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ESTIMATION AND TESTING IN DEMAND SYSTEMS WITH CONCAVITY CONSTRAINTS 

James A. Chalfant and Kenneth J. White

ABSTRACT

method for imposing or testing curvature restrictions in demand
systems is suggested using Bayesian inference and inequality constrained
estimation. The approach makes use of Monte Carlo integration and the
approach suggested by Geweke (1986). The result is an inequality
constrained estimate of the parameter vector for a demand system, plus an
estimate of the probability that the inequality restrictions hold.
Application to the U.S. manufacturing data of Berndt and Wood using the
translog cost function illustrates the method.
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Economics, University of British Columbia. We wish to thank Charles
Blackorby, Erwin Diewert, John Geweke, George Judge, Gene Savin, and Terry
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ESTIMATION AND TESTING IN DEMAND SYSTEMS
WITH CONCAVITY CONSTRAINTS

1. Introduction

The development of flexible functional forms for demand systems makes

it possible to represent arbitrary technologies or preferences. This

generality has come at a cost, however, in that demand systems derived from

flexible cost or indirect utility functions need not be consistent with

optimizing behavior: Restrictions on the parameters of the demand system

remedy this situation when estimates are inconsistent with symmetry or

homogeneity.

Unfortunately, experience has shown that estimated demand systems may

also violate curvature restrictions, such as concavity of a cost function.

Curvature restrictions involve inequality restrictions on parameters and

make estimation difficult (e.g. Jorgensen and Fraumeni (1981); Gallant and

Golub (1984); Hazilla and Kopp (1985); Morey (1986)). While Diewert and

Wales (1987) suggested alternative flexible forms which could satisfy

curvature restrictions globally, this does not solve the problem of testing

such restrictions, and requires that one abandon simpler and more familiar

forms such as the translog (Christensen, Jorgensen, and Lau (1973)) or

generalized Leontief (Diewert (1971)).

The result is that flexible forms are chosen partly by the signs o

estimated elasticities. If the inequality restrictions are violated in one

model, another is often tried. This is analogous to sequential pre-testing,

and the statistical implications of this search process are well documented

(Judge and Bock (1978)).

This paper examines the problems of estimation and inference with

curvature restrictions on demand systems. Following Geweke (1986), we make
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use of a Bayesian approach to finding an inequality-constrained estimator,

in the context of imposing concavity on a translog cost function.

Treating the implied constraints on the parameter space as (diffuse) prior

information, we show that estimation and inference are straightforward using

an alternative objective, the minimization of expected loss. While the

approach is Bayesian, no prior information is required beyond the

restrictions for curvature, such as concavity of the cost function. The

result of the procedure is a posterior distribution for parameters that is

conditional on the observed data and makes possible probability statements

about parameters and associated hypotheses. The key elements are an

estimated parameter vector consistent with the inequality restrictions and a

proportion which can be interpreted as the probability that the inequality

restrictions hold.

In section 2, more details are given concerning the translog and the

necessary restrictions for concavity. Section 3 characterizes the problem

of estimating parameters subject to inequality restrictions. An application

using the Berndt and Wood (1975) data set is presented in section 4, and

section 5 concludes the paper with a summary of results.

2. The Translog Cost Function

Following Diewert and Wales (1987), the translog cost function can be

written as a function of output y, time t (to capture possible technical

change), and prices Pi (i-1,.. .,n), where n is the number of inputs:
in C a +a in P. + a in Y + a t0 i 1 Y t

+ R R 7
ij 
.1n P. in P. + 0. in y in P.j j

+ R r. t ln P. + 0.5*(a
YY 

ln y2 + a
tt 

t2 + 
2*aty 

t ln y)



3

In virtually all applications, the equality restrictions

7.. 7.. (Vi76j), 2/. (Vi), 2r.=0, 20. =0, andij • j J 1J

have been imposed so that the cost function satisfies symmetry and linear

homogeneity in prices. The 21 unconstrained parameters for the case of four

inputs are 
2(aO'al'a2'a3'ay'at'711'712'1113'722'723'.733'r1'72' 341'°243'

a
tt'

a
yy

,a
ty
)1. Additional restrictions on the trend or output coefficients

can be imposed to restrict the nature of technical change or the expansion

path of the underlying technology.

