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A

Abstract

n this paper we evaluate under a squared error loss measure the

risk characteristics of preliminary test estimators that evolve when

an estimation decision is taken as a result of a particular inequality

hypothesis test based on the data at hand. The sampling performances

of the pretest estimators that result from two one—sided multivariate

hypothesis tests, H: A8 = 0 versus H: AS > 0 and H: AS > 0 versuso 
a o —

Ha: AS 0, are evaluated and compared, and the unsatisfactory sampling- — -

(risk) performances of these inequality pretest estimators, over part

of the parameter space, are established. Over much of the hypothesis

specification error part of the parameter space, the pretest estimator

resulting from the test mechanism H
o
: AS = 0 is risk inferior to the

pretest estimator resulting from H
o
: AS > o. Power functions for the

two one—sided tests are presented and the difficulty of using the power

criteria in practice is noted.

Key Words: Squared Error Loss, Inequality Estimators, Inequality
Hypothesis Tests, Likelihood Ratio Tests, Preliminary Test Estimators,
Risk Functions, Power Function.



SAMPLING PERFORMANCE OF SOME JOINT ONE-SIDED PRELIMINARY

TEST ESTIMATORS UNDER SQUARED ERROR LOSS
1

1. INTRODUCTION

In much of the work concerned with measurement in the sciences

there is uncertainty as to the agreement between the stochastic

sampling model underlying the data generation process and the sta-

tistical model that is employed for estimation and inference purposes.

As a consequence, investigators begin with an initial specification

and sometimes modify their models by testing the statistical signifi-

cance of some or all of a class of hypotheses. This process makes

the model and the estimation procedure dependent on the outcome of

the tests of hypotheses and leads to what has been termed in the

literature preliminary test or sequential estimators. For

traditional equality hypotheses, this class of statistical procedures

has been studied starting with Bancroft (1944) and the results of some

of the contributions in this area are summarized in Judge and Bock

(1978).

Recently, within the context of the general linear statistical

model, multivariate analogues of one-sided (inequality hypotheses)

tests have been explored by Bartholomew (1959); Kudo (1963); Osterhoff

(1969); Barlow, et al. (1972); Yancey, Judge and Bock (1981); Yancey,

Bohrer and Judge (1982); Gourieroux, Holly and Monfort (OHM) (1982);

1
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and Wolak (1985). In general the likelihood ratio framework has been

used in developing a test statistic and determining acceptance and

rejection regions. In order to facilitate the interpretation of these

test results in econometric practice, in this paper we evaluate, under

a squared error loss measure, the risk characteristics of the

preliminary test estimators that evolve when an estimation decision is

taken as a result of an inequality hypothesis test outcome based on

the data at hand. Power results are also given for the two one-sided

tests.

2. STATISTICAL MODEL, ESTIMATORS AND GENERAL LINEAR HYPOTHESES

Let the K-dimensional random vector b have a multivariate normal

distribution with mean S and covariance matrix E. The location vector

is unknown, and the objective is to estimate the K-dimensional loca-

tion vector S using an estimator gb) under a squared loss measure

L(8, 6(b)) = (6(b)-8)'(6(b)—s) (2.1)

where the sampling performance of the estimator 6(b) will be evaluated

by its risk function

gaos(b)) = E[L(aos(b))). (2.2)

One common problem that gives rise to the above statistical model

involves estimating the location vector for the normal linear sta-

tistical model

(2.3)



-where 6(b) = b = (M 
1

X) X'y is the maximum likelihood (ML) estimator,
o

2 -12= a (X'X) , X is a (T x K) design matrix, e N(0, a
2
I ) and a is

an unknown scale parameter.

In addition to the sample information y, consider nonsample infor-
mation or general linear inequality hypotheses of the form

RB > r—

where R is a (J x K) known matrix of full row rank J < K and r is a
J-dimensional known vector. Following Judge and Bock (1978, p. 84)
and GHM (1982), one can, by an appropriate invertible affine
transformation, reparameterize the statistical model and the
inequality hypotheses to the following form:

= XS
-1/2

Q'QS 
2

e = Z8 + e

or Z'y = e + z'e or g = e + v

and Ra = RS-1/2Q'QS1/2 = A8 > 0

(2.4)

-1/2 -1/2wheree=QS1128, VZ=QSX'XSCr=CW I=,v-NTO,G-I,JandK

A is a positive definite triangular matrix. The ML estimator of 0 is
= z'y N(e, a

2
I ).

For expository purposes, let us assume that the scale parameter ais known and equal to one and that K = 2. The nature of the results
remains virtually unchanged for higher dimensions and when a- is

22 2
replaced by a suitable estimator s , where (T-K)s-/a

Under this specification, consider the following inequality hypothesis,



Ae =
10

-a 1

0
1

e2
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> 0 or el > 0 and 02 — a81 > 0 (2.7)

