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RECONCILING THE VON LIEBIG AND DIFFERENTIABLE CROP PRODUCTION FUNCTIONS

Although econometricians usually assume crop yields smoothly respond to varia-

tions in inputs, there is agronomic literature that assumes the relationship

is of a linear-response-and-plateau nature. On homogeneous plots, some agro-

nomic experiments show that a von Liebig (fixed-proportions) production func-

tion best predicts yields for many crops (Lanzar and Paris; Grim; and Grim,

Paris, and Williams). This production function assumes that a plant needs

fixed relative proportions of various inputs in order to grow; if even one

input is below its required proportion, it acts as a limiting nutrient on the

plant's growth. For instance, if a plant needs water and nitrogen in a ratio

of 2:1 and is receiving exactly 2 units of nitrogen and 1 of water, then giv-

ing the plant 3 units of water but only 1 of nitrogen will not increase

growth; neither will adding 1.5 units of nitrogen but only 2 of water. In

contrast, econometricians usually estimate responses for whole fields or farms

(or even larger aggregates) and use functions (such as translog) that have

positive elasticities of substitution.

If, as the evidence indicates, agricultural production functions do oper-

ate on this "limiting nutrient" concept at the plant level, then estimation of

these production functions at the plant level with continuous concave func-

tional forms will not provide correct results. However, the estimation of

production functions at the level of a whole field, farm, or county, and the

use of inputs other than those that the plant directly utilizes is a different

matter. Across any large area, there are nonuniformities in the distribution

of inputs. For instance, an irrigation system may not deliver water uniformly

(Elliott et al.) or soil characteristics may vary (Nielsen, Biggar, and Erh).
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Therefore, plants in different areas in the field will he limited by different

limiting values of inputs. These nonuniformities can make a smooth function

an appropriate choice for estimation and they always decrease yield. Simi-

larly, small phenotypic differences in plants may cause nonuniform growth

which also leads to a smooth yield function. Finally, some inputs, labor, for

instance, are only used to make nutrients available to plants and are not

directly used by the plants themselves. Production functions estimated with

these inputs included could also be expected to be of the smooth rather than

the von Liebig functional form. In all these cases, the von Liebig production

function will not explain the aggregate yield for the inputs applied, even

though it will explain an individual plant's growth. Thus, a smooth aggregate

production function can he reconciled with the plant's fixed proportions

technology.

(ihis paper explores some of the implications of an underlying von Liebig

production function when there is a stochastic aspect in crop response. The

second section gives the evidence for a lack of uniformity in applied inputs.

The following section presents the case of two inputs, one distributed uni-

formly across a field and the other with a probability density function

describing its spread, and shows that the aggregate production function for the

Field is an increasing concave function in the uniform input. The production

function is also shown to ')e decreasing when the distribution of the random in-

put is subject to a mean-preserving spread.' The fourth section provides the

functional forms implied for the production function when the distribution of

the random input follows a Pareto, uniform, or exponential distribution.

Section five explores the form for the production function when there is ran-

domness in the plant's response. The case of economic inputs that are not
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directly utilized by the plant are explored in the sixth section which is

followed by the conclusions]

Studies of Nonuniformity

Both the soils science literature and the economics literature include studies

of nonuniformity of agricultural inputs. Several studies have looked speci-

fically at the variability in soil or water conditions and how to model it.

Elliott et al. compared the uniform, normal, and beta distributions to see

which best fits the actual water distribution for overlapping sprinkler sys-

tems. They found that the beta distribution best accounted for the distribu-

tion of water though the uniform and normal, as more practical distributions

for calculating the efficient quantities of irrigation water, maybe used in

some circumstances. A soil science study by Nielsen, Biggar, and Frh analyzed

the spatial variation in soil-water characteristics in a "homogeneous" field

and found that water content in the soil is distributed normally, while hy-

draulic conductivity and soil-water diffusivity are distributed lognormally.

Additionally, they note that "even seemingly uniform land areas manifest large

variations in hydraulic conductivity values" (p. 257). Day was interested in

analyzing the actual distribution underlying farm yield data with applied

nitrogen as a control variable. With data from experimental plots, he used the

Pearson system of probability density functions to assess the best-fitting dis-

tribution. As did Elliott et al., he found that the beta distribution best

characterized the distribution of crop yields.