The remaining property required for a well-behaved technology is that

the cost function must be concave in the n input prices. The matrix of

second derivatives with respect to these prices must be negative semi-

definite, which implies inequality restrictions involving both the 7..
ij

parameters and the observed data.

A sufficient condition for concavity in the translog is that the matrix

F = (( . .) ) (i,j-1,...,n) must be negative semi-definite. Jorgensen and

Fraumeni (1981) reparameterized the translog using a Cholesky factorization

of r and obtained concavity using inequality restrictions on the new

parameters. However, the statistical behavior of the estimated parameter

vector is difficult to determine. Furthermore, Diewert and Wales (1987,

page 48) noted the tendency of this procedure to cause r to be "too negative
semi-definite" limiting the usefulness of the translog in cases where these

inequality restrictions are not satisfied by unconstrained estimates.

The condition which is necessary and sufficient for concavity is that

the matrix

r - (diag(a -

must be negative semi-definite, where s is the vector of factor shares
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(Diewert and Wales (1987)). Note that for positive shares, r itself need

not be negative semi-definite because the second part of the expression will

be, as long as factor shares are positive.

3. Inequality Constrained Estimation 

The usual approach to estimation of demand systems with inequality

constraints could be characterized as follows. First, one estimates the

parameters of a chosen flexible form, such as the translog, taking into

account equality restrictions of the sort described above. If concavity is

satisfied, then the constraint is not binding, the property in question is

assumed to be consistent with the data, and no further restrictions are

imposed. No attempt is made to assign a probability to the concavity

hypothesis, since it holds at the estimated parameter vector, usually the

maximum likelihood estimate.

Alternatively, the inequality restrictions may be violated and must be

imposed somehow. By remaximizing the likelihood function over the same

parameter space, subject to inequality restrictions on 8, one obtains the

best-fitting parameters which also satisfy concavity. Interpretation of

this procedure follows that used in testing equality restrictions--is the

decrease in the value of the likelihood function a significant one?--even if

the statistical behavior does not.
1 

Geweke (1986) argued that the existence

of restrictions on the parameter space in the form of inequalities could be

treated as prior beliefs about the parameters of the model. These could be

informative, or in the absence of any other information, diffuse priors

could be used to summarize this evidence. In the former case, some

1
Although see Dufour (1987) and Wolak (1987) for results concerning the

behavior of conventional tests in the linear regression model.
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probability density function p(0) would be used to summarize prior

information; in the latter case, p(e) a c. Either type of prior

information, when combined with the sample likelihood function and observed

data y using Bayes Theorem, yields a posterior likelihood function:

P(21Y) cc P(2) * 1(21y).

It is defined only over the restricted parameter space. This function

summarizes all available information about the parameters of the model,

including the inequality restrictions. Point estimates, depending on the

underlying objective, can be obtained using this posterior distribution.

Making use of the corner solution in cases where the restrictions are

binding--the result when constrained maximum likelihood estimation is:used--

corresponds to a loss function which gives rise to the dictum "use the p

with the largest likelihood value." However, this outcome need not lead to

a plausible estimate, nor is it the only possible objective. With a linear

loss function, the median of the posterior distribution minimizes expected

loss, and if it is quadratic, one should use the mean. As Geweke (1986,

page 128) notes, "the inequality constrained maximum likelihood estimator

is not likely to be especially interesting, since it may well lie at one

end-point of its distribution (whether that distribution is the posterior,

or the sampling theoretic distribution)."