Following GHM (1982), and using a > 0, this inequality hypothesis spe-

cification is depicted in Figure 1. The cone A in Figure 1 is a set

of (el, 02) such that el 2L 0 and 02 - ael 2. 0. In order to obtain the

least squares estimator for 0, under restrictions (2.7), one has to

replace all observations of g by their orthogonal projections on the

cone A. Thus the inequality restricted estimator g* = (g91,

consistent with the general linear inequality (2.7), is

*
g1

_g2
= I(g1>0)I(g1-ag1>0)

+ I(g1<0)I(g2>0)

+ I(g2<0)I(g2+(1/a)g1<0)

0

+ I(g +(l/a)gi>0)I(g,)-agi <O)
ag, + gl

(Region A)

(Region B)

(Region C)

•••••••••••••.,

1

a (Region D)—

(2.8)
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where I(*) is a zero-one indicator function. Under a squared error

loss measure L(0,g*) = lle-
g
*H
2
, the frequentist risk characteristics of•••

g* have been evaluated by Judge and Yancey (1986).

3. INEQUALITY HYPOTHESIS STRUCTURES AND TEST STATISTICS

In many areas of science, when drawing conclusions concerning a

set of phenomena, individual or linear combinations of parameters are

assumed to be nonnegative, nonpositive, or to lie between upper and
lower bounds. For example, in economics in the theory of the firm,

marginal productivities are nonnegative and economies of scale

parameters may be increasing, constant or decreasing. In the theory
of the household, the substitution matrix in consumer demand theory

requires that all latent roots of the substitution matrix be non-

positive. Likewise, many functions are assumed to be monotonic,

convex, or quasiconvex. In all areas of science in particular

situations, questions naturally arise as to the correctness of the

assumptions and, within the context of statistical inference, how

these assumptions may be tested by making use of the data at hand to

determine the appropriate statistical model and the corresponding

method of estimation.

3.1 A One-Sided Multivariate Hypothesis Test

Following the multivariate one-sided hypothesis testing literature

reflected in the work of Barthelomew (1959), Kudo (1963), Osterhoff

(1969), GHM (1982), and Hillier (1985), consider the testing framework

H
o
: Ae =0 and H

a
: AO > o,

(3.1)
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Figure 1. The AO > 0 Restriction Set
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which implies, when A is of full row rank under Ho, that e = 0, against

H
a 
where at least one strict inequality holds in the alternative

hypothesis. In the two-parameter case, the alternative hypothesis

consists of [000, 02-ae1>0], or 
[el>°' 

02-a01 0], or [el = 0,0 > 0].

The likelihood ratio (LR) test LR = -2 log (L/L) corresponding to

H: Ae = 0 versus Ho  :
a

Ae > 0 is

2 2 „. 2= 11 - Ig-g^ 141 = qg-11

where g = 0 and g* are the ML estimators of e under H and the-o

alternative hypothesis, respectively.

Under this test statistic, H
o 

is rejected if Mg*
2

c
2

1 
or if one

of the following is met:

2 2
(i) g2 > ci and g1 < 0, gy) > 0

9 2 2(ii) g + g2 > ci and g1 > 0, g - ag
1 

> 0
—

* 9 2(iii) (g)- (g
2 2. c

11

1and g2 - agi < 0, g2 + —a g >0

(Region B)

(Region A)

(Region D)

where c
1 

is the critical value of the test and the acceptance and

rejection regions are depicted in Figure 2.

The distribution of u
1 
is that of a weighted sum of Chi-square

distributions and, given a, the critical value c
1 

is determined by

a = P(g
1 
<0, g

2 
>0)P(g

2
>c

2 
ig

1 
,g
2 

belongs to Region B)-- 2-- 1 

(3.2)

(3.3)
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Figure 2. Acceptance and Rejection Regions for the One-Sided Multi-variate Hypothesis Test H
o
: AO = 0 Versus H

a
: A8 > 0.._ .. 

C
Accept Ho

=0



2 2 2+ P(g1>0, g2-ag1>0)P(gi+g2>ci 1g1,g2 belongs to Region A)

(3.4)
1 *2 *2 2+ P(g,)-ag < 

gr) + gi")P(gi ±g2 >ci Ig1'g2 
belongs to Region D)

2 9= (1/4)P(x
2 

1) 
>c

2
) 

qP(x(2) 
>c-) + (1/4)P(x

2

(1) 
>c

2
)( 1 -- 1 -- 1

where q is the fraction of 2.7 radians included in the angle between

the lines g2 = 0 and g,) ag = 0.