A number of articles assume some underlying distribution For a random

variable causing nonuniformity (either water is not distributed uniformly or

land quality is not homogeneous) and analyze the impacts of nonuniformity on
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optimal water use, yields, and other economic variables. Zaslavsky and Buras

are motivated in their analysis by the trade-off between increased yields and

increased costs that irrigation uniformity implies. In order to analyze how

crop yield would respond to nonuniformity in water application, they estimated

average yield from applied water by a Taylor series expansion and demonstrated

how their model can he used. Seginer assumed one underlying von Liebig crop-

water production function, but seasonal water use was assumed to be applied

with a uniform distribution. He then derived the economically optimal water

application as a function of the Christiansen Uniformity Coefficient (CUC)

(Christiansen) and applied the model to cotton production in Israel. Warrick

and Gardner similarly assumed a homogeneous von Liebig production function,

but they distinguished between applied water and effective water, assumed sev-

eral combinations of distributions for the two types of water, and then per-

formed Monte Carlo simulations to analyze the effects of these distributions

on yields. Feinerman, Bresler, and Dagan assumed no specific distribution hut

looked at the effect of nonuniformity on optimal water application for two

different crop-water production functions: one with yield that peaked and

then declined with increasing water application and the linear-response-

and-plateau (LRP) von Liebig formulation. In the former case, nonuniformity

decreased optimal water applications while, in the latter case, nonuniformity

might either increase or decrease optimal water use. Letey, Vaux, and

Feinerman applied this model to cotton (which has the First production Func-

tion) and corn (for an example of the second production function). Assumed

levels of the CUC were used to represent different degrees of nonuniformity in

their simulated analyses of the effects of nonuniformity on optimal levels of

applied water, yield, and profits. Feinerman, Letey, and Vaux analyzed the
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efficient levels of applied water when land quality is a random variable under

different attitudes toward risk. They derived approximate solutions for risk

neutrality and risk aversion with a Taylor series expansion and compared them

to a deterministic solution. They also derived an analytical solution

relating the variance in soil quality to yield when a Mitscherlich yield

function is assumed.

Thus, there is ample evidence for nonuniformity and much empirical work on

the consequences. Below we derive analytic results to complement this work.

Model for Aggregating the von Liebig Function
with a Random Input

Assume that a plant requires two inputs in fixed proportions in order to

grow. One of the inputs, xl, is assumed to be distributed evenly across the

field. The other input, x2, is distributed with a continuous probability

density function, f(x2), and corresponding cumulative density function,

F(x2' 
). it is assumed that 0 < x2 •Let Y = yield For a field and ao,-- ' 

al' b0' and b1 
be fixed parameters: a0' b0 

< 0 (that is, a and b indicate
--

that minimum values of the nutrients may be necessary before any growth can

occur) and a1, b1 > 0 (a1 
and h

I 
represent the marginal growth as the

input increases). If x
2 

is identical across the whole Field, then the true

production function For that Field is

(1) Y = min (ao + aixl, 1)0 + b x2).

Even if more than two inputs to production are necessary, this form still

applies since only one input can he binding at a time.

However, across a field, input x7 is not Found uniformly and, therefore,

plants in the field will not respond identically to homogeneous application of
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input xl. Define -Tc-2 as the level of x2 where the plant receives the exact
relative proportions that it needs, i.e., ao + aixi = 1)0 + (b1:R.2), or

(2)
a - a0 0 1-   b 

El 
xl = c0 clxl

where co is defined to be (a0 - b0)/h1, and cl is defined to be a1/h1.
Thus, for x2 < Tc.2, x2 is the limiting factor; For x, > xl is limiting.
Yield over the field then becomes

co+clxi 
(b0 + b1x2) f(x2 ) dx2(3) = SO

CO

C +C X0 1- 1
+ aixi) f(x.)) dx7.

The first term sums up the yields on all land areas where the level of x2 is
the binding constraint. The second term sums up the remaining area, with ax1
determining production on that land.

The response of this aggregate function to different applications of xl
can be found by differentiating equation (3) with respect to xl:

(4) dY _ a 
1 
11

- ' - F(co + c1x1)] > 0.

Thus, this aggregate function slopes upward, flattening off when the random
variable has hit its maximum value.

