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ABSTRACT

el,The widely used mean-variance approach to decisions under uncertainty
requires estimates of the parameters of the joint distribution of returns.

When optimal behavior is determined using estimates, rather than the true

values, the decision is a random variable.

We examine the usefulness of mean-variance analysis by deriving the bias

and variance-covariance matrix for the decision vector. The latter shows that

decisions based on estimated parameters can have a large variance around the

true optimum. The results show that optimal decisions can differ substan-

tially from those based on mean-variance analysis.Ill



THE MEAN AND VARIANCE OF THE MEAN-VARIANCE DECISION RULE

1. INTRODUCTION

Since Markowitz examined the portfolio diversification problem using mean-

variance analysis, this method has been used extensively to model choices from
investment alternatives with uncertain returns. In addition, the technique

has been applied to a wide variety of economic decisions--examples include
hedging (Berck (1981)); adoption of new technologies (Just and Zilberman

(1983)); corporate financial decisions (Rubinstein (1973)); the demand for

money (Tobin (1958)); and the allocation of fixed assets to uncertain produc-
tion processes, particularly agricultural land allocation (Freund (1950).

The mean-variance approach is consistent with the widely accepted von

Neumann-Morgenstern expected utility paradigm when either utility is quadratic

or utility is negative exponential and the returns from the relevant alterna-

tives are jointly normally distributed.' Since quadratic utility implies

increasing absolute risk aversion, it is the latter which usually serves as

the justification for mean-variance analysis. However, the method requires a
vector of means and an associated variance-covariance matrix for the joint

distribution of returns from the uncertain prospects being considered; these
are almost always unknown to the decision-maker (Markowitz (1952), p. 91).

Thus, the unknown parameters must be estimated using sample or other informa-
tion, making the optimal decision vector random. Commonly, sample estimates

replace population parameters and allocations are based on the resulting esti-
mate of optimal behavior. For obvious reasons, this approach has become known

as the parameter certainty equivalent (PCE) (e.g., Bawa, Brown, and Klein
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(1979)) or "plug-in" approach (Pope and Ziemer (1984)). This estimation pro-

cedure leads to an additional source of uncertainty, estimation risk, that

itself is the subject of a considerable body of literature.

In the context of the portfolio choice problem, this literature includes

examinations of a broad range of problems and is well summarized in Bawa,

Brown, and.Klein (1979). Discussions of estimation risk in the financial

economics literature have focused o Monte Carlo simulations of its importance

for individual investors (Frankfurter, Phillips, and Seagle (1971), Brown

(1979)); for financial market equilibrium (Bawa and Brown (1979), Alexander

and Resnick (1985)); and on the derivation of optimal (Bayesian) estimators in

the presence of estimation risk (Klein and Bawa (1979a, b)). Despite this

attention to the problem, no one has established the sampling properties of

the widely-used mean-variance estimators of optimal behavior.

In this paper we examine the implications of estimation risk for the use-

fulness of mean-variance analysis by exploring the sampling properties of the

mean-variance decision vector. In doing so, we consider a number of factors

important to determining optimal behavior and drawing inferences from mean

variance analysis. We show first that the decision vector is a biased but

consistent estimator of the choices which maximize expected utility, given

knowledge of the unknown parameters. An unbiased decision vector is easily

obtained from this result. We then derive a variance-covariance matrix for

both decision vectors, finding that there may be an unacceptably large amount

of variation in estimates of the optimal decision. We explore the factors

that determine the reliability of such estimates of expected utility maximiz-

ing behavior and then derive the ex ante expected utility from using such

estimators. From the derivations, it is clear that the bias and variance in

an optimal decision depend on the risk attitudes of the decision-maker, the



number of prospects, the amount of historical information available, the

underlying distribution, and the total amount of fixed resources to be allo-

cated. Finally, we examine how one might use these results to move from a

point estimate of optimal behavior toward interval estimation.

The paper proceeds as follows. The next section outlines the portfolio

choice problem and a particular case which leads to the widely used linear (in

mean and variance) objective function. We use the expected utility moment-

generating function approach suggested by Freund (1956) and Hammond (1974) and

reformulate the problem to recognize explicitly the estimation of unknown

parameters which is involved. In the third section, we derive the mean, bias,

and variance of the parameter certainty equivalent estimator of the optimal

decision vector and suggest an unbiased estimator. We also discuss the fac-

tors that determine the magnitude of bias and variance in this section. Sec-

tion four contains expressions for the expected utility of the decision-maker

in using each of these estimators. In section five, we demonstrate the impor-

tance of recognizing estimation risk for some simple portfolio allocation

problems which have appeared in the finance and agricultural economics litera-

ture. The last section contains a summary and conclusions about the implica-

tions of estimation risk for both positive and normative analyses using

mean-variance analysis.

2. THE MODEL AND ESTIMATION PROBLEM

In single-period portfolio choice problems, the decision-maker must allo-

cate a fixed resource, such as land or wealth, among risky investment alterna-

tives to maximize the expected utility from end-of-period wealth. The problem

can be formulated as



max EUIW0(1 +fi)i
zeCo

subject to

1
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where EU(e) denotes the expected value of the decision-maker's utility func-

tion; W
'o 

is initial wealth; is a vector of choices from the set of alter-
Otago

natives, Co; R denotes the random vector of returns; and i is a vector of

ones. The elements in x are the shares of Wo allocated to each alternative

in the vector R.