3.2 A One-Sided Inequality Hypothesis Test

In economics and other areas of science there may be instances

where one may want to test the validity of the inequality constraints

versus a restricted alternative. Looking at the test mechanism within

a decision theoretic context, there may be times when the data and the

inequality hypotheses are in conflict and thus one might want to

abandon the inequality restriction and go with the data, that is, the

unrestricted ML estimator. In this case one might want to consider,

in the notation of (2.7), the hypothesis test structure proposed by

Judge and Yancey (1986), Wolak (1985), Yancey, Judge and Bock (1981),

and Perlman (1969) which can be expressed as

H
o
: AO > 0 and H

a
: 0 R

2
3.5)

where H
a 

implies that e is unrestricted under the alternative hypothe-

sis. This procedure tests the compatibility of the data and the in-

equality constraints. This is in contrast to problem (3.1), where

equality constraints are tested under the assumption that the parame-

ters satisfy the inequality constraints.
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The likelihood ratio test statistic (Judge and Yancey 1986)

corresponding to (3.5) is, in reference to Figure 3,

U2 = (3.6)

This outcome of the test statistic for this hypothesis structure leads

to the rejection of Ho if

2 2
(i) gi < 0, g2 > 0 and gl > c, (Region B)

? 2 2(ii) g2 < 0, g2 (1/a)g1 < 0 and g. 
' 

> c (Region C) (3.7)

(iii) g? - agi < -c
2
(1+a

2
)
1/2 

a
5 Or) + (1/a)g1 > 0. (Region D)

The distribution of u
2 
is calculated with 8 = 0 since this is the

least favorable value of 0 under the null hypothesis. In Wolak (1985)

and Judge and Yancey (1986), the distribution of u,) is shown to be a

weighted sum of Chi-squared distributions and, given a the size of the

2test, the critical value of c
2 
is determined as follows:

? 2a = P(gi<O, WO)P(g>c  ,-g, belong to Region B)

? 2 2+ P(g,<O, g?+(l/a)gi<O) P(gi+gz.>...c2 ig1,g2 belong to Region C)

2 1/2P(g2-ay-c2(1+a )

p((4)24.(4)2. c22
ig1,g2 belong to Region D)

2 2 2 2 7 9
= 1/4 P(x(1)Lc2) ((1/2)-q)P(x(2>Lc2) 1/4 P(x(1)..1c;)

where q has been previously defined in conjunction with (3.4).

(3.8)
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Figure 3. Acceptance and Rejection Regions for the One—Sided Inequality

Hypothesis Test H
o
: AO > 0 Versus 0 c R

2

A

Accept Ho

Reject Ho

-ag =0

g + 1 g2 -g 1
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4. INEQUALITY TYPE PRETEST ESTIMATORS

As is apparent from Section 3, the alternative test structures

definitely have an impact on the appropriate critical values and the

relevant acceptance and rejection regions. One way to trace out the

statistical implications of the two test structures and to reach a

decision concerning the use of the tests in practice, is to look at

the results for each test structure within the context of a squared

error loss measure and the implied inequality pretest estimator.

4.1. The One-Sided Multivariate Pretest Estimator, Ho: Ae = 0
.. ..

When the hypothesis test structure is Ho: AO =0 and H
a
: AU > 0,.. .. .. — ..

the pretest estimator, using,the test statistic (3.2) is

6 (g) = (I(c
1 
<u
1 
<0.)g* I(0<u <c

2
)01 - -- - 1 -

(4.1)
2

= cr* i(O<U
1 
<C )g*
— 1 -

2where u
1 
is the value of the test statistic (3.2), and c

1 
is the

critical value of the test for a particular a level. The risk for the

pretest estimator (4.1) is

p(e
' 
6
1 
(g)) =.. 

= Ei(g* -9)1(g* —0)] — 2E[(g*-0)'I(0<u
1 
<c2)g*)

_ -- 1 -

(4.2)
?

E[I(0<u
1 
<c-)g* t g*]— — 1 —

where the first term on the right-hand side of (4.2) is the risk of

the inequality restricted estimator (2.6). In the two-parameter case,

the pretest estimator is in reference to Figure 2
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2 2 26
1 
(g) = I(g

1 
>0)I(g

2
-ag

1
>0)I(g +g >c )- — 

+ Icgi<o)I(Wci
0

g2

0
+ I(g1<O)I(g2+(1/a)g1<0)

gr)

2 f) 9+ I(g2+(l/a)g1>0)I(g7-ag1<0)I(w1+w?>ci)

where w
1

1

g +ag2)/(1+a
2
) and w2 = (ag1+a

2
g9)/(1+a

2
).

