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SPECIFICATION SELECTION ISSUESIN MULTIVARIATE THRESHOLD AND
SWITCHING MODELS

A promising avenue of research in time-series analysis that considers structural change, regime switching,
and threshold-type models has developed in recent years. Such models arise in situations where the
underlying economic structure changes in a manner that is unknown a priori to the analyst. Examples
include gradua switching models, threshold error-correction models, smooth threshold autoregressive
(STAR) models, regime switching models, and threshold cointegration models. These models often
occur when some “forcing-variable” is driving the switching among regimes. In the case of standard
(Chow-type) structural change models, the forcing variable is time, such that any t greater than a break
point forces the model into a new regime and the change is permanent. In threshold models, the size of a
particular variable (i.e., whether the forcing variable is large enough to exceed a threshold) determines the
regime and switching can occur back and forth among regimes. Different regimes are typically
represented by different parameter estimates for the underlying model.

The literature has described two genera approaches to the selection of thresholds or break points.
In the overwhelming majority of applied analyses, the criterion for selecting the break point or threshold
has involved minimization of the sum of squared errors for the model (see, for example, Balke and
Fomby (1997) and Goodwin and Piggott (2001)). Alternatively, one may choose to choose the break
point or threshold that maximizes a likelihood function (see, for example, Obstfeld and Taylor (1997)).
In cases where normality and homoscedasticity are assumed, these aternative criteria are asymptotically
equivaent and are fully analogous to maximizing a sup-Chow test of the difference between regimes.

This equivalence may break down in multivariate models involving systems of equations (e.g.,
demand systems and vector error correction models). Multivariate analogs to the criteria discussed above
are obvious. In the first case, one could choose to minimize the system sum of squared errors (i.e., the
trace of the covariance matrix for the system’'s residua errors). In the case of maximum likelihood
estimation, the kernel of the likelihood function involves the logged determinant of the residual
covariance matrix. These two criteria are by no means equivaent since the former ignores cross equation
correlation while the latter explicitly accounts for it. It isthus possible that the two different approaches,
both of which are certainly reasonable, could lead to very different answers in terms of regime switching
or threshold effects. It is even possible that one could obtain negative test statistics for evauating the
statistical significance of the threshold or switching behavior. Of course, these test statistics, though
assuming the form of a conventiona chi-square test, are non-standard and thus must be simulated under
the null hypothesis.

Our paper focuses on how model selection may be influenced by these alternative approaches,
both of which have been applied in the literature. We conduct a simulation exercise involving a bivariate
threshold vector error correction model. We examine the extent to which ignorance of cross-equation
correlation influences the correct estimation of the threshold variable. Simulated data over varying levels
of error variation and correlation are utilized in the simulation. The results from our Monte Carlo
experiments suggest, contrary to the initid hypothesis, that the consideration of the cross-equation
correlation does not increase the accuracy of small sample parameter estimates.

We then apply the methods discussed to a historical analysis of the regional integration of U.S.
markets for eggs. Our application isto 31 years of monthly egg prices quoted at nine important wholesale
markets: Atlanta, Baltimore, Boston, Cincinnati, Dubuque, Indianapolis, Memphis, Minneapolis and New
York. Prices cover the historical period that goes from 1880 to 1911. Our results suggest that threshold
behavior characterizes spatial price linkages between the markets analyzed.



Threshold vector error correction models

Tong (1978) originaly introduced nonlinear threshold time series models. Tsay (1989) developed a
method to test for threshold effects in autoregressive models and to model threshold autoregressive
processes. Balke and Fomby (1997) extended the threshold autoregressive models to a cointegration
framework, thus combining non-linearity and cointegration.

Threshold vector error correction models (TVECM) dlow nonlinear and threshold-type
adjustments to long-run equilibrium. These models occur when the size of the (lagged) error correction
term allows one to distinguish between different regimes and the variables in the model exhibit different

types of behavior in each regime.
We dtart our analysis by considering a general two-regime bivariate threshold vector error

correction modd. Let
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be a two-dimensional 1(1) time series which is cointegrated with the cointegrating vector a (2x1). Let

Ny =8X; pe the 1(0) error-correction term. A two-regime TVECM can be compactly written in the
following way:

_i, bixt-1+ut if Vi1 £g
=1

Dx, : . @)
TbZXt—l+ut If Vt—l >g
where:
€%,
é 1
aDxe 2
e .
é G
Xi1= @ u
e
é G
eDx.. §
é d
Nt

N¢.1= variable relevant to the threshold®;9 = threshold parameter; and b, and P2 = vectors of coefficients.
We assume that there is no constant in the model, which is equivalent to assuming that the variables do
not contain linear trends. The TVECM may a so be written as.

Dx, =bI1Xt. 1d1(g) +b'2 Xt—ldz(g)+ U, ©))
where:
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d,(9) =1(n,., >0)

! Thelag of the error correction term, the variable relevant to the threshold, is assumed to be equal to 1.