Equivalently, the problem can be expressed as

max EU(SOTO
EC

subject to

and

4'i = W
o

CISM

4. R.

Under a set of quite restrictive but frequently imposed assumptions, the above

problems reduce to the maximization of an objective function which is linear

in the mean and variance of portfolio returns. Possibilities include quadra-

tic utility or the combination of normal returns and a utility function of the

negative exponential form. Below, we develop the solution for the latter case

by applying mean-variance analysis to the land allocation problem that origi-

nated with Freund (1956) and has been expanded upon in recent papers by

Collender and Zilberman (1985) and Collender and Chalfant (1986).2



- 5-

2.1. The Land Allocation Decision 

The decision-maker's problem is to allocate L acres of land to k crops,

where returns per acre x are distributed as Nk(a, E). We assume that the decision-

maker maximizes the expected value of an exponential utility function

UCTO = -exp(-rff)

where r is the Arrow-Pratt measure of risk aversion and Tr denotes profits:

= l4. X.
1 l'

i=1

and 4. is the acreage planted to crop i. We assume that per-acre returns

are net of production costs, and we treat the technologies as predetermined

and consider only the acreage decision.

The first-order conditions for maximizing expected utility involve the

derivatives of the moment-generating function, ME, of the random vector x with

respect to each ti = -r ti. They are shown by Callender and Zilberman (1985)

to be

M M.1 = 1, i=2, ..., k.
M M

These conditions are then equivalent to

M A VM = 0

MM being the k-vector of derivatives of M and A being a (k - 1) x k matrix of

the form
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where i is used throughout the paper to denote a vector of ones. For a multi-__

variate normal moment-generating function with t = -r k, this condition

gives us

or

-1NI A Mip r 2,J 0

1
A=A.r

Note that A is not a square matrix so it cannot be inverted to solve for

4. It is only (k 1) x k, and we need one more restriction on ft, so we add

that the farm size is L:

7

i = L.--k

Then, the system of k restrictions on 9, for maximization of expected utility can

be solved, once estimates of p and L are available:

sta

where L estimates /: and p estimates p.

2020 The Estimation Problem

If the true population parameters were known, then 1 would be the optimal

decision (hereafter 1*) in the sense of maximizing expected utility. Estima-_

tion risk exists when parameter estimates must be used in place of population

parameters. The result is that the solution 4 is only an estimate of x*,_
A A

call itk. The decision will be suboptimal if 1 differs from 1* in the sense— -- __
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A A
that EU(n12,.) < EU(Tr1,). Furthermore, is

A A
realizations of returns) through and Z.

evaluating its use as a substitute for Y.A.
A

random nature of t.

random (as it is a function of past

Its sampling behavior is critical for

In this section we formalize the

We assume that data are available on the k different returns per acre ob-

served overnperiods and are collected inakxnmatrix X. ColumntofX is

a draw, at time t, from Nk(p, Z), and we assume timewise independence in these
Adraws. Our estimates and 2: are obtained from

and

- 1 v

A

A A A
1

= (n - 1) (X - p in) (X

1

If we let Z = X - kin be deviations from population means so that the columns

of Z, Z.i are independent draws from Nk(0, 1:), we can then write

^ 1
Ti Lan +

Also, our estimator for the variance matrix, Z, can be expressed as

A , 
1 1

= (n - 1)
-1 

(X p (X p i ) =----n

= (n 1)-1 Z Pn Z' = (n - 1)-1 VV'

where Pn = I - in)-1 . 1 -in = - n n

(n - 1)
1 X P X'- 

.
n is a symmetric, idempotent matrix

with rank n - 1 and V is a k x (n - 1) matrix formed by using the eigenvalue-
A

eigenvector factorizaton of P. Then, the expression for 4 becomes



A

A Z PnZ'
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The inverse above is shown in the appendix (A.1) to equal the partitioned

expression

c2b

JoO[AVV'A']-1 (n 1) Ik-1 -(n - 1)-1 AVV'e

4=1.

cal

where the 0 matrix is k x (k 1) and e denotes the first elementary vector

of length k.

The solution vector, Y. 
A
, can therefore be written as

34, A'ICAVIPA')
-1 

(n

or, upon multiplication,

1) 0 1 -AqAVV'A')-1 AVV 92.1 2.1

= A'(AVV'A')-1-1
r A(14- Zin) L-9-1 - (AVV'A' AVVt2-1°

It simplifies later results if the first column of V', V'el, is sep-

arated into two parts, one orthogonal to A'!0 We write T = AV and note that

MITA' TT':

Ve = (T) + u.—1 1.

The first part is a linear combination of the columns of TV, the second a

normally distributed random vector, u, which has a zero expectation. This

vector u is independent of the elements of T and, to make this true, we set

a = (A/A')-1 A Loi
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where 2,
*1 denotes the first column of Z. This result is shown in the•

appendix (k.2).

A
We can express 4 in terms of a and u by making use of this equality:

••

T(V'e ) = TV ' = Tata +1 1.

= TT'a + Tu.

This gives us

1 n- - 1 1t = (TT' ) --17-- + zin) + L21 - LA' (TT' )-1 {TT' a + Tu}

Afcrp)-1 n A(u. + kin) + L.9.1 LA'a - LA'(11"11 Tu.

3. SAMPLING PROPERTIES OF THE MEAN-VARIANCE DECISION VECTOR

AWe are now ready to derive the mean and variance of t, the mean-variance

decision vector for the PCE case. Before proceeding, however, we note some

key independence results which simplify the derivations which follow. First,

T = AV and u are independent by construction. It is also the case that Z.in

and V are independent, as shown in the appendix (A.3). Finally, since

u = - POCALAT1 A2.1) is a linear combination of elements in V, it is

also independent of Zin.