The risk for the corresponding pre-test estimator is

p“) 6 (g)) =

(4.+4>c]2.)(g-e)'(g-(3))E[I(g >0)I(g -agi>0)I

+ E(I(g
1 <0)I(g9 

>c
12 

—e
2 
)
2
+e
2
)]1

+ E[I(g2+(1/a)g1>0)I(g -agi<O)

xI(w
2
+w

2
>c
2
)((w1 —01 )

2 
(w2-02)

2
)]

2+ E[i(gi >0)I(g2-ag1>0)I(g1+

+ E[I(g1<O)I(O<Wc1))0 1 0

Region A

Region B

Region C

(4.3)

Region D

1

Region A and
reject

Region B and
reject

Region D and
reject

(4.4)

Region A and
do not reject

Region B and
do not reject
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+ E[i(g2<o)i(g2+(1/a)g1<o)eie

-)
+ E[I(g2-ag1<O)I(g2+(1/a)g1>0)INT:rw;<c-pefe

Region C and
do not reject

Region D and
do not Reject

The various components of the risk may be identified in Figure 2.

4.2 One-Sided Inequality Hypothesis Pre-test Estimator, H
o
: Ae > 0

—
When the hypothesis structure is H

o
: AS > 0 versus H

a
: e c R

2
,

a pretest estimator, using the test statistic (3.6), is

62(0 = I(0<u2<c22)g* + I(c,)2<u2<0.)g (4.5)

= g* I(C'2.-.1112<w)(q—q,).

Correspondingly, the risk for the pretest estimator (4.5) is

p( e 62( g)) = E { (g*—e) 

+

cr—g*)1 5
0 0

= E[(g*-0'( *-0] + 2E[(g*-e)'I(c2<u <0.)(g—g*)]

+

where again the first term on the right-hand side of (4.6) is the risk

of the inequality restricted estimator.

In the case of two parameters, the pretest estimator in line with

Figure 3 is

.62(g) = I(W°)I(gi< -c2) Region B
and reject

(4.6)
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2 2 2+ I(WO)I(g2+(1/a)g1<O)I(gi+g,>c)

1(g2-ag

C2 1

-c2/1 + a4)I(g9 +(l/a)g >0)

+ I(g1>0)I(g2-ag,00

+ I(gi>0)I(0>gi> -c2)

+ I(g2+(1/a)g1>0)

gi
g?

g?

x I( -c
2
/1 

w
1a

2 
< g

2 
-ag

1 
<0)

-- 

where  wi and w2 were defined in conjunction with (4.3).

The risk corresponding to (S 
2
(g) is
-

geo
2
s (g)) = E[I(g

2
>0)I(g

1 
< -c

2 
)(g-- - -

-en

2 2 2+ E{I(g
2 
<0)I(g

2
+(l/a)g

1 
<0)I(g +g,>c )(g-O)'(g-e)]

Region C
and reject

Region D
and reject

Region A and
do not reject

(4.7)

Region 3 and
do not reject

Region D and
do not reject

Region B
and reject

Region C
and reject

+ E[I(g
2
-ag

1
< -c

2 
+ a

2
)I(g

2
+(1/a)g >0)(g-e)'(g-e)] kegion D

and reject

+ E[I(g1>0)I(g2-ag1>0)(g-0)1(g-8))

2 2E[I(g >0)I(0>gi> -c2)((g2-02) +el)]

Region A and
do not reject

(4.8)

Region B and
do not reject
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/+ E[I(g2+(1/a)g1>0)I(-c2r
/
1 + a

2
 < a

2 
-ag

1 
<0)

'--

x((w2-02)2+(w1-01)21]
2 2+ E[I(g2<O)I(g2+(lia)g1<O)I(gi+g2 9' el

Region D and
do not reject

Region C and
do not reject

The various components of the risk can be identified in Figure 3.

5. RISK EVALUATIONS

As a means of providing an intuitive base for determining, under a

squared error loss measure, the characteristics of the risk functions

for the two pretest estimators, consider the two parameter case and

the hypothesis design matrix A given in (2.7). The unweighted squared

error loss criterion in the 0 space

A A A A
= E[(e-e)'(e-e)] = E[(a-B) t x'x(s-3)] (5.1)

yields a weighted risk function in terms of the 0 space (2.3) with the

weight matrix equal to X'X, i.e., the mean squared error of prediction

criterion. Alternatively, interest often centers on an unweighted loss

function in the B space and thus the following risk function:

A A A
-1/2 -1/2 ^Pq.,0 = E[( 9-3)] = E[(e—e)'Qs s Q'(e—e)

e—e)tw( e—e)]

(5.2)

Consequently, the measure is changed depending on whether we focus on

prediction (5.1) or parameter estimation (5.2). Numerical integration

procedures of the type reported by Milton (1972) were used to evaluate

the pretest risk functions (4.4) and (4.8).
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In the interest of space and to be consistent with the GRM (1982)

formulations, we use a general restrictive matrix to remain in the 8

space, and report results for the mean squared error prediction

criterion (5.1). Risk functions in the 3 space add little if any

additional information since the risk characteristics and statistical

implications are similar to in the 8 space.