Estimation of the threshold points

As has been explained above, there are two general approaches to the selection of thresholds in
multivariate threshold models. In a first approach, the criterion for selecting the threshold involves
minimization of the logarithm of the determinant of the variance-covariance matrix of the residuas (S).
Under this first approach, the TVECM can be estimated using sequential multivariate least squares in two
steps. In the first step, agrid search is carried out to estimate the threshold parameter (9). Conditional on

9, the parameters b and B2 can be estimated through the OL S regressions of DX on Xi.1 for the sub-

samples for which M-1£9 and M1 >0, respectively. From this estimation the logarithm of the
determinant of the S matrix is derived:

S(g) = In|S(g)| @

where S(9) is amultivariate least squares estimate of S = V& (U) conditional on 9. In the second step,
the least squares estimate of 9 is obtained as:

g=ag mn $(g) ©)

This approach is equivalent to maximizing a likelihood function:
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The MLE estimates (01:02.5,0) are the values that maximize L(P1:02,S,9) . Holding 9 fixed, the
following concentrated likelihood function can be derived (Hansen and Seo 2001):

_ n e np
L(g)=- - log|S(a)|- = o

where:
p = number of variables.
5 log|S
Hence, the MLE(9) estimates thus minimize og| (g)|
Under a second approach, the TVECM estimation method differs in the grid search process.
While the fist proposal minimizes the log determinant of the variance-covariance matrix of the residuals,
the second minimizes the trace of the S matrix:

S(g) = trace(S(g)) ©)

As has been noted above, in finite sample estimation of multivariate models, the two approaches
may not be not equivalent. While the maximum likelihood estimation accounts for cross equation
correlation, the second approach ignoresit. Hence, it is possible that the two different approaches could
lead to different answers in terms of threshold effects. It is even possible that one could obtain negative
test statistics for evaluating the significance of the threshold effects.



A common approach to test for the significance of the differencesin parameters across regimesis
the sup-LR datistic. The sup-LR statistic tests for alinear vector error correction model (VECM) against

the alternative of a TVECM. The model under the null is Dx, =b X, +ut, while the model under the
dternative can be expressed as P% =P:1X, 101 (9) +b, X, ,d,(9) + U The sup-LR statistic can be

computed in the following way:

LR =n{In|3- n$(g)]]

where:

S =isthe variance-covariance matrix of the residuals of the VECM;

©)

S(9) = represents the variance-covariance matrix of the residuals of the TVECM; and n = is the number
of observations.

The sup-LR statistic has a non-standard distribution because the threshold parameter is not identified
under the null hypothesis and thus smulation of the test statistics under the null is needed in order to
conduct hypothesis testing.

A simulation exercise

In order to evaluate how parameter estimation and model selection may be influenced by the two
alternative approaches to the selection of the threshold, Monte Carlo experiments are conducted in this
section. The experiments are based on the following bivariate TVECM with two regimes:
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We generate the errors u; and w; from a multivariate normal distribution (N(0,S)) and consider
four different parameter sets for the variance-covariance matrix of the residuals (S), corresponding to no
Cross equation correlation, positive cross equation correlation, negative cross equation correlation and a
positive cross equation correlation with different degrees of error variation®:
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Two sample sizes are considered n=100 and n=250. Our simulations are divided into two main
groups. First, we estimate the parameters of the TVECM under the two described approaches. The grid
searches to find the optimum threshold are restricted to ensure an adequate number of observations for
estimating the parameters in each regime. The thresholds are searched between 1% and 99% percentiles

2 The S matrices correspond to 0 (case 1), 0.5 (case 2), -0.5 (case3) and 0.5 (case 4) correlation coefficients.



of the error correction term®.  We asses the finite sample distribution of the estimators using 1000
simulation replications. Second, by using 100 simulation replications and focusing on one sample size,
n=100, we a so consider the sup-L R test and its associated probability-value. To determine the p-value of

the sup-LR datistic, we run 100 smulations for each model whereby the dependent variables DX are
replaced by iid N(0,1) draws (see Hansen (1997) for a detailed discussion of this approach). The
proportion of simulations under the null for which the simulated sup-LR statistic exceeds the observed
sup-LR satistic gives the asymptotic p-value of the sup-LR test.

In table 1 we report the mean, root mean squared error (RM SE) and mean absolute error (MAE)
of each estimator* of the parameters of the TVECM in 1000 simulation replications. In table 2 we report
the same statistics for each estimator of the parameters of the TVECM, as well as the mean of the sup-LR
test and its p-vaue® in 100 simulation replications.

The results indicate that, contrary to our initial expectations, choosing the threshold parameter
through minimizing the logged determinant of the covariance matrix does not improve the accuracy of the
estimates, at least for the sample size and simulation terms that we consider.

An Empirical application: Regional integration of Nineteerth Century U.S. egg markets

The last decades of the nineteenth century have been identified as an era of increased economic
integration. Improvements in transportation, refrigeration and communication mechanisms made it easier
for buyers and sellers to contact each other, yielding a higher level of market integration. Economic
integration resulted in an increase in trade, a more efficient use of resources and an increase in
productivity and overall production (Goodwin, Grennes and Craig 2002).

Economic integration was not limited to capital or labor markets. It also characterized the
evolution of some agricultural markets such as grain markets (O’ Rourke, 1997). Mechanical refrigeration
played akey rolein the spatial integration of markets for short shelf life commodities such as mest, butter
and cheese (Williamson 1995 and Goodwin, Grennes and Craig 2002).