The shape of this function can he further examined by taking, the second
derivative:

(5) d
2
Y

dxl

al f(c0 + c1x1) <

which is strictly negative for E(co + c1x1) A 0. Therefore, since the

aggregate production function is an increasing concave function of inputs of
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x1, using aggregate production functions with these properties, such as the

Cobb-Douglas or quadratic, does not conflict with the assumption of an under-

lying von Liebig production function.

This result is consistent with Perrin's findings on the effects of

increased information on crop profitability. Using known information about

the soil characteristics in an area, he calculated optimal fertilizer inputs,

yield, and profit values for both a quadratic and an LRP von Liebig crop pro-

duction function; he made similar calculations when only average soil charac-

teristics were known. If more precise soil qualities were known, the LRP

specification gave slightly higher profits; however, if only the averaged data

were available, the quadratic specification gave much higher profits. Since

knowledge of more details about exact soil characteristics implied that par-

ticular land types could he identified, distinguished, and treated differently,

the von Liebig specification more accurately reflected the underlying reality.

In contrast, when only averaged data were available, a functional form with a

positive decreasing slope better reflected the actual aggregate production

function.

It is possible to examine the effects of increasing- the randomness of x2

through application of a mean-preserving spread, as described by Rothschild and

Stiglitz. A mean-preserving spread, a way of increasing riskiness more

general than increasing variance, involves taking probability density from the

middle of a distribution and increasing the density in the tails in a way that

leaves the mean of the distribution .unchanged.

Rothschild and Stiglitz define the problem as follows: Assume there exist

two probability density functions, g(x) and f(x), 0 < x < 1, with the
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same mean, but g(x) has a larger "spread" than f(x); let the associated cumu-

lated distribution functions he G(x) and F(x). The mean-preserving spread,

s(x), is the difference between the two density functions so that s(x) = tcz(x) -

f(x). Define S(x) = $s(u) du = G(x) - F(x). S(x) starts at 0, goes from

positive to negative, and ends at 0. Intuitively, S(x) indicates that the dif-

ference in the cumulative distribution functions, G(x) and F(x), is positive

at first (since G(x) has more weight in its tails) but must become negative at

some point since F(1) = G(1) = 1.

The function T(x) is defined as f()1.5(y) dy; T(x) has the properties that

T(0) = T(1) = 0 (since, at these points, there is no difference between the dis-

tribution functions); but T(x) > 0 For all x, since its "slope," S(x), goes from

positive to negative and ends up at 0.

For application to the problem at hand, define the yield function Y.. and Yf

such that

c,+clx,
(6) Yg = fou " (1)0 + bix2) g(x2) dx2 + f7c (a + g(x2) dx2o+cixi

and Yf is equivalent to Y in equation (3). Here it is assumed that 0
2 <

If s(x2) = g(x2) - f(x2) is a mean-preserving spread, then

co+c,x,
x_(7) Y

g 
= Y

f 
+ f0 " (b0 + s(x,) d4---z + Sc+cx

Evaluating this integral yields

(8) = YE - T(c0 + c1x1) —
< Y

f

ao s(x2) dx,7 .

since T(c + c1x1) 2:0 Intuitively, if the random input is distributed with
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more weight in the tails, then less will grow where it is the limiting factor

in plant growth since more of the field has low levels of that input; where

the nonrandom input is limiting, having more of the field with high levels of

the random input will not increase plant growth. Therefore, increasing the

randomness of the random input in the field will decrease yield.

Analytical Solutions for Aggregated Functions
With a Random Input

Thus, even though an individual plant may actually grow via a von Liebig pro-

duction function, in the aggregate a smooth concave function may provide a

better approximation for actual crop yields. Indeed, it is even possible, in

some cases, to derive a specific functional form from a particular probability

density function for the randomly distributed input and vice versa.

Some of the economics literature on exact aggregation performs similar

analyses. Houthakker assumed a number of individual fixed-proportion firms

with different relative proportions. Assuming that all firms would produce

efficiently and that they would only produce when profits were nonnegative, he

found that a Pareto distribution for the relative proportions would yield an

exact Cobb-Douglas aggregate function. Levhari extended Houthakker's analysis

to find the distribution function underlying an aggregate constant-elasticity-

of-substitution (CES) production function when the individual firms have fixed

proportions. Sato more generally sought the distributions that would permit

aggregation of individual CES production functions into CES or Cobb-Douglas (a

special case of CES) aggregate functions when all firms are operating effi-

ciently. He found that a Pareto distribution would lead to aggregation into a

Cobb-Douglas and he described the conditions that lead to the existence of

distributions for other aggregations to CES.
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The following analyses follow in this tradition but with several differ-

ences. First, this study concentrates on the production function itself rather

than imposing economic conditions such as the nonnegative profits requirements.