Although the hypothesis test structure is different, as a basis of

comparison the risk for the conventional pretest estimator 50(g) (Judge

and Bock, 1978), that is based on testing H: AS = 0 against the

alternative H
a
: AS# o, is also included. This traditional equality-

pretest estimator may be specified (Judge and Bock, 1978) as 5(g)
o

I(c-<u <0.)(g), where the conventional test statistic u
o 

x ando o

2c
o 

the critical value of the test is determined by f
2 
w dx(K) = a.

c

5.1 Pretest Risks 0(e0S.(g)), X(82 
= 2.0818

1
)- 

In developing the risk functions, let X(*) = y8'8 define the

magnitude of the inequality hypotheses errors. In order to trace out

the largest and smallest risk valuesfor a particular X we first

examine the risks for the one-sided pretest estimators when the

direction of the hypotheses are either all correct or all incorrect.
1 .0An A = 

r 

.8 1 
j implies a correlation between gl and gl of .6247.

Under this specification, risks were examined along the line 5, = 2.08181

which bisects the angle in cone A in Figure 1. The line e, = 2.0818

as chosen as we find the ttal is more powerful along this line in the

rejection regions than along any other line. Risk outcomes over X

(*), for a = 0.05, are given in Table 1, and the corresponding risk

functions are given in Figure 4.
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p(8, 6 (g))..

+01 -e1 +e -e

(e,(s (g))- 0 -

0.0 0.277 0.277 1.115 1.115 0.4000.10 0.416 0.251 1.060 1.229 0.4250.20 0.653 0.347 1.052 1.408 0.4990.30 0.963 0.564 1.078 1.650 0.6210.40 1.313 0.904 1.127 1.943 0.7870.50 1.676 1.360 1.189 2.268 0.9950.75 2.374 3.003 1.363 2.995 1.6521.00 2.562 5.330 1.528 3.258 2.4061.25 2.361 8.327 1.669 2.992 3.0971.50 2.103 11.990 1.782 2.539 3.5761.75 1.971 16.320 1.865 2.207 3.7532.00 1.946 21.316 1.920 2.056 3.6362.50 1.978 33.306 1.977 2.002 2.9263.00 1.995 47.960 1.995 2.000 2.3113.50 1.999 65.279 1.999 2.000 2.0644.00 2.000 85.263 2.000 2.000 2.0085.00 2.000 133.223 2.000 2.000 2.000

Table 1: Risk values (E[(e-e)'(e-e)] = E[(-5)7xtx(-3)]) for the
pretest estimators (5 (g), 6 (a) and 61(g) over theo ~ 

1
77parameter space x(e

2 
=2.0810

1 
) = (e'er, and a = 0.05,

1 .0and A = 
1].
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Figure 4. Risk Functions for the Pretest Estimators 6(g), 6,(g) and

•
•
•

e
e

........

ple,

10 -9 -8 -7 -6 -4

for a = 0.05 and over X(02=2.08191 ).

gll

0 1 2 3

•
•

.....

4 5 6 7 8 9
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At the origin (X=0), the pretest estimator 51(g), corresponding
-

to the simple null hypothesis H„,: A8 = 0, has a risk of 0.277, while

the risk for the pretest estimator 62(g) corresponding to the

composite null hypothesis, H
o
: Ae > 0, is 1.115. Thus, as might

be expected, at the origin, 6,(g) is risk superior to ,i2(g). Also, as

might be expected, at the origin the traditional equality restricted

pretest estimator 6
o
(g) has risk .400 and is thus less than the

risk for 62(g) and greater than the risk for 
51 ' 
(a). The risk outcomes. 1

for 6(g) are given in the last column of Table 1.o -

As X increases along 8, = 2.08181, the risk for 61(g) increases,

intersects the risks for 67(g) and the ML estimator g from below, rises

to a maximum of 2.56 around X = 1.00 and finally declines and becomes

asymptotic to the risk of g for X > 4.0. The pretest estimator

(g) is equal to or risk superior to that of 6
1
(g) over a large rangeo

of the positive X(82=2.08181) parameter space.

The risk function for the pretest estimator 6„)(g) is a much different

story. When the direction of both hypotheses are correct, over the

range of the parameter space 0 < X(82=2.08181) < ,..., the risk of the

pretest estimator 6
2
(g) is like that of the inequality restricted

estimator g* (Judge and Yancey (1986)) and is uniformly risk superior

to that of the ML estimator g (see Table 1 and Figure 4). Along

e
2 
= 2.081e

1 
with .35 < X the pretest estimator 62(g) is risk

_

superior to the multivariate one—sided pretest estimator 51(g). Also
-

along 82 = 2.08181 .75 < X, the pretest estimator 62(q) is risk

superior to the traditional equality restricted pretest estimator

o
(g).
-
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When the directions of the inequality hypotheses are incorrect

along 82 2.08181, the pretest estimator 61(0 performs very badly;

in fact., as A approaches -co, its risk is unbounded and becomes

asymptotic to that of the eauality restricted ML estimator g = 0.