A
3.1. The Mean and Bias in it and an Unbiased Alternative

The expected value of 
A 
consists of three terms:

EGO = A' E(TT' )-1 n 1 
r 11,„ - +
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A The terms in our expression for 34 which involve u and Z.in each have zero

expectations because those terms do; independence of T from each of them lets

us take expectations of (TT2)
-1 

over T and the expectations of u and zi

separately. Note that (TT') Wishart (AEA, n 1), which implies that

(AIA')-1 (ALA')-1
1

(Anderson (1984), p. 270) and, upon substitution of this result,

E(4) = (n k 111 A.,(ALA,)-1 A n - 
r LA'a Lei

fl  
n k 1- 1 6 l AqAilAvil PLR LA'a Lei.

The optimal decision when and are known can be shown to be

1 f
36* A A1.1 la Lei - LA'a,r

so an expression for the bias can be obtained by subtraction:

Bias (&) = E(3) t* = -1 1A'(AZA') A —r

A AThe factor (n 1)/(n k 1) in E(x) is responsible for the bias in Z.

AThis term is due to the uncertainty about E; with only p uncertain, 9,
A

would be unbiased. As is evident, 4 is asymptotically unbiased, keeping the

number of alternatives k fixed. Also note that the bias vector, hereafter b,

must satisfy

b'i = 0
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Asince the elements in Y. and 4* both sum to L--the total amount of land to
Abe allocated. Thus, some elements in t will be biased upward and others

biased downward. However, the effect of this bias on the portfolio mean and

variance is unambiguous.

A A AThe portfolio mean is Lip, for a given i; the expectation over for fixed

E(V1.1) = = 2.10k +

Note that

b Ph .71 C P IA 'S( AZA 

)1

CMIMP

where c is a positive scalar. This expression is nonnegative, then, since

M(ALA')-1 A is positive semidefinite. Thus, the portfolio chosen using

the PCE method will, on average, have a higher mean than the optimal choice

OCM"

AAn unbiased estimator, Z, can be obtained by rescaling by the offend-

ing constant:

-1
AZ • cn 11_ k- 1) Ap.

2Lic

VINO

(n k 1)-1 AVV' -1(1-- A; \r

k 
\\

By repeating the steps in the Appendix, the inverse above can be shown to dif-

fer from the previous case only in that (n k 1) replaces (n - 1), so that

the unbiased decision vector is

n k 1-1Af(11")-1 A 4- zi ) LA'a LATFT') Tu 1e1.n
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3.2. Sampling Variance of the Decision Vectors 

In this section, we derive the sampling variance for the unbiased decision

vector, 4, obtained above. It is easy to adjust the result to find a simi-
/N

lar expression for to Our goal is most easily accomplished by finding an
4,0expression for the characteristic function of the difference between and

its expectation.
Rid .9.40

The deviation of 9, from E(i), shown previously to be the same as the

optimal choice, i*, can be written as

E(:) - n-k-l lk'[(TT')-1 - E(TT')-1]

n k 1 " -1 . " -1E(TT )
n 

LA (TT ) Tu.nr

Again, the matrix T and the vectors z = Zin and u are normally distributed

with zero expectations.

We turn now to deriving the characteristic function for 2, - E(5). In

doing so, we will use some results for 4in and u established in the appendix
(A0 4)

The characteristic function of the random vector E(i) is given by

9(0 = Etexp[it( E(:)).11

- _7k - AV (TT')
1 
- E(TT')

1 
Ap

k_  (TT,)-1 Az)]
n.r

1

iL't (TT')-1 Tull.

Observe that, by properties of normal random vectors,
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the middle three exponentials are the result of the substitution. The first

two terms will remain, but a few substitutions make the last three exponen-

tials more convenient. We rearrange until one term involving t' W At and

one involving t' CA 2 A') 1 At are obtained.

We can write

y(t) = E xp(it'

• exp

n - k - 1 

1 2(n k 1) 

nr
2

A' -14 ALL exp

It ' A' 13 At exp

1 (n k 1)2 
150 -14 Z it At]

nr

11 t At(A Z ATI- At
nr

2 -• exp - 
1 
z L ty A' 14 At) • exp [4. -21- L2 „ t E(W)

by simplifying the third and fourth exponentials and multiplying by the last

one which changes nothing. Combining term 5 and the positive part of term 6,

we obtain

exp 71 L2  ti A' At)

and the negative part in term 6 is

exp 1 (n k 1)-1 
L2 • t' itty(A At)-1 Ati.

Hence, the former combines with term 3 above and the latter with term 4; the

result is

y(t) = Ew exp(jt' n k - I A' tAl- exp 1 (n k 1)

nr
2

2

1 t' A' li A E A' cii At
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Elexp(i k 2z)] = exp(- 411 k Z k)

_
ELexp(i k' u)) _ k' k),

where L is the scalar defined in the appendix (A.4). Then, taking expecta-

tions over z and u, we obtain

(n -9(t) = Eexp it 
- 1, A, .14 Ail)

...
2

I (n - k -  1) 1° A' W A Z A' W At
2 --71-2-1r —

1 2
e exp( 7 L L' t 1 A' W At

where W = (TT')-1 and l';'i = W

One convenient substitution in the above expression involves the term

W A LA' W. This can be replaced using the identity

or

W A A' W = ii A 2; A' if 4- ii-47:---1: 171 4- (n - k - 1)-1 E(W)

li A 
L 
A. R +   _ 2 

n - 1 - (n - k - 1)-2 (A Z A')-1.

„,.When this is substituted into the characteristic function for P. - E(Z),,

the result is

(gt) = e p

0 exp

_

. (n - k - 1) 
— r

_

1 (n - k - 1 

nr2
A'

1 -. exp ( - 7 L2 Z, t' A'

R Ail exp

At
—

...

1 (n - k -
7 2

nr

exp

V A' 171 A Z A' R At

— (n - k - 1)
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-2-; L2 + 2(n - k 
nr2

L2 .„ 1
' ;7)

t' A' CA.1 At)

t' AqA E ATI" At]}.