With the exception of the analysis of Goodwin, Grennes and Craig (2002), there are no
econometric estimations of the effects of the technological improvements mentioned above on the level of
market integration of agricultural commodities. In this empirical application, we study the effects of
transport, refrigeration and communication improvements on the level of integration of regiona markets
for eggs.

Though the adoption of technical improvements at the end of the XIX century, specialy the
introduction of the mechanical refrigeration, contributed to a significant increase in the regional price
convergence of perishable commodities, these changes may not have substantialy affected egg markets.
By the end of the nineteenth century, the egg industry was till at a very early stage of its development.
Freezing egg operations were only at an experimental phase. The industry was mainly operating at a small
scale, due to the fact that eggs were manually separated until 1912, when the hand separator was invented.
Additionally, the egg industry was struggling to solve relevant sanitary and refrigeration problems
affecting egg products. Another drawback precluding the expansion of the egg industry was the lack of
demand for its products, mainly due to the low quality of the final outcome. The use of dried eggs, prior
to the freezing of eggs, was scarce and principally limited to army camps. The consumption of frozen
eggs, aso limited, was mainly coming from bakers and other food manufacturers. It was not until World
War Il that the U.S. egg industry, specialy the egg drying industry, considerably expanded as a result of
both public programs to encourage an increased production of eggs through government purchases at
supported prices and an increased demand from the Armed Services (Koudele and Heinsohn).  Due to
the lack of a high scale operating egg industry, along with the high perishability of fresh refrigerated eggs,

3 When more than one optimum threshold is found, we take the median of the range.
* Selected percentiles of each estimator of the parameters are also available from the authors upon request.
° No measure of error can be computed for the sup-LR test and its p-value.



arbitrage operations of egg products may have been limited during the period of analysis, thus limiting the
integration of markets through price convergence for this commodity.

Econometric methods

In order to study how technical developments at the end of the nineteenth century affected the level of
market integration of eggs in the U.S., we focus on the transmission of price shocks across space using
threshold vector error correction models. These nonstructural models allow us to estimate bands within
which regional prices might not be linked to one another due to transactions codts, recognizing that
deviations must exceed a certain amount to provoke equilibrating price adjustments and lead to regional
market integration.

We define pairs of prices composed by a central market price — we choose New Y ork— and
another wholesale market price. For each pair of markets, we estimate a TVECM (eg. 3) with two
thresholds (g, and @) in order to allow for asymmetries in the process of price adjustment. We include
lagged price differentials to represent short-run price dynamics. The error correction term is given by the
lagged residuals derived from the OLS regression that represents the equilibrium between each pair of
prices. We conduct the two grid searches described above in order to estimate the thresholds. In
particular, in each grid search, the thresholds are searched over 1% and 99% of the largest (in absolute
values) negative and positive lagged error correction terms. The searches are restricted to ensure an
adequate number of observations for estimating the parameters in each regime. We then estimate the
TVECM conditiona on the threshold parameters.

Our specific estimation strategy can be summarized as follows. Fird, in order to determine
whether the price series are stationary, standard Dickey-Fuller unit root tests are applied on individual
price series. Second, we test for cointegration among the pairs of prices using the Johansen cointegration
test. We then follow the general approach of Engle and Granger and utilize ordinary least squares
estimates of the cointegration relationships among the pairs of prices. The lagged residuas derived from
these relationships are used to define the error correction terms. The next step consists of determining
whether the dynamics of the longrun relationships among prices are linear or whether they exhibit
threshold-type nonlinearities. We use Tsay’ s (1989) nonparametric test.

We then estimate a three-regime multivariate TVECM for each pair of prices. Finaly, we test for
the significance of the differences in parameters across relative regimes using the sup-LR test statistic (eg.
9). As we have mentioned above, the sup-LR statistic has a non-standard distribution because the
threshold parameters are not identified under the null hypothesis. To determine the p-value of the sup-LR
statistic, we run 100 simulations for each model whereby the dependent variables &DXI) are replaced by
iid N(0,1) draws (see Hansen (1997) for a detailed discussion of this approach)®. The proportion of
simulations under the null for which the smulated LR statistic exceeds the observed LR dtatistic gives the
asymptotic p-value of the sup-LR test.

® To keep cal cul ations manageabl e, we reduce the number of gridpoints in these simulations.



Data and empirical application

Our empirical analysis utilizes U.S. monthly egg prices’, observed from October 1880 to October 1911.
Prices were quoted at nine relevant wholesale markets: Atlanta, Baltimore, Boston, Cincinnati, Dubuque,
Indianapolis, Memphis, Minneapolis and New York. The monthly prices are taken from Holmes (1913)®.
As explained above, we formulate the hypothesis that the technological developments at the end of the
nineteenth century, especially the adoption of mechanical refrigeration, may not have exerted a strong
influence on the level of market integration for eggs.

Standard unit-root tests confirm the presence of a unit root in al price series’. Johansen
cointegration tests (table 3) indicate that there is no long run relationship between the prices', a result
which is expected in light of the scarce development of the egg industry in the period analyzed'".

We compute the OLS estimates of the error correction terms for al pairs of variables using the
New York price as the regressor. Contrary to the Johansen cointegration tests, the DF and ADF
cointegration tests of Engle and Granger (1987) indicate the existence of along run relationship between
the pairs of prices™.