The Bayesian approach to constraints on demand systems, then, plus a

quadratic loss function, requires finding the mean of the posterior density

function for the parameters. While this is not difficult conceptually, in

complicated cases, exact formulas are not available. The necessary

integrals over the truncated region of the parameter space could not be

solved in any but the most trivial of cases.
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In a series of papers, Geweke (1986) and others (Kloek and van Dijk

(1980); Griffiths (1987)) have pursued this approach to inference using

Monte Carlo integration of functions that are too complicated to evaluate

analytically or numerically. The method has been demonstrated for

inequality restrictions in single-equations by Geweke (1986), Griffiths

(1987), and Judge et al. (1988, Chapter 20) and a procedure exists for

imposing such restrictions in SHAZAM (White, 1987).

In the demand systems case, the concavity test requires determining

whether the matrix of second derivatives of the cost function--or the matrix

of substitution elasticities--is negative semi-definite. A common way of

testing this is to compute the eigenvalues of either matrix. All of the

non-zero eigenvalues must be negative for the concavity condition to hold.

Any positive eigenvalue means that the concavity condition is rejected; this

probability of rejection is the value of interest in inference. However,

the distribution of the coefficients in demand systems is too complex

permit computation of this probability using

distribution of the eigenvalues is even more

Monte Carlo integration is therefore the

analytic methods. The

complicated.

only feasible approach.

to

It

begins with the estimation of the unrestricted demand system. Estimates of

the coefficents and the corresponding covariance matrix are obtained. These

are used along with the normality assumption to generate a large number of

replications by the Monte Carlo method. For each replication, the matrix of

elasticities is obtained, and the eigenvalues are computed. The eigenvalue

check for concavity is then performed for each draw.

The probability that the concavity restriction holds is obtained by

calculating the proportion of Monte Carlo replications satisfying the
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eigenvalue test. Estimates of the parameters consistent with the concavity

restriction are obtained by computing the mean of the coefficient estimates

for all replications where the eigenvalue test is satisfied.
2

The Bayesian truncated posterior approach is different from the methods

used by Diewert and Wales (1987), who directly imposed restrictions on the

coefficients of the flexible forms they examined. Here, the restrictions

are imposed on the posterior distribution of the coefficients. This method

yields an easy test of the inequality hypotheses, in addition to estimates

of the parameters.

In the next section, this procedure is applied using the translog cost

function. Since elasticities depend on relative prices (through the

observed factor shares), for the translog, a different set of restrictions

must be used to impose concavity at every data point. We discuss both

imposing concavity at the mean of observed factor shares and at each data

point.

4. A Concave Cost Function for U.S. Manufacturing

The data from Berndt and Wood (1975) are used in this section to obtain

a concave translog cost function using Monte Carlo integration. These data

include total input costs (TIC), an index of output (Q), and factor shares

and price indices for capital (K), labor (L), energy (E), and materials (M)

inputs for U.S. manufacturing for the years 1947-1971. The same data were

used by Berndt and Khaled (1979), Diewert and Wales (1987) and many others

2
It is necessary to check whether concavity holds at the mean of these

data points, unless the region of the parameter space consistent with
concavity can be shown to be a convex .set. Otherwise, there is no guarantee
that the mean of parameter vectors consistent with the restriction will
itself satisfy concavity. It will prove much easier simply to verify that
concavity holds at the mean, since elasticities using those parameter values
are likely to be of interest anyway. We thank Charles Blackorby for this point.
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in studying the properties of flexible forms.

Most recently, Diewert and Wales (1987) found that the translog cost

function, when fit to these data with a system of share equations (K, L, and

E) of the form

in  in y + r. t,1 1 . 1

produced violations of concavity at six data points.
3

They imposed

concavity using the Jorgensen and Fraumeni (1981) approach, but found the

quality of results to deteriorate considerably, and so suggested alternative

flexible forms (generalized McFadden; generalized Barnett) which could

satisfy concavity.

