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Appendix I

This appendix will show that increased dispersion in the inputs lowers output. Let

Fi(ei) and Hi(i) be CDFs for el and let YFI and YHi be the aggregate output when

el — F1, and el — H1, respectively.

Theorem: If H1 is more risky than F1 in the sense of a mean-preserving

spread, then YFi YH, •

Proof: Let z' = (zi', z3') and z" = z2", z3") be two different 3-vectors.

Yield is y(z) = min (zi, z2, z3). For t e [0, 1],

Az't + z"(1 - t)] = min [tzi' + (1 - t) zi", + - Oz2", tz3' + (1 - t)z3"l•

Let the j th argument of the min function be its least element so

Az't + z"(1 - = + (1 - t) Zj t min (zit, z21, + (1 - t) min (zi", z2", z3")

= ty(Z) + (1 - t) y(z"). •

Thus, the function y is concave.

Next, use Theorem 2 of Rothschild and Stiglitz: If H1 is more risky than Fi,

then EHi U(x) EF, U(x) for every concave function U.

In particular, for every z2 and z3,

Therefore,



YH, :----- 1 5 1 y ail dF2 dF3 = f 1 441i (bo + bi x2 + e2,P+e3)dF2dF3

bo + b1 x2 + C2 ,P + C3 ) dF2 d F3 = YF .
1

So YHI 5 YFi , which was to be shown.

,
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Appendix II

Within the class of distributions that

(1) are expandable in Taylor series about any of their points that has positive

probability weight, with the radius of convergence of the Taylor series so large as to

encompass all points with positive probability,' or

(2) represent nonstochastic variables, which is to say, F(e) = 0 if c <0 and

F(e) = 1 otherwise,

a quadratic aggregate function implies

(1) an underlying rectangular distribution for one input,

(2) a nonstochastic distribution for one of the other inputs, and

(3) any distribution for the remaining input that leaves it nonbinding

everywhere.

If all of F1, F2, and F3 are nonrandom, then the aggregate function is LRP,

which is certainly not quadratic. Since at least one of the variables must be truly

random, let F1 be the one with positive density on the narrowest range. That is,

there are numbers ko and kb possibly ± infinity, so that f1 (c1) = 0 whenever y - A =

ei <ko or y - A = ei > 1c1. By assumption, F1 is expandable in Taylor series on that

range ico to ki, so fli the density, exists and is also expandable in Taylor series.

The ranges over which F2 and F3 have positive density (and are expandable in

Taylor series) are [km, k12] and [kw, k13], respectively. These variables are

nonstochastic if k02 = k12 and k03 = k13, respectively. Let lo = min(k02 + B, 1c03 + P)

. and 11 = min(k12 + B, k13 + P). Define G* = F2*F3*. Then 0* = 1 if y < la, G* = 0 for

y > 11, and, for lo y 11, G* can be expanded in a power series. Define z as a point

(10 <z <i1 and ko <z < ki) around which expansions of both G* and f1 can be made,

and define yr as y - z. Then with DG* referring to the nth derivative of 0, the Taylor

series expansions for G* is

-3-



(1)

For fi,

n=.0
5.2'1

G*= DnG*(z)(---in
n=0

0 if y —A <ko,

for 10 < y 1.

= 
(2) 

Dnfi(z)( 
n!
 if k05E1 =y —A

_ 
 
 57n

n=0

0 ify—A>ki.

The following shows that a quadratic aggregate function requires 10 = 11 = 0 and

Fi to be a rectangular distribution.

Proving this result requires consideration of all possible arrangements of 10, 11,

ko, and kb and examining what they imply about the marginal product of xi, which is

given by equation (13) in the text. Since the aggregate function is quadratic, the

marginal products must be linear in xi, x2, and P; or, because A and 13 are linear in xi

and x2, it must be linear in A, B, and P. That is, aY/aA is

(3) ffi(y - A) G*(y)dy = e + eiA + e2B + e3P,

where the eis are constants.

The possible arrangements of the its and k's are most usefully grouped by

considering the interval in which both G* and f1 are expandable in power series, J =

[me, ml] = + A, k1 + Al n [10, 11]). There are five cases for J: (1) the null set;

(2) the real line; (3) [mo, ml] = [10, 11] and li # ki + A nor does 10 = 11; (4) [1(0 + A,

mu i [me, k1 + A]; and (5) the point 10 = 11. We now show that only the fifth case

can result in a quadratic.
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Case 1. When J is empty, it is easy to show that response is not quadratic. If

G* is 0 between ko and 1c1, then the marginal product is 0, which cannot come from a

quadratic aggregate function. Otherwise, G* = 1 between 1c0 and kb while f1 = 0

between 10 and 11.