This expression can now be differentiated twice with respect to t to find
41.•

the variance-covariance matrix for Z, Eat - E(9)] 136 E(9,)]'1. Since the ex-__

pected value of [4 - E(Z)] is zero, the first derivative serves only to obtain
the second derivative:

exp(.) n kAp(n k 1) A' W
nr2

L2 2(n k 1) 

nr2
A' WAt

2
A' ispl A Z A' 'it At

- 2
L  1

n k 1 nr1
-A' (A A!) 1 At

where exp(e) denotes the set of four exponentials inside the expectation

above. Differentiating once again, with respect to t', we obtain first the

expression above times the transpose of the exponent's derivative and then a

term due to the dependence of the bracketed expression above on t:

d  =

dt

IJ

exp(*) [e] [•i i exp(*)

1,2 + (n k 1) 

nr2
A' ci A

The exponentials vanish at t = 0, leaving

2
V(x,) = 6 

at ati

(n k 1)

nr2

2
A' 1 A Z A' Ckl

7: L2 .„ 1
n-77-7—T nr2)

k 1)2
A' 11' A' cY A

r
2

Al(A A')-1
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 • A' W AZ A' W A 4-

1
A(A Jk 9)-1 A.

- 1 + nr2

The first term reduces to

( n k 1)2 Efir[A' AIL IC A' 1-Ai

r
.2 "

L2 + k 1) 

nr
A'

and the last term is a constant with respect to W. From the middle two terms,

only the first remains since the second has a zero expectation over W. Thus,

(n k 1)2 41,1 Rik(1111t .12; ) A' -14 A
r
2

[AA A].

- 2
L 1

-57:77771T + nr
4:E=11

The first term is difficult to simplify, requiring still more substitutions.

It is shown in the appendix (A.5) that the variance matrix reduces to

(n k 1) 1 -1.  2 -2, Ag(A i; - 
p' A'(fit E AM) A

r (n k)

(nr2(n k)2 + - 1)

(n k 1) 1,2 + 1

nr2
A?(A E A').-1 A.

A similar series of steps can be used to show that the PCE decision vec-
A

tor, t, has a larger sampling variance. The only difference is that (n - 1)
Pzad

replaces (n k 1) when the latter appears in V(9); hence

V(t) - 1)  AqA E A') A AqA A')71
(n k)
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(n - 1) L2  1

nr2-(n 102 (n - k - 1) + -2- A t(A ATI A.
nr

"go

This shows that the unbiased decision vector t has a smaller variance
A

matrix, in the sense that V(i) VW is positive semidefinite.

3.3. Factors Affecting the Bias and Variance of the PCE Estimator 

From inspection of the terms for the bias and variance of the PCE esti-

mator, it is clear that several factors affect their magnitudes. For the

bias, these factors include the underlying population parameters as well as

the sample size, number of alternative enterprises (investments), and the ab-

solute measure of risk aversion. The variance is affected by the same factors

plus the initial wealth or fixed resource constraint. Table 1 presents rates

of change for the bias and variance with respect to each of these factors,

with the exception of the number of alternative enterprises. The effect of k

is more difficult to determine since it affects the dimensions of the matrices

2. and A and the vector p.

It is clear on inspection that both the bias and variance converge to zero

as either the sample size or the measure of absolute risk aversion gets

large. It is also clear that as L increases the variance increases. An in-

crease in pi will increase both the variance and the bias of the estimated

allocation of L to alternative i but will have an ambiguous effect on the bias

of other alternatives. An increase in the variance of a particular alterna-

tive will increase both the bias and variance of thePCE estimator, but an

increase in a covariance will have ambiguous effects. These last results are

important for analyzing the effects of technological or other changes on the

impact of estimation risk, all else held constant.
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4. EX ANTE EXPECTED UTILITY FROM PCE ESTIMATORS

To summarize the results so far, we have considered the effect of estima-

tion risk on the statistical properties of the commonly used PCB approach to

estimating optimal mean-variance decisions. With returns following a multi-
Avariate normal Nk(R, Z) and p and unknown, the decision vector 9 obtained

using sample estimates is biased as an estimator of the unknown optimum St*.

It also has greater variation than the unbiased vector we derived, t, making

the latter an improved rule for mean-variance decisions in terms of estimating

4*. Of necessity, both EU(fl
A
i) and Etkalft,) are less than EU(ffil*) so estimation

risk must reduce average (ex ante) welfare.

AIt is possible to show that St dominates t in terms of ex ante expected

utility. To see this, consider the certainty equivalent associated with each

estimator of t.3 For the case of multivariate normal returns and a negative

exponential utility function, the certainty equivalent is

CE(t) = Eit'p - rSO -LX]

with knowledge of Rand2'4. This reduces to

CE0 10) = tiok - r3410Eiic.

Consider now the certainty equivalent associated with the unbiased

decision vector, t.

-CE(Z) = E[Xip - 1 rt'ai

~ ~*, 1- r • Eitr36'2Aj
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1

1- r

o trZE(TL')

• trziv(t)

1 -= tiok - ri,trLV(t) i*'Zi*J

= CE* r trLZV(:)] < CE*.

The inequality holds because triEN(t)j > 0, which can be proven using this fact:

for A positive semidefinite (PSD) and P nonsingular, P'AP is PSD. Write as PP'

and note that tr(PPW(1)] = tr[P'V()P]. The latter term is the sum of nonzero

eigenvalues which are all positive since the matrix is PSD.
ANow consider using the biased estimator, x:

CE(i) = E 4 riu2:2,1
A ARecall that EGO = b, where b denotes Bias (iJ. Thus,

CE(:) J0 1 11 [Bias()]' 4 r trZ[V(i) 4- E(:) E(TO'i
= Vtip b'p r trN( 1t) - r trEE(i) E(9) '

t*'11 II bvp - r trU( 1i) - r trE[Xic 4- bl [54* bl'

1= Mom b'p - r trEV(i) - I'D,* -0- IDP E[t* b.!