In this section, we explore how the translog can be used along with the

inequality-constrained estimator described earlier to obtain results

consistent with the concavity restriction. One reason for doing this is to

permit the translog to be used for its convenience, without requiring the

sacrifice of concavity. However, even when there are no practical

considerations to prefer one form or another, estimates of the translog

parameters consistent with concavity are useful for comparisons of results

from different flexible forms to select the most appropriate form or for

testing the concavity restriction.

For simplicity, concavity was checked only at the means of observed

shares. First, it was necessary to obtain the unconstrained parameter

estimates of the vector of translog parameters, O. This was done using an

iterated seemingly unrelated regressions estimator, obtaining essentially

3
This occurs for the years 1949-1953 and 1956 when predicted factor

shares are used to calculate substitution elasticities.
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the same results as did Diewert and Wales (1983). The coefficient

estimates are shown in Table 1. When combined with the estimated

covariance matrix these characterize the multivariate normal from which the

parameters are hypothesized to be drawn. With completely noninformative

priors, this multivariate normal would be the posterior distribution.
4

Combining the sample likelihood function with the inequality restrictions on

the parameters--that they lead to a matrix of substitution elasticities with

no positive eigenvalues--the posterior density function is the truncated

multivariate normal. Its region of support is the region of the parameter

space consistent with the concavity restriction.

In principle, we could work directly with such a distribution, finding

the mean or median, constructing interval estimates, etc. The difficulty in

doing so in the present case illustrates that it is not necessary to be able

to solve the appropriate integral to find the mean of the posterior

distribution. In fact, one cannot even calculate the region over which it

should be solved without extensive computations.
5

For our purposes, all that is necessary is to be able to perform the

Monte Carlo integration. A random sample of 10,000 replications (plus the

antithetic replications, giving a total of 20,000 replications) is drawn

from the multivariate normal. In this case, that distribution is the 21-

variate normal with mean vector given by the estimated parameters in Table 1

and the estimated covariance matrix. This distribution summarizes our

4
This treats the estimated covariance matrix as known. For

discussions of the Bayesian analysis of Seemingly Unrelated Regression
models, see Zellner (1979) or Judge et al. (1985).

5
Though see Caves and Christensen (1980) or Barnett, Lee, and Wolfe

(1985) for examples with fewer goods in which the "regular" regions of
various functional forms were constructed.
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knowledge about the parameters of the translog.

The method works as follows. For each replication, compute

elasticities using the parameters drawn and the mean factor shares. Then

check whether the replication corresponds to a violation of concavity or

whether the computed elasticities satisfy the restriction. After this is

done for each of the replications, the percentage of draws not violating

concavity estimates the probability that the restriction holds. For a

quadratic loss function, we use the.mean of those vectors as the estimated

parameter vector.

With this approach, the items of interest are the estimated parameters

and standard errors--easily calculated for each parameter estimate as the

standard deviation of the replications consistent with concavity, divided by

the square root of that number of replications. Estimates of elasticities

using these parameter estimates are also of interest. As noted earlier,

these elasticities are necessary to verify that concavity holds at the mean

of the replications consistent with the restriction, although that seems

likely, we know of no easy way to rule out counterexamples. Finally,

interval estimates or histograms for the parameters or elasticities can be

used to summarize in a probabilistic fashion the information about these

values that is contained in the posterior distribution of the parameter

vector.

These results are reported in Tables 2 and 3 and in Figure 1. Table 2

contains the summary statistics from the replications, including the

estimated mean of the truncated posterior distribution and standard errors.

Of the 20,000 replications, 10,062 satisfied the concavity restriction,

representing a probability of 0.5031 that the restriction holds. Following
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Geweke, a standard error can be calculated using the formula

s.e.(15)=A11(1-11)/n),

which is :00354 in this example with n=20,000 replications. When greater

precision is desired, more Monte Carlo replications can be included.

