=0 i

z2 exp(-z2/2v2) exp(-z1(1-1.((n2-p)/(ni-p))/2)

Pr(x2(h,6) < r z
2
) dz

I 
dz
2

Making the change of variable, m1 
= b

2
z
1 
and m

2

(1-T(a2-p)/(n1-p))/2), we have

= where h 2 =

(40)
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b m /v 
q
1
+.(12

-1.1-1
(12+1 C19

H2 .3 fr2 
I E (I

2 
(-v

1
)c12-i(lib2

)k*/ v2
0

1
b 2m
2 

i=0

exp(-m2/2v2) ml exp(-m1
) pr(x2h,6

By successive integration by parts,

< r m2) dm1 
dm
2 
(41)

q2+1 q2 q (12
_4. a +a -i4.1

H2 = f k*/ v2 
E 2 (-v 1) (1/b

2
)
' m

2
1 '2

0 i=0 i

q 1+(1
2

exp(-m2/2v2) ((q11.12-ip/(q1412-i_ym

y=0

(11412-i-Y
f exp(-b1b2m2)(b1b2m2) exp(-b2m2/v1)

(b2m2/v1)
(11412-1-Y

}

pr(X2(11,6) < r m2) dm2
(42)

If we write the cumulative probablity of X2(h,d) 
in terms of Poisson

probabilities, use the formula in (36) from A
bromowitz and Stegun, carry

out multiplication inside the integral, and also pass the infinite.

integral through the summations, we obtain

+1 q1im
q2

_4_1
(12 q2 c17-1

H2 k*/ v2 E (12 
(v1) (1/b2

)

i=0 1

a +a -i 

{
'2  ((bib,)

,/

y=0

co q1+q2- Y - 
41 4, Y

f exp(-m2(1/2v+ID I
b
2
)) m2 

.dm2
 

(b 2/v 1)

0

co 
n
-ti 

,n 
t

i exp(-m,(1/2v2+1)7/v 1))m2 dm,} 4- E exp(-d)k /k! 2

0 k=0 y=0
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h/2+k-1 . 
c11412-i-Y

(c11."2-i)1/(q1+c12-i-y)!) E (r/2)3/j! -(1)1132)j=0

00 

T1+q2-3741jI m2 exp(-m2(r/2+bb
2
+1/2v

2
)) dm2 

+ (b
2
/v

1
)
q1+(12-i-y

0

00 

ql+c12-Y+i
I m

2 exp(-m
2
(r/2+b

2
iv

1
+1/2v

2
)) dmi )

0

Finally integrating the gamma functions, we obtain

q q
1
+q

2H2 = k*/v
q
2
4-1

q2 a
'2 (-v1)2 (1/b

2
)2

i=0

q
1
+ci
2
-i

E ((ql+c12-i)!/(q1+q?-i-Y)1) r(c11."2-37+1)y=0

{(b1b2)
cil+q2-37+1 (11."12+1-Y 

- 
2 vl 

q
1
41

2
-i-y

V2+ 1 2

(1/2v2 
+ b2/v1)

(11+c12-Y+1
} +6 exp(-6)/k!

qlc12-11

k=0 y=0

h/2+k-1 
c1141(cl1tc12-i)!/(q 14-q2-i-y)! E (r/2) /j! C

j=0

(r/2+1302+1/2v2))
c11412-”j+1 

q1+q2-1-y
((b2/v1)/

c11412+i-Y+1(r/2+b2/v1+1/2v2)) }

This completes the evaluation of H2.

2

(43)

(44)
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APPENDIX

In this Appendix, we derive the expectation H3. The change of

variables is AS in Appendix C. The difference between H3 from H2 is the
S22

presence of 0-   in the expectation. This term increases the

sll+s22

powers of 
z2-v1z1 

and z
2 

in (40) by one, since 6 is also z
2
-v

1
z
1
/z
2
.