CE* 1 b°11 - r trZVO 1 L) - rb 1'Eb - r 21D'EZ*.

It is easy to see that

bt =
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using earlier results. Thus, CE(t) becomes

A 
1 1CE() = CE* - r trLEV00.1 -

AThe certainty equivalent associated with P. is less than that associated with

x*, since the last two terms are negative.

It is also the case that

tr[Y,V(z)] > tr(V(i).1

A
since V(9,) - V(2) was shown earlier to be positive semidefinite. Hence

CE(t) <

A Thus, the commonly used PCE estimator 9, is biased, inefficient, and leads to

a lower expected utility than does the unbiased estimator.

5. EXAMPLES FROM FINANCE AND AGRICULTURAL LAND ALLOCATION

To illustrate the importance of these findings, we performed some calcula-

tions using our results and parameters from published papers in agricultural

economics and finance. We proceed as follows. Assume that the reported sam-

ple estimates of the mean vector and covariance matrix are in fact the popula-

tion parameters of the joint normal distribution of returns to various

enterprises (investments). Using results from section three of this paper, we

calculate the mean, variance, and certainty equivalent of the PCE estimator as

well as the mean (also equal to the true optimum 9,*), variance, and cer-

tainty equivalent of the unbiased estimator. We repeat this process for sev-

eral levels of risk aversion and varying sample sizes for each example.

Results are presented in Tables 2 and 3.
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100

Optimal decision

TABLE 2

Effects of Risk Aversion and Sample Size on Reliability of PCE Estimates
of Land Allocation and on Certainty Equivalents

Sample size

Expected values of PCE allocations an certainty equivalents 
Acres in

6

30

100

Carrots Celery Cucumbers Peppers
r = 0.002924

Optimal decision

68.14
(20.25)

68.61
(6.72)

68.65
(3.54)

28.33
(7.37)

28.27
(2.45)

28.26
(1.29)

68.66 28.26

88.29
(20.43)

88.24
(6.78)

88.23
(3.58)

15.24
(8.80)

14.89
(2091)

14.86
(1.54)

88.23 14.85

-474.63

27854.15

30372.70

31343.34

r = 0.00029

56.18 30.00 89.67
(32.89) (11.34) (31.17)

30 60.90 29.34 89.13
(8.64) (3.10) (8.56)

61.32 29.28
(4.50) (1.62)

61.49 29.26

89.08
(4.47)

24.16
(15.87)

20.64
(3.89)

20.32
(2.02)

89.06 20.20

50680.40

59642.12

60078.62

60238.95

r = 0.0000355

-39.00 43.24 100.67 95.10 16203.81
(213.77) (71.2) (194.3) (108.75)

30 0.44 37.87 96.21 66.36 67296.04
(45.17) (15.77) (43.43) (21.33)

100 3.04 37.39 95.81 63.76 68866.00
(23.08) (8.09) (22.29) (10.82)

Optimal decision 4.38 37.20 95.66 62.76 69407.08

Note: Figures in parentheses are standard deviations of PCE estimators of landallocation.
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TABLE 3

Effects of Risk Aversion and Sample Size on Reliability of PCE
Estimates of Stock Portfolio Allocation and on Certainty Equivalent

E4-JEE5T-57:11-5-61 PCE allocations and certainty ecttlival..
Dollars in

New York
Sample size Chrysler Shipping 

r = 0.0001

6

30

100

Optimal decision

Bulova CE

2242.00 480.00 7277.00
(14723) (11113) (15167) -3013.00
(11942) (9005) (12294) -1573.00

2346.00 1249.00 6405.00
(4676) (3477) (4768) 742.00
(4526) (3365) (4615) 768.00

2358.00 1341.00 6301.00
(2467) (1831) (2512) 1039.00
(2444) (1814) (2489) 1041.00

2363.00 1377.00 6259.00 1153.00

r = 0.00001

-3206.00
(143576)
(114877)

30 -2168.00
(45107)
(43553)

100 -2045.00
(23770)
(23530)

Optimal decision -1995.00

-39882.00
(108573)
(86870)

-32194.00
(33595)
(32438)

-31279.00
(17675)
(17496)

-30913.00

53088.00
(148092) -35735.00
(118490) -21333.00

44362.00
(46043) 151.00 .
(44456) 414.00

43323.00
(24236) 2923.00
(23992) 2944.00

42908.00 3984.00

r = 0.000001

-57689.00 -443507.00
(1435387) (1085474)
(1148311) (868380)

30 -47311.00 -366626.00
(450899) (335834)
(435351) (324254)

511196.00
(1480557)
(1184447)

423937.00
(460262)
(444391)

100 -46076.00 -357473.00 413549.00
(237612) (176683) (242272)
(235212) (174898) (239825)

Optimal decision -45581.00 -353812.00 409394.00

-368202.00
-224182.00

-9505.00
-6876.00

18188.00
18404.00

28795.00

Note: Figures in parentheses are standard deviations of estimates of optimal
allocations. For each level of risk aversion and sample size, the
first figures in parentheses are the standard deviations of the PCE
estimators and the second line of figures in parentheses are the
standard deviations of the unbiased estimators.
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The first example uses data from Hazell's (1971) article introducing Mini-

mization of Total Absolute Deviations (MOT' ). The example he uses is the

allocation of 200 acres of land among four vegetable crops (carrots, celery,

cucumbers, and peppers) with sample moments

and

k.= 1.253 443 284 510'

11264 -20548 1424 -15627-
A -20548 125145 -27305 29297
L = 1424 -27305 10585 -10984

-15627 29297 -10984 93652._.
.16

We consider three levels of r (.002924, .00029, .0000355) and three sample

sizes (6, 30, and 100). The range of risk attitudes can be characterized as

extreme to moderate for the gamble under consideration. This range waschosen

for a purely practical consideration atlower levels of risk aversion, the

solution is not an interior one, but the derivations in this paper only apply

to interior solutions. Noninterior solutions involve either truncations or

negative allocations to some crops, the latter are, of course, impossible.