Table 3 reports elasticities calculated using these parameter estimates

for selected data points. These were obtained by using the parameter

estimates from Table 2 in the usual translog formulas, along with the

predicted budget shares for 1947 and 1971 and the mean observed shares.
6 
It

is interesting to note that using these parameters, concavity holds not only

at the mean values for shares but at all 25 data points in the Berndt and

Wood data set. Thus, while some of the 10,062 replications consistent; with

concavity at the mean would not satisfy it at all 25 data points, the mean

of those replications is consistent with concavity everywhere. This

suggests that imposing the restriction at all 25 data points will not

greatly reduce the probability that the restriction holds.
7

Figure 1 contains histograms which represent the posterior

distributions for own-elasticities of substitution. These were computed

from the substitution elasticities saved from each replication satisfying

concavity, a subset of all 20,000 replications, and for the entire set,

shown for comparison. The truncation of own elasticities of substitution at

6
An alternative set of elasticities could be obtained by using the

coefficient estimates given by the posterior mean to predict factor shares,
rather than using the actual data.

7
We have done a smaller version of the same experiment, in which we

imposed concavity at every data point. This increases computing time and
the number of inequalties which must be checked by a multiple equal to the
number of data points, but not the complexity of the problem. We find that
there is a decrease in the probability that concavity holds of approximately
10 percent, with a relatively small number of replications.
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zero is apparent from the histograms, but these also illustrate that many

cases in which negative values are obtained for some of the elasticities

still violate concavity. Similar summaries could be generated for the

parameter estimates or the eigenvalues, but the elasticities have the

advantage of being unit-free and interpretable.

Table 3 indicates that our results are not subject to the criticism of

Diewert and Wales that constrained estimates are too negative semi-definite.

Of course, this is due to the use of the necessary restriction, rather than

the sufficient one of Jorgensen and Fraumeni. We also tested the latter

restriction, but found that the probability that concavity holds dropped to

zero--none of the 20,000 replications drawn earlier satisfy the stronger

restriction. This illustrates the difference between the two approaches--

for the Berndt and Wood case, the strong restriction dramatically

understates the compatibility of the data with the concavity restriction.

5. Conclusions 

This paper has shown how, using a Bayesian approach, inequality

constraints can be imposed in demand systems. Information from

unconstrained estimation of the parameters of the demand system is combined

with inequality restrictions to obtain a posterior distribution that

summarizes all information about the parameters and conditions the analysis

on the actual outcomes observed in the sample. Under a quadratic objective,

the mean of this distribution yields a parameter vector that minimizes

expected loss.

Application to the Berndt and Wood data set shows that the method

yields both a probability that the restriction holds and estimates of the

coeffiCients. The approach does not produce corner solutions as estimates
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and, while it is somewhat computer-intensive, it is very intuitive and easy

to apply, so it provides a nice alternative to the nonlinear programming

problems needed to impose inequality constraints in previous applications.

Of interest in future applications will be results using other demand

systems and other data sets. Using the same data set, we have found in

limited simulations that the probability that concavity holds appears much

higher with a generalized-Leontief demand system. Such results will be of

use in the problem of selecting appropriate flexible forms for particular

applications.

It will also be of interest to examine the normality assumption and the

role of the covariance matrix. Here, we have appealed to asymptotic theory,

treating the posterior distribution as the multivariate normal. As noted by

Zellner, this is conditional on the estimated covariance matrix; the

posterior distribution for both the parameter vector and variance matrix is

otherwise more complicated. Only in simpler settings, such as two equations

with identical design matrices can exact properties be obtained. This

method could be used with no greater difficulty if Monte Carlo replications

were generated from a more complicated posterior distribution. We chose to

use the multivariate normal to be consistent with the way the conventional

estimates are interpreted.