Allowing for this difference, we obtain

cl3 z2v1
H3 = I I

0 b
1
z
2

k*/v,
ci2+1 c12.1 q

2
+.1 

-
q2+1-i q1"2+1-i

(v1) 
1=0

i-1
z2 exp(-z2/2v2) exp(-z1/2(1-T(n2-p/n1-p)))

Pr(X2(h,d) c3*) dz
1 
dz
2 

(45)

Making the change of variables mi = b2z1, m2 = z
2 

and using successive

integration by parts as before, we have

H3 . f 
k*iv (12+1 

(4,+1

0 
2 q2+1 (- 

)q24.1-i

1=0 i 
vl (1/b

2
)
cil+c12+2i- 

ql+q2+1-i ql+q
{(bi

b) 

y=0

m2
c11412-Y .q

1
+q2+1-i-Yexp(-m2(1/2v24-b 1b2)) (b

2
/v

1
)

'1a2 
+ -v
' '

m
2 

exp(-m2(1/2v2-1-b2/v1)) } rl E exp
k=0

h/2+1(-1
E exp(-rm1/2) (rm /2)j/iv] dm2 -° 2j=0

(46)

In the following we pass the infinite integral through the summations

indexed by y as long as 1=0, y71q 1+124-10 In other words For i=0 the last

term in the summation indexed by y requires a different integration

techniquu given La Ahrtmowitz Ltud Then
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(11412
+2-i+1 q +1 ,

113 = k*/v2
(12 2E (12+1 )q2+1-1 (1/b

2
)11=0 i

q + 1-i
1 (12+

(q1+q2+1-i)!/(q1412-1-Y+1)1 r(q 1412+1-Y)y=0(*)

ql+q2+1-i-57 ql+q2+1-17( ((b
1
b
2
) /(1/2v

2
+b

1b2)

(4
1
+q
21

+ci4-1-y
-(b

2
v
1
) /(1/2v

2
+b
2
v
1
) 1 + of exp(-6)dk/k!

h/2+k-1
1+q2E (r/2)3/j! r(oci1+q2+14-j-Y) f(b2/171)

j=0(*)

(r/2+b /v +1/2v )
c11412+1+.1-Y

(b b )
1
+ci
2
+1-i-y

2 1 2 1 2
c11+ +1+j-y

(r/2+b
1
b
2
+1/2v

2
) }

(47)°wawa*,

In (47) an (*) under the summation means that we pick up all the terms

except y=q1+q2+1 when i=0. Now to the expression given in (47) we have

to add the value of 1-13 when y=q1+q2+1 for i=0. Using the integral value

in Abramowitz and Stegun we have
1

q2+1 c11412+21-13 = + k*/v
2 (-v1) 

(1/b
2
)

c124-1
„

• • • 0 • 0

(sq 1+q2+1)! log((b2/v1+1/2v2)/(b1b2+1/2v2)) +

CO

D exp(-6) E exp(-0 6k/k! f D exp(-6)
k=1

h/2+k-1
E (r/2)3/j!. f r(j)/(r/2+13,/v 4-1/2vjj

j=2
r(j)/(r/2-0)

1
b
2
+1/2v2)i }}1

Note that f (exp(-ax) exp(-bx))/x dy. = log(b/a).
0

(48)
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Where D log((r/2+b1b24-1/2v2)/(r/24-b2/v1+1/2v2) r/2 {(1/(r/24.b2/v1

4.1/2v0) (//(r/241)02+1/2v2))1. Putting (47) and (48) together we

•(:)tain
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•

a

APPENDIX E

In this appendix we examine the last expectation H4 needed for the

evaluation of the 2SPE. Transformation is the same as in Appendix C.

The difb2rence between E4 from H3 is that e s
/2

/ 
s11"22

is now

squared. Remembering that e =z
2 

i
1
/z
2' 

and allowing for this

differenct, H4 can be written now as

z2v1
q1+2-i q

1
+q
2
+2-i

Ft4 f k*/y2
'If' c12-;2 (1212 

(-v
1
)

b
1
z
2 

i=0

i-2
z
2 

exp(-z 
1 
/2(1-1.((n

2 -p/n1 • 
-p)))

exp(-z2/2v2) pr(x2(h,6) < c
3
*) dz

1 
dz, (49)