Results are reported in Table 2. In the context of this example, it is

interesting to note that the sample size used in the original article was six.

The second example is based on the experiment performed by Frankfurter

et al,. (1971). They examined the effect of estimation risk on efficient port-

folios of $10,000 using three assets (securities of Chrysler, New York Ship-

ping, and Bulova) with returns and variance of returns per dollar invested

given by

A
= 1.1664 .0664

and

.2135P

[

A .2101 -.0115 .1115
Z . -.0115 .1664 -.0037

.1115 -.0037 .2223

•
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Unlike the case of land allocation, negative allocations are reasonable and

constitute short sales, which we assume are costlessly made. For this ex-

ample, we use the same sample sizes but allow the measure of absolute risk

aversion to take the values (.0001, .00001, and .000001). Results are

presented in Table 3.

The reader should note that r, the measure of absolute risk aversion, can-

not be chosen arbitrarily by the researcher. Ideally, the individual decision-

maker would be able to provide information about his risk preferences. More

likely, the researcher will have other indications about the appropriate risk

attitudes for the decision-maker (or group of decision-makers). For example,

Blume (1980) argues that the appropriate measure of relative risk aversion in

U. S. financial markets appears to be about 2. This would imply r = 3*10-5

for the land allocation example or r 2*10
-4 

for the stock portfolio ex-

ample. If this characterization is indeed appropriate, our examples illus-

trate the degree to which recommendations based on the PCE estimators of

optimal portfolio allocations should be hedged given limited historical data.

Consider, for instance, the land allocation example and a decision-maker with

r = 0.0000355. Even with 30 observations, for the crop with the highest mean

return, the ratio of the expected amount of land to be allocated to its

standard deviation is 3.11. For the stock portfolio example, with r = 0.0001,

the same ratio is only 1.34. Thus, a large interval of possible decisions

cannot be excluded from consideration on the basis of the PCE estimator.

7. SUMMARY AND CONCLUSIONS

In this paper we have developed expressions for the sampling properties of

the widely used PCE estimator of optimal portfolio allocation under uncer-

tainty. Since it ignores an important source of uncertainty, that due to
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unknown parameters in the distribution of returns from risky investment oppor-

tunities, the sampling properties of the PCE estimator--especially with small

sample sizes--can be quite poor. We have demonstrated that the PCE estimator

is, indeed, biased and inefficient and have suggested an unbiased alternative

with a lower variance.

Another important result in this paper is the distinction between the ex-

pected utility from allocating ones's portfolio according to the true optimum

decision vector and the expected utility of using an estimator of that

vector--the latter being necessarily less than the former. However, we showed

that tne difference is less for the unbiased alternative than for the PCE

decision vector.

Although the results in this paper strictly apply to the commonly assumed,

but special case of normally distributed investment returns and negative ex-

ponential utility, several points are of general concern. First, uncertainty

about the nature of the distribution of returns, including uncertainty about

the true population parameters of that distribution, is an important source of

uncertainty above and beyond any risk recognized in the data. The presence of

this uncertainty makes the optimal decision vector random and, therefore, sug-

gests that any prescriptions made should include some acknowledgment of this

uncertainty such as confidence intervals or standard deviations of the esti-

mates. To do otherwise implies greater certainty as to the proper course of

action than is actually possible.

A second point of general interest is the implication of this research for

generating information on the statistical behavior of returns from risky acti-

vities. Our expression for V(I) suggests that researchers can determine the

value of collecting more information to lower the uncertainty of estimates of

optimal behavior. It would be worthwhile to use tnese results to develop



better estimates estimates of optimal behavior. At a minimum, they show that, in many

cases, it will be important to report results as interval estimates, rather

than treating as certain what are in fact only estimates of optimal behavior.
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APPENDIX

(n - 1)-1 AVV'
Aolo Verification of the inverse of

'

Ik must equal

(n - 1)-1 AVV'

ik

n - 1)-1 AW'

which is of the form

A
k-1 k

- 1 k— dez.sev

ONA

(n - 1) A'(AVV'A')-1

dm.

6.1.0

k k-1 k 1 L BC BD
1 k-1 1 1

-AVWe
1I 1

k-1 n
w

.=41.

n 1) A'(AVV'A')
-1
'
k1 + o A'(AVIPA')-1AVVve

1 
+ e

l-

AC AD
k-1 k-1 k-1 1

1

For the product to equal Ile we must find that AC = I
k-1 BD 

= 1,
BC = 0' (of dimension I x (k 1)1, and AD = 0 [of dimension (k - 1) x 1].

AC = (n - 1)-1 (n - 1) AVV'Ai(AVV'Al)-
1 1k-1 = ik-1

9

BD = AVV'e
1 

4. e

. g
= e

l i
k 
A'(AVV'A')-1 AVW

1

The term in BD involving ik A' vanishes since the rows of A (columns of A')
each sum to 1. This also holds for BC making that product 0'.
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Finally,

AD = (n 1)-1 AVV' -.A'CAVIPA')-1 AVV'e
1 
+ e

1

= -(n - 1)-1 AVVW(AVV 140011 AVV'e
1 
+ (n - 1)-1 AVV'e = 0.

A.2. Derivation of a and u.