One may doubt the initial normality assumption as well. For instance,

because of restrictions on the range of error distributions in share

systems, the Dirichlet was used by Woodland and the lognormal by Rossi. In

that case, the method we have suggested could be applied with alternative

density functions or even those estimated from bootstrap-generated

simulations.
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Table 1. Estimated Translog Coefficients 

-Parameter 

a0
al
a2
a3
a
aY

711
722
733
712
713
723
Ti
T2

(k1
°,4%2
'3
a
a
tt

ayy
ty
714
724
734
744

Estimate St. Error T-Ratio 

0.27150 16.532 0.016423
0.27034 0.037939 7.1255
0.41622 0.085991 4.8402
0.19513 0.015073 12.946
0.93261 6.3458 0.14696
0.057111 0.24409 0.23397
0.034405 0.0040311 8.5349
0.13876 0.047464 2.9235
0.015034 0.0060254 2.4951
0.012729 0.0090091 1.4129
-0.0078071 0.0016745 -4.6624
0.0081668 0.0098706 0.82739
0.0012273 0.00033507 3.6630
-0.00020166 0.0011903 -0.16943
0.00077853 0.00027661 2.8146
-0.040733 0.0072614 -5.6095
-0.031028 0.016463 -1.8847
-0.028742 0.0025787 -11.146
0.0011512 0.0018481 0.62289
0.0010494 1.2179 0.00086161
-0.012290 0.046919 -.0.26194
-0.039327 0.011970 -3.2854
-0.15966 0.052901 -3.0180
-0.015394 0.0081792 -1.8821
0.21438 0.059845 3.5822

Log of Likelihood Function - 447.561

1-capital, 2-1abor, 3-energy, 4-materials. Estimates of parameters
involving materials were obtained through the restrictions.
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Table 2. Results of Constrained Estimation

Negativity and Concavity

20000 replications -- 10062 satisfied proportion = 0.50310

Precision of Proportion- 0.00354

parameter average stdev variance precision

a0
al
a2
a3
a
aY

711
722
733
712
713
723
1

r2
r3

C61

'3
a
a
tt

ayy
ty

0.13248
0.26988
0.41682
0.19570
0.98298
0.056290
0.033241
0.10797
0.014516
0.0074911
-0.0082594
0.0065574
0.0013382
0.00047204
0.00081576
-0.040664
-0.031232
-0.028851
0.0011389
-0.0080414
-0.012151

16.384
0.037795
0.086751
0.016802
6.2887

0.24197
0.0037434
0.034264
0.0051030
0.0071817
0.0016000
0.0094656
0.00032169
0.00097147
0.00021890
0.0072401
0.016595
0.0031815
0.0018338
1.2069
0.046513

268.42
0.0014285
0.0075258
0.000282.31
39.548

0.058548
0.000014013
0.0011740
0.000026040
0.000051577
0.000002560
0.000089597
0.000000103
0.000000944
0.000000048
0.000052419
0.00027541
0.000010122
0.0000033629
1.4567
0.0021634

0.16333
0.00037679
0.00086483
0.00016750
0.062693
0.24122
0.000037318
0.00034158
0.000050872
0.000071596
0.000015951
0.000094364
0.000003207
0.000009685
0.000002182
0.000072178
0.00016544
0.000031717
0.000018282
0.012032
0.00046369
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Table 3: Estimated Elasticities 

Using 0, the unconstrained maximum likelihood estimate

Observation 
all 622 633 644

1947 -5.92 -0.78 -13.93 -0.03
1971 -5.17 -0.79 -13.62 -0.07
mean -5.67 -0.80 -13.83 -0.05

Observation
612 613 614 623 .624 634

1947 1.89 -2.13 -0.08 1.73 0.02 0.46
1971 1.86 -2.42 -0.31 1.59 0.12 0.45
mean 1.87 -2.26 -0.17 1.66 0.07 0.45

Using 6, the mean of the posterior distribution for 8

Observation
611 622 633 

a
44

1947 -6.29 -1.27 -14.19 -0.15
1971 -5.64 -1.14 -13.86 -0.19
mean -6.08 -1.21 -14.09 -0.17

Observation
612 613 614 623 624 634

1947 1.52 -2.30 0.11 1.59 0.25 0.55
1971 1.51 -2.62 -0.08 1.48 0.32 0.54
mean 1.51 -2.45 0.03 1.53 0.29 0.54
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