Tsay's test is conducted using the error correction term derived form the OLS cointegration
regression. Tsay's test supports nonlinearity at the 10% significance level in al models except for the
Dubuque — New York model (see table 4). The thresholds derived from the two dimensiona grid
searches and the sup-LR statistics are presented in table 4. Our results suggest that, with the exception of
Indianapolis-New Y ork moddl, threshold effects are statistically significant at the 10% level for al pairs
of prices. If we select the thresholds by minimizing the natura log of the determinant of the S matrix, we
find the transactions costs bands to be maximum for Atlanta-New York, Memphis-New York and
Minnespolis-New York, indicating a high variability in egg prices between these cities. Atlanta,
Memphis and Minneapolis markets are close to major production areas and likely to have been net
exporters of the product analyzed. New York, as is the case for other magjor cities like Boston and
Baltimore, is likely to have been a net importer of eggs. Hence, pricesin New York, aswell as pricesin
Boston and Baltimore, do probably include a sgnificant transactions costs charge. In light of the
previous argument, transactions costs bands are expected to be wider between an exporter and an importer
market, than between importing markets. Bands for importing markets should be narrower to reflect the
smaller price differentials usually observed for these pairs of prices, since both prices will include
transactions cost components. In accordance to the previous argument, our results suggest much more
lower transactions costs bands for Boston-New York and Baltimore-New York than for Atlanta-New
Y ork, Memphis-New Y ork and Minneapolis-New Y ork. The finding that bands for Cincinnati-New Y ork
and Dubuque-New Y ork are the smallest is difficult to explain in terms of the above argument, though, as
it is noted in Goodwin, Grennes and Craig (2002), because we have not restricted the price transmission
cointegration parameter to be equa to 1, the interpretation of the thresholds as transactions costs is
somewhat complicated.

We find the threshold estimates to be more reasonable when the estimation aims at minimizing
the natural log of the determinant of the S matrix than when the trace of this matrix is minimized: the

" We conduct the analysis for pricesin levels.

8 A detailed description of the price datais available from the authors upon request.

° Monthly dummies to allow seasonality are introduced in the model specification. It should be noted here that the
standard unit-root tests are very sensitive to the model specification. We use the SBC information criteria to select
the deterministic components introduced in the model.

10 The specification of the model estimated to carry out the Johansen test is determined according to the SC and HQ
information criteria.

1t should be noted here that, in spite of their limitations (Barrett 1996), cointegration tests have been widely used
to evaluate the degree of market integration.

12 Results are available from the authors upon request.



distance between the thresholds for Boston-New Y ork and Baltimore-New Y ork models is much smaller
if the first method is utilized.

As the Monte Carlo results presented above suggest, the two grid search techniques that have
been used do not lead to significant differences in the results. Both techniques yield the same LR test
result, though there are some differences in the threshold parameters estimates.

In order to better interpret the dynamic relationships among prices, impulse response functions
are considered for the models with significant threshold effects. In threshold models, responses to a shock
depend on the history of the series, as well as on the size and sign of the shock. As a conseguence, many
different impulse response functions can be computed. We chose a single observation (the last
observation of our data) to evaluate the responses to one standard deviation positive and negative price
shocks in each of the markets. We adopt Koop, Pesaran and Potter’s (1996) proposal, which defines
responses (I:.) on the basis of the observed data (z, z.4, ...) and ashock (v) as:

(2402 g,) = E[Zt+k|zt =4 +V’Zt-1:Zt-1""]- E[Zt+k|zt :Zt’zt-lzzt-l""]

Because the prices are not stationary, we may find transitory as well as permanent responses.
Specificaly, for those pairs of variables with a nonstationary error correction term, shocks may provoke a
permanent alteration of the variables' time path.

Figure 1 illustrates the impulse-response functions™. The responses appear to be highly
consstent with long-run market integration. Shocks in one market generate responses in the other
markets, leading to a tendency for prices to equalize. The long run price cnvergence takes, in the
majority of cases analyzed, 46 months following the shock, though in some cases a longer adjustment
period is required. These adjustment periods are very similar to the findings of Goodwin, Grennes and
Craig (2002) for butter markets in the same historica period. In most models the shocks originate
permanent adjustments in the price series, reflecting the nonstationary nature of the price data.

The impulse-response functions also suggest an important role for net importer cities, in this case
New York, to determine prices. While price changes in net exporter markets follow the price shocks in
New York, New York prices do not always imitate price changes in the producing areas. When the
producer regions register a price decline, New York prices end up experiencing a higher drop™. On the
other hand, when producing areas register a positive shock, New York prices do not follow the
movement. Instead, they generally register price decreases that force the producing market to correct the
initial modification.