Additionally, the above articles assume that each individual production unit is

operating efficiently, while the following analyses derive their results from

the fact that many parcels of land are not "on the knife-edge" where ax, = bx2.

Given these significant differences, though, some of the results are very simi-

lar. For simplicity, we consider cases where ao = 0 = b
0' a = a

l' 
and h = b

1.

The Cobb-Douglas Aggregate Function 

If it is assumed that the aggregate production function is Cobb-Douglas in the

uniform input (x1), what probability density function is appropriate for

f(x2)? Assume that the aggregate function is

(9)

Then, obviously,

(10)

Y = kxcit.

dY
a5E- = akxa-11 •

Equation (4) gives the formula for dY/dx1 from the general formulation. Equat-

ing these gives

a a-1
F(x2 lcx = 1 - 

-a- kx, .
1

Note that, at this point, cx, = x2. The goal is to find a density function

f(x2) such that equation (6) holds. If



(12) F(x2) = 1 - aka-a ba-1 xa-1
'2 '

then

(13) f(x2) = (1 - a) aka-a ba-1 =

where g = (1 - a) aka-a ba-1 and f3 = a - 2 < 0. This Form can he seen to he

that of the Pareto distribution. Substitution of this function back into the

aggregation equation, (3), does return a Cobb-Douglas function.

Since, for Cobb-Douglas, it is usually assumed that 0 < a < 1, then this

function is downward-sloping and convex to the origin. It thus suggests that

the probability of low values of the random input is much higher than the

probability of high values of it (though, for the integral of the density

function to be 1, it must he hounded below). If empirical evidence suggests

that such a functional form is a reasonable approximation to the distribution

of the random input in a particular case, then a Cobb-Douglas aggregate pro-

duction function may provide an accurate representation of yield as a function

of the nonrandom input.

The Quadratic Aggregate Function and the Uniform Distribution

This analytic result will be used to demonstrate the process of moving from

the assumption of a distribution to the aggregate production Function. As

noted previously, Elliott et al. found that a uniform distribution can, in

some circumstances, serve as a good approximation to the distribution of water

from sprinkler irrigation. The following analysis will show that the assump-

tion of a uniform distribution results in a quadratic aggregate production

function.
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Assume now that f(x2) = 1/(h - g), g ? < h. Three possibilities arise:

g _< cxi _< h, cxi < g < h, and g < h < cx
1' 

Note that the only interesting— — 
result arises when a <cx1 < h; in the other two cases, one of the two terms4__

in the integral in equation (3) drops out and either xl or x2 is completely

limiting.

Incorporating this distribution into equation (3) yields

(14)

cx
fa 1

1 bx  
- g dx +

bx.;

201 - gY

2(h -
[

CX1 axix2

h -

hcx ax
 
1[11 1

x
l

1

c2 
-

2 
+ 2ahx - ba

gpi
x

D 1 1 -

]g dx2

which is a quadratic function in x
1. This functional form was used by Hexem

and Heady in their estimation of yields from inputs of water and nitrogen.

Reversing the process, as demonstrated with the Cobb-Douglas function, will

convert a quadratic function to the assumption of a uniform distribution.

The Negative Exponential Aggregate Function 
and the ffiTonentiaI Distribution 

The final analytical result that will he shown is for the exponential distri-

-xx2bution, f(x
2) = Xe , 0 < x2 < .... Then

(15)
CX -XX? -Xx

2Y = 1 
hx Ae dx + ax Ae .0 "2 cx 11 •

The first integral can he integrated by parts, yielding b{(1/X) - [cx, +
-Xx,

WA)] e L.1. The second integral can he integrated directly, yielding
-Acx,

ax
1
e I. Thus, with this distribution,
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(16)
-Xcx

Y 4x1( - e

which takes the form of a negative exponential function. It should he noted

that the exponential distribution has the same characteristics as the Pareto

distribution.