For A < -2.89, the risks of the equality restricted estimator g and

the pretest estimator 51(g)coincide. Only near 9 = 0 does the

pretest estimator 61(g) give a satisfactory risk performance when_

compared to risks for g, 60(g) and 62(g).
-

Alternatively, along 82 = 2.08181 the risk for the pretest

estimator 6
2
(g) increases as A becomes negative, intersects the risk

of 61(g) at about x(e
2
=2.081e

1 
) = -1.73, and intersects the maximum- 

likelihood risk at about A = -0.92. The risk of the pretest estimator

62(g) reaches a maximum of 3.258 when A = -2.31 and decreases until it

is equal to the ML risk when A > -4.52. Consequently, over a large

part of the line e
2 
= 2.08181' the risk for the pretest estimator

62(g) is superior to that of the multivariate one-sided pretest-

estimator 6
1
(g). Alternatively, the inequality pretest estimator

62(g) is risk inferior to the equality pretest estimator 6(g) over a- o

part of the -2.89 < A < 1.73 parameter space.

5.2. Pretest Risks, A(02-.480601) and x(e1=0,e,>0)

In order to investigate risk performance for another part of the

8 parameter space, let 82 = -.48068 , a line orthogonal to

82 = 2.08181. Consequently, for H AO > 
one inequality hypothesis

o
is correct and the other is incorrect, and we move along a line that

cuts the second and fourth quadrants in the 9 space. Under this
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scenario, the risk outcomes for each of the pretest estimators are

given in Table 2, and the risk functions are graphed in Figure 5.

Over the line e
2 
= —.48068 the inequality estimator 51(g) has

_
unbounded risk for both large values of %, and it is inferior to the
risks of g, 6(g) and 6,)(g) over a large range of the parameter space.o

Alternatively, for the pretest estimator 67(g), the risk functions

along 82 = —.48060
1 
are symmetrical around X = 0 and reach a maximum

at 'XI = 2.77 and then become asymptotic to the ML risk for 1 X
6.68. The risk of the pretest estimator 6,7(g) is inferior to those

of the ML estimator and the 6
o
(g) pretest estimator over a large part

of the line 02 = —.480601.

Finally, the risk functions for inequality pre—test estimators for

the part of the parameter space with (e1=o,02>o), behave in

predictable ways. For example, in the case of the pretest estimator

6
2
(g), the risk function becomes asymptotic to the risk value 1.5999 as

X increases. For X8, < 0, the risk function is similar in shape to the

risks when
2 
=

1
. However, for comparable values of X the risks of

are lower than the risk, reaching the risk when62(g)-

Correspondingly, for A =

maximum of 2.59 at e, =

value 1.5.

X= 4.00.

e, > 0 the risk function for 61(g) reaches a .-

2.00 and finally becomes asymptotic to the risk

5.3 Impact .of the Choice of a

The risk outcomes for 61(g) with a = .01 and .10 are given in Table 3-
and the corresponding risk functions are given in Figure 6. As a
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changes, the risks at the origin and over the range of the risk

function change. Under the hypothesis structure H
o
: Ae = 0, and along

the line e
2
= 2.0818 the risk of the pretest estimator 8.(g) at the

origin is .086 for a = 0.01 and .427 for a = .10. Correspondingly, as

a increases the maximum risk value decreases.

Under the H: 
•
Ae > 0 hypothesis structure, the risk of the pretesto  - — -

estimator 6,(g) at the origin is 0.882 for a = .01 and 1.314 for a = .10.

For A < 0 along e2 = 2.0810
1 
and a = .01 and .10, the risk of the pretest

estimator 52(q) has maxima of 3.874 and 2.229, respectively, and

then approaches the risk of the ML estimator. In other words, its

risk behavior is similar to that of the traditional, equality

restricted pretest estimator for alternative values of a.

These results indicate that, since the risk outcome of either

pretest estimator varies with the choice of a, the cavalier way that

the level of the test is sometimes chosen in applied work may have

rather severe risk consequences. Unfortunately, as is the case with

the equality pretest estimator 80(g) (Judge and Bock (1978)) the

question of the optimal level of the test remains unanswered.