As Goodwin, Grennes and Craig (2002) note, TVECM suffer from an important limitation when
analyzing periods of relevant changes because they assume constant transactions costs. Our period of
analysis was characterized by relevant technical changes that may have modified transactions costs. In
order to allow for these changes, we split the sample into two subsets (1880-1895 and 1896-1911)*°. The
results are presented in table 5. Though the results do not yield a clear conclusion, in the magjority of
cases, areduction in the transactions costs band is observed. This result is in accordance with our initial
expectations and with the results for butter markets in Goodwin, Grennes and Craig (2002). These authors
find refrigeration mechanisms to increase the distance between the thresholds. As they explain, prior to
the adoption of refrigeration, wholesalers mainly arbitraged through space as they were willing to ship the
product to another city, even the price differences were low, to avoid being left with an spoiled product.
After the adoption of refrigeration, butter could be hold locally requiring a larger price differential to
motivate spatial trade. Contrary to Goodwin, Grennes and Craig results (2002), our analysis mainly
indicates a reduction in the bands. As we have previoudy explained, in spite of the technica

13 The TVECM that minimizes the natural log of the S matrix has been used to compute the impulse response
functions.

14 This pattern is not appreciated in the New Y ork — Boston model, as they are two net importer regions.

1> We use the TVECM that minimizes the natural log of the S matrix.



developments that occurred in the period analyzed, the egg freezing and drying techniques were still a an
initial stage. This fact along with the highly perishability of fresh refrigerated eggs was precluding
temporal arbitrage in the egg sector. Hence, the evolution of transactions costs for eggs does probably
only reflect improvements in transportation and communication techniques that reduced the costs of
moving the eggs from one market place to another. But these transactions costs do not reflect the
advantages of mechanica refrigeration because eggs, even refrigerated, are too perishable to trigger a
significant tempora arbitrage.

Concluding Remarks

We compare two general approaches to the selection of thresholds in multivariate threshold models. The
first criteriaignores the cross equation correlation while the latter explicitly accounts for it. We conduct a
Monte Carlo exercise involving a bivariate threshold vector error correction model. We simulate data
over different degrees of error variation and correlation. Contrary to the initial hypothesis, our results
suggest that the consideration of the cross-equation correlation does not increase the accuracy of the
parameter estimates.

We then apply the methods discussed to the analysis of regional integration of U.S. markets for
eggs during the period that goes from 1880 to 1911. Our analysis is of a pairwise nature. We compare
monthly prices quoted at several wholesale markets to a central market price — New York. Our results
suggest that threshold behavior characterizes spatia price linkages between the markets analyzed.
Impulse response functions indicate that price shocks in one market generate responses in the other
markets, leading to a tendency for prices to equalize. The long run price convergence takes, in the
majority of the cases studied, 46 months following the shock. These adjustment periods are very similar
to the findings of Goodwin, Grennes and Craig (2002) for butter markets in the same historical period.

Results also suggest an important role for net importer cites in the determination of egg prices.
While the price in producer areas mimics the movements of the price in net importing regions, the inverse
is not true. We observe that when producer areas register a positive shock, net importer areas do not
follow the movement. Instead, they generaly register price decreases that force the producing market to
correct the initial modification. We aso observe that when producer areas experience a price decline, the
importer market price registers a higher drop.

When we alow for changes in transactions costs motivated by the relevant technical
improvements during the period analyzed, results suggest a reduction in these costs in the majority of
cases. These findings suggest that, during the period analyzed, eggs trade mainly benefited from an
improvement in transportation and communication mechanisms. This allowed a reduction in transactions
costs and an increased spatial arbitrage. Refrigeration techniques, on the other hand, did not allow a
temporal arbitrage contrary to what it has been observed in other agricultural markets, because eggs, even
refrigerated, are too perishable to trigger a significant tempora arbitrage .
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TABLE 1. Monte Carlo Results

n = 100.

Replications = 1000.

S=

€04 0u
e
€0 01H

n = 100. Replications = 1000.

_€4 0l

&1 o1

MEAN

RMSE

MAE

MEAN

RMSE

MAE

MinInfS|

Min trS

Min InfS|

Min trS

MinInfS|

Min trS

MinInfS|

Min trS

MinInS|

Min trS

MinInS|

MintrS

T

0.15636

-0.02068

0.67090

0.64422

0.52225

0.50503

0.21051

0.17009

0.51341

0.50919

0.40583

0.40695

Bl

0.53074

0.54661

0.45914

0.46778

0.33128

0.31409

0.63241

0.64693

0.26673

0.25818

0.19786

0.19107

B2

-0.50183

-0.50793

0.35312

0.35991

0.26762

0.27156

-0.44510

-0.45819

0.32735

0.31121

0.25204

0.23150

B3

-0.06714

-0.09423

0.40569

0.43770

0.30623

0.30292

-0.05998

-0.05972

0.26014

0.26443

0.20506

0.20978

B4

0.21870

0.18831

0.42851

0.46350

0.31635

0.34215

0.24139

0.23758

0.32408

0.32481

0.24830

0.24783

BS

-1.14635

-1.17958

0.24063

0.26925

0.19783

0.22512

-1.19899

-1.22097

0.25242

0.26947

0.21721

0.23407

B6

-0.36592

-0.37603

0.26044

0.24948

0.21774

0.20444

-0.41165

-0.40059

0.24257

0.24411

0.19860

0.19953

B7

-0.03452

-0.05067

0.280%6

0.28049

0.20415

0.19075

-0.09774

-0.10759

0.16729

0.15832

0.12443

0.11858

B8

0.21227

0.23727

0.29657

0.32520

0.24521

0.26337

0.17347

0.17903

0.23521

0.24237

0.19407

0.20238

B9

0.41392

0.41201

0.25247

0.27629

0.18940

0.19012

0.40883

0.39438

0.16922

0.17873

0.13093

0.13998

B10

-0.44706

-0.37258

0.34382

0.40567

0.25757

0.30024

-0.53498

-0.49502

0.20728

0.23162

0.15869

0.17088

Bl1l

0.66399

0.68205

0.14113

0.15353

0.11556

0.12597

0.70071

0.70460

0.14353

0.14455

0.12288

0.12432

B12

0.20931

0.22409

0.31932

0.30560

0.29502

0.28219

0.20091

0.21548

0.32709

0.31702

0.30116

0.29057

Where:

T = threshold parameter
Bi, i=1,...,6 correspond to the parameters of the first equation of model (10).
B, i=7,...,12 correspond to the parameters of the second equation of the model (10).
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TABLE 1. Monte Carlo Results (continuation)

n = 100.