(4)

ki,+A

fiG* dy = J fidy
-00 Ico+A

because f1 is 0 elsewhere on the real line. This integral is 1 since G* is 1 over this

range and f is a density with its integral 1. Since the integral is a constant and not

linear, it cannot be the marginal product of a quadratic function. These are just the

cases where one_ constraint binds with probability 1, resulting in a linear response to
00

the binding input, and ay/axi = al fiG* dy = either al or 0. Thus, J empty gives a
-00

constant marginal product which violates the assumption of a quadratic total function.

Case 2. When J is the whole real line, both functions are everywhere

expandable in Taylor series. Separate the Taylor series expansion of fiG* around z

into its first term and all other terms: fi(z)G*(z) + e(y - A, y - B, y - P). Here 8 is

a polynomial in its arguments but does not have a constant term. It is just the terms

(in powers of y - A, y - B, and y - P or higher) of the product of the Taylor expansions

of f1 and G* about z. Using this Taylor series expansion, the .linearity of the marginal

products requires

00

(5) I fi(y A)G*(y)dy = fi(z)G*(z)17. fe dy = eo + eiA + e2B + e3P.

• A solution to this *anon is impossible since integrating the constant fi(z)G*(z)

over the real line gives infinity, which, when added to the integral of 8, is still infinity

and is certainly not equal to a linear function of A, B, and P.
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Case 3. The case J = [10, lij and not a point is just A + k0 <l0 <l1 <A + 1(1,

which is impossible because it requires one of F2 and F3 to have nonzero density only

on a range narrower than fl, thus violating the assumption that input 1 had the

narrowest distribution.
Co

Case 4. When one or both of the boundaries of J is A + ki, fiG* dy can be
-00

broken into three integrals, one of which is of the form j fiG* dy, where either m0 =
m0

A + ko, ml = A + kb or both. Since, over this range, f1 * 0 and G* takes values other

than 0 or 1, aymA is

S G* dy = f [f1(z)G*(z)-1-®]dy = (m 1 —(6)
m0 m0

in

o)f G*+ f e(y) dy,
m 0

where e(y) is either 0 or a polynomial in y of degree 1 or greater. If it isn't zero, the

integral of e(y) is of degree two or greater in m0 and ml. Since at least one of the m's
ml Ind

is linear in A, j e (y)dy would have to be at least quadratic in A. But j e(y)dy
mo mo

quadratic in A violates the linearity of DY/DA . Thus neither f1 nor G* can have more

than one nonzero term in the Taylor expansions, which is to say they must both be the

constant functions. (Only one of the three integrals of y is presented here: the rest

are either 0 or are integrals of f1 over some range and do not change the conclusion.)

Thus, f1 and G* must both be constants. By assumption, G* is neither 0 nor 1

over the range of this integral, so it is some other constant. Since the Taylor series

expansion is valid for [10,11], G* is constant on that interval as well.. If it is a constant

other than 0 or 1 over this range, it must become one at 11, the end of the range. Thus

G* has a jump at 11. It has probability mass at 11, which is to say its density does not

exist at that point. This contradicts the assumption that the distributions are

expandable in power series (and therefore have densities) at every point at which
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they have probability mass. Therefore, this arrangement also fails to produce linear

marginal products and thus a quadratic aggregate function.

Case 5. This leaves only the case lc() + A <10 = l <k1 + A, precisely the case

examined in detail in the text. In that case,

(7) ffiG* dy = dy = eo + eiA + e2B + e3P.
-00 Ico+A

•Note the definition of lo as min(k02 + B, k03 + P). When 10 = k02 + B, the integral,

.(7), is linear in A and B only if f1 is a constant. If f1 is constant, then it is the density

function for the rectangular distribution. Because 10 = 11, £2 must be deterministic. It

is a point mass-at zero. Since Ico2 + B <k3 + P, the plateau never binds and its

distribution is irrelevant. If 10 = k03 + P, then the plateau is deterministic and always

binds before B. Thus, one input rectangular, one nonstochastic, and one irrelevant is

the only case leading to a quadratic aggregate function. Since one of the inputs or the

plateau is irrelevant (that is, one of these will never bind before the other), the

aggregate function is quadratic in only two of the plateau and the two inputs. The

remaining input or plateau does not enter the function.
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Footnotes

1The assumption on the radius of the Taylor series implies that the function

does not have any poles, that is, any asymptotes, within that radius.
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