E[AVV ] E[AVV'e
1
] = EfAVLCAVPa + LID1.

= E[AVVWa + AVu]

= A E(VIP) A'a + 0.

Q.E.D.

Since E(VV') = ECZ Pn = (n - 1) E(NVV/i) = E(AVV'e/) = A((n - 1) Z) el =

(n 1) IVE.1, where 2:.1 is the first column of Z. Therefore, a must solve

or

(n - 1) ALei = ARn - 1) Zi A'a

a = (AL100)-1 A,1.

This defines the linear combination of the columns of (AV)! that separates

V'e1 into two parts, one independent of AV.

The desired result, E(AVu) = 0, is obtained:*

and

u = V - VtAia1.

Vi(el - Act)

E(AVu) = E[AVVqe
1 

- Al2)]
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= E(AVV'el) E(AVV 1A0a)

(n - 1) A2 - A E(W1) ,N1 (AZAT1 AZ

.(n- 1) A 1 (n - 1) (AEA') (1600)-1 AZ

(n - 1) AE.1 (n - 1) Pa.1 = O.

A.3. Independence of V and

We have

Z Pn Z' =ZUDU' Z1 .

since P
n is of rank n - 1 and has eigenvalues 0 or 1. D can be taken to be

the matrix

( In-1 0

0' 0

Hence,

so that

V=ZUA=ZU

n-I
V.. = 2] Z. U
13 ip p31)=1

n-1\

0'

A typical element of Zln, the kth one, is

22, kx°3u=1
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We now show independence of typical elements of V and Zinn:

BPI.. •
n-1 n

(4n)ki = U . Z
p=1 4.1 ip pj

n-1
= U • ELZ. Zpj kpp=1

n-1.
U . z

P=1 P3 
ik

(since ip Z ] = 0 unless p = 9,)

n-1
= L. E Uik

p=1 133

1
Now, since .P = 0', we are guaranteed that Z11-1 U = 0:n

0'=i P=i UDU1 =iU— —n nn —n —

n-1

0'

I
n-1

p=i pj

0

0' 0

n-1
=> U = 0 for all j = 1, 2, ..., n - 1.

p=1 P3

ELEZZ.0 A.2",Z.1 = E[ZEZZ.0 A •ZiIZ zp pj kn 12, 0 pj kn4 p n 9, p n

= E(E 2.; Z. U . (0 unless p = j) • Zkni.12, 9,J9, n

Now, unless k = n, then E(Z
t 

. Z
kn 
) . 0, by timewise independence. Hence,i 

we obtain
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EIVii 0 (Zi)k] = E[Z Zist Uli Zia]

= r . = ° u52,3 ik —n —3

The inner product of in and any characteristic vector of Pn, such as

must be 0, which gives the desired result. Every element in V and in

Zin is normally distributed; we have now shown that every element in V has a

zero correlation with every element in Zin, implying independence.

A-4. Expectations Involving Zin and u.

1A first step in simplifying is to evaluate Ez(ZiinnV). Consider a

typical element, the i,10 one; its expectation is

2: Z. i 
19n —

i
nmjm m

=E

Ma

which is the expectation of the ith row sum in Z times the ith row sum in Z.

The first term is the sum of observations through time on the random variable

Z., which is the ith return X. minus its mean ps. The second term is1 1 1
the sum of observations through time on

For any i,j combination, there are n terms in the product of these sums

with expectations equal to the i,lth element of I., the rest vanish by time

wise independence. Hence, the term above has expectation n Eij, and

0
Eli i i = n—n—n

Of course, E(Z) = 0. When E(ZAn) appears alone, it vanishes.

We also need E(uu'). Recall that

u= Vqe A'ai



and that V can be written as

=ZUA

where V is k x (n - 1) and A =

Then
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In -1

0'

E(uul) = E[Vf(el A'a) (el - A'aP Vi

= EL/0 U' Zt(ei - Ai(t) (ei - A'aP Z U A]

= U' E(V(ei 'Oa) (e1 Alci)' Z] U A.

Consider any expectation of the form

EEZ'b b'ZI.

. The expectation of a typical element i,j is the expectation of the ith

element in the column vector Z'b times the ith element in the row vector 1:0Z.

E{Z'b 
b'Zji 

= E(z Z. b ) (E b
kkj

)im mj

=EpEb bk Z. Zki •]m
Lm k

b b E(Z. .kJ).m k m k

Here, i and j denote sample periods while m and k denote particular investment

opportunities or land uses. Unless i = j, the Z terms are independent by

timewise independence, hence, we obtain



and

Thus,

bm bkmkm k

ELZth bg.Z1 b' b.n

E(uu')
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= A' U' E[Zi(el (e A'a)' Z] U A

= At U' (el - A'2). (e1 Ala) U A

9 9-= A' Uqe- e AqAFA')
-1 

AE
.1 

- Z
•1
AqAEA' 1 ) AZ2

11 Sa -a

i; A' (ALAI )
-1 

AZA"(AZA'1
1
 A 1J U.1 . 

= A' U'Ull Z:1 IOCALA')-1 AL.1] U A

= 
11 .1 

1.9 A'CALA'11 AZ.1 J 0 A' U' U A

= ri.11 IMCALA'11 Moll • A' A.

Since A' A = I
n-1' we obtain the diagonal matrix r•n-1' 

where

9
Z=

 - .1 
Al(AZA') l AZ 1 .

A.S. Simplification of V(''.).

Note that the matrix

is positive definite and so can be expressed as C C', where C is full rank and

lower triangular. Now let S = C-1 T. A series of manipulations using these



matrices is necessary to simplify the expectation which remains in the expres-

sion for the variance matrix for t:

E
w A' A(' Z) A' A

= E
w [A' 1-4 C c' A]

-1= E
TtAq(T T') - E(T T')

-1 
C C'((T T')

-1 
- E(T T')-1 Ad

_ _= A' ET
[ 
[C C 1(T T') C'

-1 
C']

-1 
- EC C 1(T T') C'

-1 
C]

-1 
C C4.