Replications=1000. ¢

_ é014

- 014

&o01 o1l

n = 100. Replications = 1000. g_& 0> 0158

€158 02§

MEAN

RMSE

MAE

MEAN

RMSE

MAE

MinInfS|

MintrS

MinInS|

MintrS

MinInfS|

Min trS

MinInfS|

Min trS

MinInS|

Min trS

MinInS|

Min trS

T

0.03732

-0.09970

0.74353

0.74243

0.58578

0.57837

0.28234

0.23177

0.59299

0.57930

0.47613

0.47039

Bl

0.36612

0.43274

0.73308

0.70726

0.54190

0.49261

0.65671

0.66999

0.22791

0.22480

0.17178

0.16763

B2

-0.77438

-0.75838

0.56890

0.60060

0.40995

0.42343

-0.44886

-0.43352

0.32780

0.31557

0.24125

0.23307

B3

-0.23662

-0.20933

0.69593

0.71014

0.51201

0.50287

-0.04295

-0.05293

0.25825

0.25083

0.20505

0.20000

B4

-0.16351

-0.18075

0.86798

0.93038

0.59883

0.64004

0.24031

0.24833

0.30195

0.31791

0.22910

0.24401

BS

-1.11847

-1.15057

0.25395

0.25674

0.20485

0.21328

-1.21582

-1.23925

0.26185

0.28080

0.22832

0.24777

B6

-0.30563

-0.33353

0.28147

0.27979

0.24173

0.23423

-0.40798

-0.41795

0.25978

0.23413

0.21386

0.19220

B7

0.06121

0.00763

0.43978

0.41511

0.32188

0.28735

-0.10254

-0.11858

0.15632

0.14967

0.12061

0.11428

B8

0.38425

0.41383

0.53256

0.56370

0.41997

0.45024

0.14173

0.14129

0.21507

0.21354

0.17634

0.17758

B9

0.51685

0.48004

0.40752

0.41736

0.29777

0.29688

0.39380

0.38639

0.17862

0.18255

0.13711

0.14351

B10

-0.16040

-0.06830

0.73871

0.80864

0.54268

0.61029

-0.56837

-0.54432

0.19209

0.19141

0.14672

0.14777

B11

0.65745

0.67611

0.15580

0.15166

0.12580

0.12586

0.70015

0.71094

0.14109

0.15128

0.12036

0.12982

B12

0.20772

0.23459

0.31856

0.30067

0.29705

0.27522

0.21057

0.22477

0.32722

0.31320

0.29501

0.28259

Where:

T = threshold parameter
Bi, i=1,...,6 correspond to the parameters of the first equation of model (10).
Bi, i=7,...,12 correspond to the parameters of the second equation of the model (10).




TABLE 1. Monte Carlo Results (continuation)

n = 250.

Replications = 1000.

S=

€04 0u
e
€0 01H

n = 250. Replications = 1000. ¢

_€4 0l

01 o1

MEAN

RMSE

MAE

MEAN

RMSE

MAE

MinInfS|

Min trS

Min InfS|

Min trS

MinInfS|

Min trS

MinInfS|

Min trS

MinInS|

Min trS

MinInS|

MintrS

T

0.47164

0.39687

0.67268

0.59062

0.55482

0.48319

0.41102

0.39385

0.52238

0.51367

0.44892

0.43932

Bl

0.67732

0.68079

0.21355

0.21477

0.15956

0.15875

0.70233

0.70818

0.15034

0.14609

0.11810

0.11361

B2

-0.60219

-0.58120

0.17374

0.17163

0.13333

0.13119

-0.55619

-0.55840

0.17151

0.16817

0.13429

0.12789

B3

-0.09600

-0.10067

0.20375

0.20345

0.16522

0.16365

-0.09575

-0.09355

0.15770

0.16143

0.13195

0.13400

B4

0.16061

0.17071

0.20368

0.20551

0.16102

0.15704

0.18628

0.18846

0.18733

0.18440

0.14698

0.14586

BS

-1.23717

-1.24371

0.26359

0.27153

0.24024

0.24648

-1.24862

-1.25054

0.26937

0.26986

0.24911

0.25123

B6

-0.29408

-0.30828

0.23908

0.22626

0.21553

0.20204

-0.32760

-0.32559

0.21768

0.21729

0.18875

0.19074

B7

-0.13074

-0.13512

0.12611

0.12543

0.09462

0.09125

-0.14501

-0.14846

0.09041

0.08754

0.06944

0.06808

B8

0.17746

0.18370

0.21606

0.22035

0.18410

0.18972

0.15903

0.16435

0.19142

0.19500

0.16406

0.16874

B9

0.42878

0.42422

0.12522

0.13006

0.09986

0.10578

0.42433

0.41792

0.10618

0.11508

0.08647

0.09314

B10

-0.49680

-0.46691

0.18822

0.20481

0.14167

0.15921

-0.53663

-0.52221

0.12880

0.13654

0.09897

0.10529

Bl1l

0.73709

0.73896

0.15365

0.15704

0.13972

0.14229

0.74031

0.73939

0.15344

0.15238

0.14174

0.14043

B12

0.22433

0.23357

0.28782

0.27899

0.27582

0.26643

0.21843

0.22033

0.29598

0.29431

0.28175

0.27979

Where:

T = threshold parameter
Bi, i=1,...,6 correspond to the parameters of the first equation of model (10).
B, i=7,...,12 correspond to the parameters of the second equation of the model (10).
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TABLE 1. Monte Carlo Results (continuation)

n = 250.

Replications=1000. ¢

_ é014

- 014

&o01 o1l

n = 250. Replications = 1000. g_& 0> 0158

€158 02§

MEAN

RMSE

MAE

MEAN

RMSE

MAE

MinInfS|

MintrS

MinInS|

MintrS

MinInfS|

MintrS

MinInfS|

Min trS

MinInS|

Min trS

MinInS|

Min trS

T

0.56384

0.42479

0.78010

0.68387

0.63542

0.53954

0.51195

0.45411

0.62857

0.60050

0.54529

0.51064

Bl

0.65401

0.64344

0.30864

0.31142

0.22421

0.22858

0.71489

0.71880

0.13329

0.12654

0.10380

0.09915

B2

-0.70294

-0.68669

0.23839

0.23721

0.18916

0.18742

-0.54625

-0.54346

0.15835

0.15749

0.11760

0.12211

B3

-0.12979

-0.15793

0.30507

0.31231

0.22753

0.23467

-0.10375

-0.09929

0.14346

0.14381

0.11709

0.11870

B4

0.02486

0.02328

0.30673

0.30306

0.23478

0.23285

0.18690

0.18944

0.17466

0.17605

0.13930

0.13843

BS

-1.24655

-1.25037

0.28013

0.27894

0.25278

0.25325

-1.26522

-1.26322

0.28572

0.28301

0.26547

0.26341

B6

-0.27330

-0.28876

0.25185

0.24300

0.23154

0.22065

-0.33868

-0.33829

0.20550

0.20413

0.17951

0.17648

B7

-0.11761

-0.11424

0.18235

0.18023

0.13301

0.13255

-0.14886

-0.15138

0.08457

0.08068

0.06618

0.06234

B8

0.23321

0.24667

0.28751

0.29201

0.24060

0.25149

0.12637

0.13854

0.16429

0.17562

0.13802

0.14650

B9

0.44822

0.45955

0.18104

0.18280

0.13524

0.13853

0.43002

0.42420

0.10122

0.10467

0.08125

0.08492

B10

-0.39888

-0.35080

0.31531

0.33909

0.23673

0.26870

-0.57002

-0.54958

0.11040

0.12314

0.08484

0.09537

B11

0.74542

0.74756

0.16601

0.16505

0.15021

0.14979

0.74976

0.74774

0.16307

0.16224

0.15023

0.14894

B12

0.22859

0.24108

0.28241

0.27148

0.27144

0.25957

0.23087

0.22895

0.28705

0.28852

0.26932

0.27122

Where:

T = threshold parameter
Bi, i=1,...,6 correspond to the parameters of the first equation of model (10).
Bi, i=7,...,12 correspond to the parameters of the second equation of the model (10).
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TABLE 2. Monte Carlo Results

n =100. Replications =100. ;_&4 04 n = 100. Replications = 100. 5_ 4 01
€0 0lg &1 01y