Making tite change of variable m i. = b
2
z m z, as before, and using

successive integration by parts

q1
T-14 f k*/v

2
(12+1 q2+2 

+2-1
q2+2 cil+c12+3-i

(-v1) h. 
(1/b )9i=0

q
1 
+q +2-i q

1
+q
2
+2-i-y

E2
(q1412+2-ini(c114-q2+2-i-Y)! {(131132)y=0

cl1412 
q
1
+ci

2
+2-1-y

m
2 

exp(-m2(1/2v2+b1b2)) (b2/v1)

(41412-Y
exp(-m2(1/2v2+b2/v1)) }Pr(X2(h,t5)n2

< r m7) dm, (50)

Next we will pass the infinite integral through the summations and

integrate the gamma functions as long as 1=0, iq1+q2+1, and tq1-f-q,)+2,

and i=1, liq 1+q2+1. Put differently, for 1=0 the last two terms, and for

i=1 the vely last term in the summations indexed by I require different

integration aleclwds that we will write separately. Consequently,

if4 =
q -4- 1

.*/v,

q,+2
(1,+2

•..
t=0

q,+2-i
(-v i) Wh:
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- c11412+2-i
t E 

((q1412+2-i)1/(q1+(12+2-i-Y)E)y=0(*)

+2iY q1f fr(q1419+1-1) (11/172)c1q2--
/(1/2v2 

+b1b2)

q
1
+q2+2-i-Y

q
l
+q
2
+1y

(b2/v1) /(1/2v2+132
/v

1
)

— 

6 h/2+k-1
E exp(-.3) k /k! E (r/2)3/j!

k=0 jO

q
1
+q
2
+2-1-y

r(q1+q2+141-y) ((b2/17 1)

c/14-(174-14-j— 

(b b )

y q

1 
2+1 

—i—y
(r/2+b2/v1+1/2v2)

1 2

(11."12+1+i-Y(r/2+b
1
b
2
+1/2v

2
) } (51)

To the expression in (51) we have to add the value of H4 when i=0

y=g1+q2+1 and y=q1+q2+2, and when i=1 y=q 1+q2+1 (these terms of the sums

indexed by y are left out in (51). This is indicated by (*) in (51)).

Define

dl = (b1b2 + 1/2v2) d3 = (1,02 + 1/2v2 + r/2)

d2 = (b2/v1 + 1/2v
2
) d4 = (b2/v1 + 1/2v

2 
+ r/2) (52)

Then H4 becomes

000000 + k*/v
2

q
2
+1q

2
+1

q1."12+2(v) (1/1)2) 1

(q1+q2+2)! :.(b2/v1-b 1b2) + 1/2v,, log (dl/d2)

+ exp(-6) F + E exp(-06k/k! ( exp(-6) F
k=1

h/2+k-1
(r/2)3/j! ((b2/v 1 r(J)/(d4)3) (b t b2 ' )r(i)/(n)j)j=2
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q +1 q
2
+1

(r0-1)/d4J-1 _ ro...1)/d3j-1} k*iv 2 ( +2

2 (12 ) (-v1)
ql+q2+2

(1/b
2
) (q1+q2+1)! log(d2/d1) + D exp(-6)

Co h/2+k-1
+ E exp(-4S)6k/k! f D exp(-6) + E (r/2)3/j!

k=1 j=2

(r(j)/d43 rovd33) (53)

Where D is given in Appendix D, and

F = r/2 log(d3/d4) + b2 riv, 2 d4 1,02 r/2 d3

+ d3 d4 + (r/2 + 1/2v2) log (d4/d3) (54)

In (53) we used the following integral value
Co

f ( exp(-ax) + a x exp(-ax) + exp(-bx) b x exp(-bx))
0

exp(-cx)/x2 dx

=b-a+clog (a+c/b+c) (55)

In (55), integrate the first and the third terms by parts and then

collect terms and finally use the integral value given in Abromowitz and

Stegun (as in footnote 2). Inserting H1, H2, H3, and H4 in the

expression (38) for the risk of 2SPE we obtain the analytical

unconditional risk of 2SPE as a function of T and n.
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