The advantage of these analytic solutions is that, if the distribution of

a random input can be approximated by one of the distributions above, then an

analyst is justified in estimating an aggregate production function with the

characteristics economists consider desirable.

von Liebig Yield Function with a Random Coefficient

Suppose that, rather than one of the inputs to the production function being

distributed randomly across a field, the coefficient on one of the inputs in

equation (1)--for example, al--is a random variable. This model of non-

uniformity may be relevant when, for instance, there are other inputs in the

fixed-proportions production function upon which there are no measurements,

such as nutrients in the soil, or genetic variability among the plants; it is

also relevant when the link between the applied input and the input the plant

actually uses is not known with certainty--for instance, applied water does not

necessarily equal effective water to a plant. In this case, even if other

inputs to the production function are applied in a uniform fashion, the plants

may not respond consistently to these fixed inputs. The following discussion

will present a model for a von Liebig production Function when one of the co-

efficients is random.

As before, let Y = yield and xl and x7 he inputs to production. For

simplicity, set ao and ho equal to 0 and let a, b he the parameters of the
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production function. Assume that x1 and x2 are known with certainty hut
"or

that a is a random parameter with probability density function f(a) and cumu-

lative distribution function p(a), 0 <a < .. Also as before, assume that

the underlying production function for a plant is

(17) Y = min (axl, bx7).

The knife-edge, where x1 = bx2, represents the point where both inputs are

binding. If a < bx2/x1, then xl is the binding input; if > bx2/x1, then

the level of x2 is binding-. Thus, the expected yield function, analogous to

equation (3), becomes

( 1 8 )

bx,/x,
ax f a +"So 

2' 1
bx2 f(a) da

1bx1

SO 'Ix 
bx

' ;xi f6) + bx2 1 - F x
1

•

In contrast to the previous model, where the "slope" of the yield function was

a constant b
1 
for x

2 
< c

0 
+ c

l
x
l 
hut the height of the plateau varied, here-- 

the slope varies. As with the case of a random input in equation (3), this

function can be shown to he increasing and concave by differentiation:

(19) dY byx1
fo ' a F(a)

1

This expression is nonnegative, as long as it is assumed that a would never go

below zero--a reasonable assumption, since the alternative would occasionally

require negative inputs of xl For the plant to crow. Therefore, the expecta-

tion of a over a positive range is, at the very least, nonnegative. Similarly,
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dY = b [1 - 
F(x?

2 x1

is nonnegative everywhere, and it is strictly positive For F(hx1/x1) < 1. The

second derivatives are

(21)

(22)

(23)

2

- 

-b x- (bxd Y 2 '2

dx
2  

x
3 x11 1

d
2
Y 

-b2x
2

. 2 =
dx

2

d
2
Y  

h2
_  

7xidx? x21.

<0

> 0.

Since the Hessian For this problem is negative semi-definite, then, as in the

case where an input is random, this production function is increasing and con-

cave in both its inputs.

Analytical Solutions for Expected Yield With a Random Coefficient

Analogously to the aggregate Functions with a random input, it is possible in

the case of a random coefficient to derive some analytical results linking

expected yield functions to some probability density functions for the random

coefficient. A few results demonstrating this link are given below.

The Cobb-Douglas Expected Yield Function 
and the Pareto Distribution

Assume that the expected yield function has the Cobb-Douglas form in its

inputs, i.e.,
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(24) E(Y) = gx

Then, following a procedure analogous to that used when an input is random,
differentiate this function with respect to x2 and set the result equal to
equation (20):

(25) 3E(Y)a 13-1
ax
2 

= ftgx, x7 = b 1 - F(a)lbx2/xi

Note that, where a = bx.„/x
l' x1 bx2/a' and substitute that expression in for

x The result is

(26)
F(;)lbx/x2 1 = - sgba-1 '124.13-1- -a7a

Differentiating this function to get the density function yields

(27) f(a) = cagba-1 a ei3-1 --a-1 = kay -,2 

where k = ai3gb94-1 T13-1 and y = -a - I < 0. As with the random input, a
Pareto distribution results from the assumption of an aggregate Cobb-Douglas.
Substituting this distribution back into the expected yield equation, (18),
does return the Cobb-Douglas form.

The Uniform Distribution 

Assume that is distributed uniformly, with .c.7, < a < h. Thus, f() = 1/(h - g).
Substituting this into equation (15) yields
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bx,/x

a2x
1

2(11 -

bx

-2b2x2 + 2bhx x2 1 2 1
2(h - 

g
)x
1

-17-

abx,7

h- g

22

b,
h
Dx2/xl

1
 a)da

which bears a limited resemblance to a quadratic formulation. Using the pro-

cedure of deriving the density function from an assumed quadratic expected-

yield function does not provide an analytical solution.