. SUMMARY AND EXTENSIONS

Within the setting of a general linear model and general linear

ineauality hypotheses, we have, using likelihood ratio test statistics

corresponding to null hypotheses Ho: AS = 0 or H
o
: A0> 0 in a—

parameter space of dimension two, demonstrated the alternative

acceptance and rejection regions and how to obtain the critical values
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Table 2. Risk Values for Pretest Estimators 51(g) and 5,1(g), for Values-

in the Parameter Space 82 .

a = 0.05

-.48068 and e = 0,02 E R1 and1 1

02 . -.48068
1

S2

. ,
el = o,e, E R'

p(e,61 (g))._ .. p(8,6 (g))2 ot e, 16 (g)) 0( e, 6? (g)).. ..

..,) , , > 0
_

0 .277
0.10 .290
0.20 .328
0.30 .391
0.40 .480
0.50 .594
0.75 .980
1.00 1.536
1.25 2.235
1.50 3.080
1.75 4.066
2.00 5.187
2.50 7.813
3.00 10.909
3.50 14.429
4.00 18.344
5.00 27.330
6.00 37.984
8.00 65.253

10.00 101.025

1.115
1.126
1.160
1.215
1.291
1.387
1.692
2.114
2.566
3.008
3.384
3.646
3.735
3.340
2.823
2.356
2.034
2.000
2.000
2.000

.111

.222

.333

.444

.555

.832
1.110
1.387
1.664
1.942
2.219
2.774
3.329
3.883
4.438
5.548
6.657
8.876
11.095

.277

.326

.401

.498

.617

.754
1.157
1.599
2.014
2.340
2.536
2.589
2.358
1.970
1.685
1.553
1.504
1.500
1.500
1.500

1.115
1.087
1.072
1.070
1.078
1.095
1.163
1.251
1.338
1.414
1.462
1.519
1.570
1.590
1.597
1.599
1.599
1.599
1.599
1.599
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Figure 5. Risk Functions for the Pretest Estimators 6 (g),
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of the tests for a given a level. In order to understand the statisti-

cal implications of using these test structures we have, under a squared

error loss measure, developed and numerically evaluated the risk

functions for the corresponding pretest estimators and compared their

sampling performance along several lines in the hypothesis

specification error parameter space.

Extension of these results to a K-dimensional space, with J linear

inequality hypotheses, and an unknown scale parameter follows directly.

With an unknown scale parameter, the distributions of the LR test sta-

tistics become a weighted sum of F
() 
„ random variables instead of Chi-

square random variables, and the degrees of freedom for the F random

variables are changed in a natural way (Judge and Bock 1978). In

evaluations in the B space under risk measure (5.2), the numerical
•-•

integration procedures become a bit more difficult, but the general

characteristics of the risk functions remain essentially the same.

Of special note is the unsatisfactory performance of the pretest

estimator 51(g) associated with the simple null test structure, H
o
:

AO = 0. When the direction of the alternative hypothesis is correct,

the risk of the pretest estimator 6.(g) is inferior to those of the_

ML, the equality pretest estimator 60(g) and alternative inequality

pretest estimator 6 
2
(g) over a large part of the parameter space.-

When the null hypotheses are true, A6 = 0, and x(-) = 0, the multi-

variate one-sided pretest estimator 6.
1
(g) risk is smaller than those-

of its pretest competitors 6(g) and 6
2 
(g). When the direction of theo  _
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Table 3. Risk Values for Pretest Estimators 6 (g) and 6 ( When1

e
2 
= 2.0810 for a

1 
= 0.01 and 0.10

p(3 61(g))-
a = .01

c)( 6 (g))

a = .10 a = .01 a = .10

-0 +0 +e +01 1 1 1 1 1 1 1

0.00 0.086 0.086 0.427 0.427 0.882 0.882 1.314 1.314
0.10 0.185 0.106 0.568 0.383 0.873 0.948 1.236 1.440
0.20 0.402 0.242 0.784 0.452 0.906 1.094 1.282 1.6130.30 0.730 0.496 1.046 0.644 0.967 1.328 1.202 1.825
0.40 1.154 0.891 1.321 0.960 1.043 1.655 1.228 2.035
0.50 1.650 1.336 1.579 1.398 1.126 2.071 1.270 2.2940.75 2.952 2.998 2.005 3.013 1.381 3.331 1.408 2.720
1.00 3.790 5.329 3.304 5.332 1.512 4.354 1.552 2.754
1.50 3.156 11.990 1.899 11.970 1.779 3.874 1.788 2.2292.00 2.143 21.316 1.927 21.316 1.921 2.378 1.922 2.017
2.50 1.987 33.307 1.978 33.306 1.978 2.021 1.978 2.00Q3.00 1.995 47.960 1.995 47.960 1.995 2.000 1.995 2.0003.50 1.999 65.279 1.999 65.279 1.999 2.000 1.999 2.0004.00 2.000 85.262 2.000 85.263 2.000 2.000 2.000 2.0005.00 2.000 133.222 2.000 133.233 2.000 2.000 2.000 2.0006.00 2.000 191.840 2.000 191.840 2.000 2.000 2.000 2.000
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Figure 6. Pretest Risk Functions for 61(g), for a = 0.01 and 0.10

and e
2 
= 2.0810

I.