.11.. 
L.

- - -=A' C'
1 
E
sti(S S')

1 
- E(S S')

-1
i [(S S')

1
 - E(S S')

-1
il C

-1
Pi..

A

Now, the matrix S = C- 1 T = c-1 -v has dimension (k - 1) x (k - 1); further-

more, S S' follows the Wishart distribution because (T T') does so. It has an

expectation given by

E(S S') = C-1 E(T T') C'-1 = (n - 1) C-1 A EA' C'-1 = (n - 1) Zs.

To evaluate the expectation

-Ei[CS S')-1 E(S S')- )-1 E(S 1] [(S Si

we use a result due to Shaman (1980):

-1 -1L-10 C1 (n k) (vec Es ) (vecs s CovLvec(S 
S1-
')- 1) (n _ k) (77-7_ 1)

provided that n > k 1.

Suppose we are interested in the i,jth element in our expectation.

cr 1E l(SS')-1 E(SS')-1.1 f(SS')-1 E(SSi)li
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Et [(SST E(SS'il (SS'ilE(ssVihI }.

The expectations in that s can be found by making use of Shaman's result.

Note that the vec of (SS')-1 is a (k 1)2 x 1 vector, making the variance

matrix (k - 1)2 x (k 1)2. The elements O., and tj of (SS'1
1 can be found in

that vector as elements i - 1) (k 1) and (j - 1) (k - 1), respectively.

To find the expected value of their product then, we find element i (t - 1)

(k - 1), k - 1) (k I) in Shaman's expression. That element involves the

scalar [(n k 1) (n k) (n k 1)]-1, the appropriate element of Zsl x

and the corresponding element from (n k)-1 (vec (vec 4)'. Re-

call that the Kronecker product of a (k I) x (k - 1) matrix with itself pro-

duces a (k - 1)2 x (k 1)2 matrix in which the i,ith block here will be
- -1(Z
1
s )ii • Ls . If we find row i (4 - 1) (k - 1), we are in row i of the

4th row of blocks; moving over to column Y., (j - 1) (k 1) means we are in

column x of the ith column of blocks. Thus, since we are in block-row 9.,

-1block-column j, we obtain (2.
S1)9.. That element is multiplied by s to

make up that 1,,,,10 block, but we are interested only in the i,ith element, so

we obtain

(2...; 0)-1 (, )-1

9.Zj

from the Kronecker product.

-1 By similar operations, extracting that element from vec Zs times its

transpose produces (2;
-s1
)
it 

from the vec and (Z-s1)
4j 

from its transpose.

Hence, our expectation is

[(n k 1) (n k) (n k 1)1- 
1[0z-sl)it

(n k)- 
1(z-sl)u(z-s1) J.]



-37-

and it simplifies to

(E: -9 (lrS 4'S
ij 

(n k 1) ( n - k)2

which, when summed over I, yields the i,10 element of

-1 -1• Z

(n k 1) (n k)2

This characterizes every element of

E fI1(SS')-1 - E(SS')- [(ssf)- 1

PICO

so that we can rewrite the first term in our expression for VW as follows:

12
- k -1  

z-s cs1

C 1 
A

-

)

A' C' •
(n k 1) (n k)2

by substituting Shaman's result. Now, replace E by the inverse of C-1 A C'-1:

(n

- k 1)2  1 
r C LC,

-1 
AZA'C' 

1]-1[c-1 AzA,cf -1 
C

...1 
A' -

(n k 1) ( n k)
2

n - k
r
)

.(n

n k - 1
)2

(n - k - 1) (n k)

1

1 -1  A' (AA')" C C' (ALA') A2

k -
r
92

(n k 1) (n - k)

-1 
2 

r 1  A' (ALA' ) • Auiu' —n Al(AEA') A.

(n k 1) (n k)

1

2 At(AZA,)
-1 

AppiA' (AEA' )-1 A

_
2
  A' (AZA1 )

-1 
(A —

1 
Z.A' ) (ALA')-1 A

(n k 1) (n - k
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n k - 
1)2 

1 
2 A(AEA)

 
Au A'(AZA')

-1 
A

(n k - 1) (n k

In (n k 1) (n k)

If we combine our terms, we find that

or

1

-1AqA -LA') A.

(▪ n k 1)2

r2

(n k 1) (n - 102

1

A9(A E A) I* AA ja! ik?(A A'11 A

n(n k 1) (n - 102

1(  L2 
AqA ATI' A

nr

-At(A E A')
1
 A

1)VO (n k L) - — A?(A Z A')-1 AR p' AtiCA. A'Y' A
r"(n - 102

((n k 1) 4. L2  1 \
nr2(n k)2 77: k 1) + —2- AqA E A')-1 A.

nr
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FOOTNOTES

1Fama (1965) and others have demonstrated that this condition is overly

restrictive. Returns must be drawn from a probability distribution belonging

to a "location-scale" family.

2
The use of the negative exponential utility function simplifies the

derivations which follow, and they hold, strictly speaking, only for that

utility function. However, the qualitative results we establish concerning

the problem of estimation risk are likely to carry over to other sets of risk

attitudes. Analytic results for those utility functions will be complicated

by the fact that the Arrow-Pratt measure of absolute risk aversion, r, will

itself become random since it depends on expected end-of-period wealth. The

widely used negative exponential utility function is convenient since r is

constant for all levels of expected wealth.
3
Recall that expected utility and the certainty equivalent are related

monotonically--maximizing one is, therefore, equivalent to maximizing the

other.
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