The Exponential Distribution 

-Now let f(a) = Xe Xa 
. Using the same procedure as above, the production func-

tion becomes

E(Y)

(29)

bx x1
Xx ae

-Xa -da +

-ax2/1(A1)[ _

CO

bx2 bx2 Xe
-Xa da

which bears a limited resemblance to the negative exponential form. It thus

appears that a link between specific functional forms and distributions does

depend on whether the coefficient or the input is random: While the

Cobb-Douglas is still related to the Pareto distribution, the exponential and

the quadratic distributions are only loosely related to the yield equations

derived when the input, not the coefficient, is random.
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von Liebig Production Functions
with Labor as an Input

This section will explore some of the implications of the von Liebig produc-

tion function when both inputs can be distributed evenly across the field and

a plant receives the correct relative proportions of the inputs hut both

inputs are functions of labor--for example, the amounts of water and nitrogen

that reach a plant depend on people watering and fertilizing it. Analysis of

this kind can be useful when the two types of labor should he distinguished,

but only aggregate labor data are available.

Assume that the "true" plant production function takes the form of

(30) Y = min[al x1(11), a2 x2(L2)]

where xl and x2 are inputs; L1 and L2 are the amounts of labor used to achieve

the levels of xl and x2, respectively; and al and a2 are parameters. If the

farmer is operating efficiently, then L1 and 1,7 will he chosen such that

al x1(1,1) = a2 x2(L ). If both inputs are Cobb-Douglas in labor--that is, if

x1(1,1) = L and x2(L2) = L2, then al . x1 = a2

(31) L
2 
= kLY with k = 

a1
a2

x2 implies

and y

If total labor used, 1E, equals L
1 
+ L

2' 
then substituting in the exnression for

L7 and totally differentiating yields

(32)
dL1 y-1,-1(1 + ykL, )
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Now, since yield is produced efficiently, on the knife-edge (where aixi = a2x2),

then Y = a14x1 (L1 ) = a1 La' 
and

l

( 3 3 )

( 3 4 )

dY (solaY XdL)=
dr, 1 dE

a-1aa1L1
0.1 + ykL

y-1
1

d2Y d (dY) d [(clY)(L1)]= =
dL dE dE dr cir

= (1 ykLI-1 a-2
a L ) - (a Y) ykLI-11

which is less than 0 since 0 < a < 1 and 0 < < 1 for Cobb-Douglas, y = an3,

and the two terms multiplied by the terms in brackets are positive. Thus, this

yield-labor production function is an increasing concave function of the total

labor used.

Now, suppose that data are available on the total amount of labor used and

on the amount of one of the inputs used--x1 in the following example. What

would be an appropriate function to estimate econometrically, given those two

kinds of data? The production function takes the same form as in (14). Sub-

stituting in x (L2) for x2 gives

(35) Y = min(aixi, a2L2).

aFurther substituting L2 = t - L1 and Li = xl into this function gives

(36) Y = min[
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Since it is assumed that the farmer is operating efficiently, then the produc-

tion function can be estimated as a simultaneous system, with

(37)

Y = alxl + El

Y=a2 
(
E
-x

1/
a1)

Note that this result relies on more particular assumptions than before, namely,

that both inputs are Cobb-Douglas in labor, that inputs and coefficients are

deterministic, and that the farmer is operating on the knife-edge of efficiency.

Summary and Conclusions

Though experimental evidence indicates that the von Liebig crop production

function best predicts yields on experimental plots, most larger areas, such

as farms, cannot be controlled precisely for uniformity. The question then be-

comes, what production functions will best predict yield when crop response or

inputs are not uniform? The preceding analysis shows that smooth aggregate

production functions can be derived from a fixed-proportions function when ran-

domness affects some aspect of that function.

Therefore, if a density function is known (even approximately) for the ran-

• dom element in crop growth, this analysis provides a method for justifying a

particular aggregate production function. Additionally, if one aggregate func-

tional form can be shown to predict crop yields much better than another one,

then a probability density Function for the random element can he derived.

Through analyses of this type, the link between the biology of plant growth

and aggregate crop production can he strengthened.
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