5 4 3 2 0 2 4 5 7 8 9
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inequality hypotheses are incorrect, the risk of the both 01 and 0
2

are negative, pretest estimator 6
1
(g) has outcomes much like those of

the unbounded risk of the equality restricted estimator. Thus, except

near the origin, the pretest estimator 6
1
(g) is risk inferior to those

of the pretest estimators 6(g) and 62
(g) and the ML estimator g.o

For the composite null hypothesis structure H
o
: A8 > 0, when the

direction of the hypothesis is correct, along 82 = 2.08181 
and that is

the pretest estimator 62(g) has risk equal to or less than that of the

ML estimator g. Also along 82=2.08101 and 81 > 0, the pretest

estimator 6
2 
(g) is risk superior to the equality pretest estimator-

(g). When the null hypothesis is incorrect along 02 = 2.08101 ando

1
< 0, the risk of the pretest estimator 62(g) is inferior to that of

-

the ML estimator over a large part of the parameter space. But as X

approaches infinity with 01 < 0, the risk of 62(g) approaches the risk

of the ML estimator and, thus, guards against large losses when the

direction of the inequality hypothesis is incorrect. Under a squared

error measure and for comparable levels of the test a, except for

values of X near the origin, 62(g) is risk superior to 60(0 and 61(0

along 82 = 2.o81el for most values of the parameter space.

As in the case of the equality hypothesis pretest estimator 5(g),
0 _

the level of the test a has, for the pretest estimators 61(g) and 6,(g),
- -

an important impact on their sampling performances. Also, as in the con—

ventional equality hypothesis pretest case, the question concerning the

optimum level of the test is unresolved.

In the case of two parameters and a squared error loss measure all

. of the inequality pretest estimators are inadmissible. For three or
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more parameters the inadmissability of all three pretest estimators

can be demonstrated (Judge, Yancey and Bock (1984)). In the case of

three or more parameters, it is conjectured that the conventional

positive-part Stein estimator will, except near the origin, be risk

superior to both inequality type pretest estimators.

Yancey, Bohrer, and Judge (1982) have, for the case when A is

diagonal so the powers of the tests of for H
o
: Ae = 0 and H

o
: Ae > o

—

are the same, made power comparisons between inequality and equality

hypothesis testing structures. Each of the tests guards against, to a

different degree, failing to discover that parameter values are in a

particular region of the parameter space. The inequality likelihood

ratio test is best when one places the highest priority on discovering

that both claims in the null are incorrect. The equality likelihood

ratio is best when testing el = e = 0 and the priority is on dis-

covering that e
i 
> 0 and e < 0. Goldberger (1986) has, in the case—

of two parameters and a nonorthogonal setting, used numerical integration

procedures to develop power comparisons of the two one sided tests.

Alternatively, the authors have used numerical integration procedures

to investigate the power surfaces for the two parameter nonorthogonal

1 0case. For example, when A = 
r 

1' 
some outcomes of the power

functions for two multivariate one-sided tests are reported in Appendix

Table 1. Along the line e2 = 2.081el, the one sided test H: Ae = 0

dominates the one sided test H
o
: Ae > 0. Along the line 07 = -.48066

l'

the reverse is true. These results point up the difficulty of using

the power criterion in interpreting and making a choice between tests

in practice.
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Si

H: AS = 0 H
o
:' AS > 0 H

o
: AS = 0 H : AS > 0o _ _ - -- _ - _ 0 _ -- _

H : A9 > 0 H: Ae 0 H: A5 > 0 H: Ae 01 o .. - .. o ... .. o _ o.. ..

5
2 
= 2.0818

1 e, = -.48069
- 1

0.0
0.1
0.2
0.3
0.4
0.5
0.75
1.00
1.25
1.50
1.75
2.00
2.5

0.050
0.077
0.115
0.164
0.225
0.296
0.511
0.722
0.875
0.957
0.989
0.998
1.000

0.050
0.071
0.102
0.138
0.186
0.246
0.435
0.648
0.824
0.932
0.980
0.996
1.000

0.050
0.051
0.051
0.053
0.055
0.058
0.067
0.080
0.096
0.117
0.141
0.169
0.236

0.050
0.051
0.053
0.058
0.063
0.071
0.099
0.143
0.197
0.268
0.351
0.z.45
0.637

Appendix Table 1: Power outcomes for two one sided tests when

2 
= 2.0810

1 
and e

2 
= -.48069 and a = .05.

1