MEAN RMSE MAE MEAN RMSE MAE

MinInS| | MintrS | MinIn[S||MintrS | MinInS| [ MintrS | MinIn[S| | MintrS | MinIn[S| | MintrS | MinInfS| [ Min trS
LR |[76.26100 | 71.49931 88.78760 | 84.07158
p-val | 0.00410 |0.00620 5.00e-04 | 1.00e-04
T 0.33207 |-0.03942 | 0.76745 |[0.65494 | 0.60773 |0.51160 | 0.17048 |0.03997 | 0.53181 |0.48937 | 0.40450 |0.38968
B1 |[0.56682 [0.55258 | 0.40389 |0.44416|0.30737 |0.314910.63418 |0.65359 | 0.29880 |0.26109 | 0.20648 |0.19287
B2 |-0.53811 |-0.52022 | 0.34133 |0.39768 | 0.26083 |0.29268 | -0.48072 | -0.43776 | 0.27823 |0.33803 | 0.22451 |0.26193
B3 |-0.02200 |-0.08185 | 0.36798 |0.40742 | 0.28498 |[0.31949 | -0.03643 | -0.07812 | 0.28343 |0.30074 | 0.22454 |0.23741
B4 |0.23811 |0.18834 |0.41429 |0.54480 | 0.32145 [0.38982|0.22384 |0.24444 |0.28543 |0.35854 | 0.22190 |0.27483
B5 |-1.13985 |-1.18382 | 0.25278 |0.26639 | 0.21761 |0.22151 |-1.19112 |-1.24974 | 0.24327 |0.29319 | 0.21246 |0.25893
B6 |-0.31646 |-0.36226 | 0.29647 |0.24049 | 0.24596 |0.20673 | -0.38961 |-0.42346 | 0.23200 |0.23576 | 0.18977 |0.19810
B7 |-0.06084 |-0.06407 | 0.25110 |0.26077 | 0.19075 |0.18938 | -0.09159 |-0.10783 | 0.20192 |0.16070 | 0.13338 |0.12617
B8 |0.19853 |0.26772 |0.29909 |0.36773 | 0.23641 |0.29480 | 0.18949 |0.19606 | 0.24947 |0.25989 | 0.21218 |[0.21774
B9 |0.37607 |0.39926 |0.22856 |0.25461 | 0.17562 |0.19690 | 0.41906 |0.40966 |0.17603 |0.20040 | 0.13921 |0.14897
B10 |-0.49004 |-0.33654 | 0.33152 |0.47172 | 0.22750 |0.33981 | -0.52670 | -0.46548 | 0.23826 |0.26086 | 0.17134 |0.20416
B11 | 0.66408 |0.69025 |0.15023 |0.15926 | 0.12395 |0.13086 | 0.70218 |0.71626 | 0.14689 |0.14987 | 0.12641 |0.13216
B12 | 0.20865 |0.20942 |0.32890 |0.31622 | 0.29383 [0.29430 | 0.19163 |0.20494 | 0.33401 |0.32158 | 0.31069 |0.29752
Where:

T = threshold parameter
Bi, i=1,...,6 correspond to the parameters of the first equation of model (10).
B, i=7,...,12 correspond to the parameters of the second equation of the model (10).
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TABLE 2. Monte Carlo Results (continuation)

n = 100. Replications = 100. ¢_ 2014 - 0:13 n = 100. Replications = 100. g_¢ 05 0158
&0l 01 §158 02 Y

MEAN RMSE MAE MEAN RMSE MAE

MinIn|S| [MintrS | MinIn|S||MintrS | MinInS|[MintrS | MinIn|S| [MintrS | MinIn|S| | Min trS | MinInS| | Min trS
LR |[68.18626 (67.71671 82.69171| 83.08769
p-val | 0.01000 |0.00610 4.00e-04 |2.00e-04
T -0.00925 | -0.22862 | 0.85214 |0.82488 | 0.69235 |0.61788 | 0.17344 |0.20063 | 0.59796 |0.55875 | 0.47576 |0.45243
B1 [0.39582 [0.46271 |0.79312 |0.66369|0.52821 |0.46732|0.64293 |0.66629 | 0.26225 |0.21932 | 0.18147 |0.16232
B2 |-0.79241 |-0.79055 | 0.61598 |0.60203 | 0.43167 |0.46939 | -0.43328 |-0.41973 | 0.33033 |0.31473 | 0.24175 |[0.23550
B3 |-0.23282 |-0.21619 | 0.76334 |0.69779 | 0.53758 |0.48047 |-0.07101 | -0.05610 | 0.25446 |0.26118 | 0.20975 |0.21181
B4 |-0.21357 |-0.24808 | 0.96544 |0.86935 | 0.66399 |0.67103|0.28883 |0.28143 | 0.35551 |0.33514 | 0.28844 |[0.25723
B5 [-1.12934 [-1.19290 | 0.24255 |0.28946 | 0.20461 |0.24742 | -1.22401 |-1.24399 | 0.26185 |0.28257 | 0.23498 | 0.24693
B6 |-0.32281 |-0.34385 | 0.29680 |0.27229 | 0.25649 |0.23460 | -0.41333 | -0.41116 | 0.26428 |0.23951 | 0.20510 |[0.19781
B7 |[0.05103 [-0.01788 | 0.47153 |0.38911 | 0.31332 |0.26964 | -0.09175 |-0.12525 | 0.17447 |0.14034 | 0.12836 |0.10806
B8 [0.41802 [0.43365 |0.57635 |0.57419|0.44843 |0.48494 | 0.13907 |0.13287 |0.20712 |0.20221|0.17612 |0.16815
B9 |[0.51886 [0.47120 |0.42677 |0.40926 | 0.30445 |0.28356 | 0.40262 |0.38726 | 0.18080 |0.18211 | 0.14345 |0.14957
B10 |-0.08881 |-0.02374 | 0.82279 |0.79714 | 0.59734 |0.63708 | -0.55229 | -0.56281 | 0.19086 |0.18706 | 0.14383 |[0.14788
B11 | 0.66117 |0.69911 |0.14746 |0.17059 [ 0.12290 |[0.14349|0.69615 |0.72519 |0.12943 |0.15568 | 0.11220 |0.13611
B12 | 0.21860 |0.23553 |0.31751 |0.29854 | 0.29510 |[0.27823|0.21917 |0.22003 | 0.32137 |0.31250 | 0.28853 |0.28645
Where:

T = threshold parameter
Bi, i=1,...,6 correspond to the parameters of the first equation of model (10).
Bi, i=7,...,12 correspond to the parameters of the second equation of the model (10).
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TABLE 3. The Johansen cointegration tests

M odel | max | max | trace | trace
(sig. value 90%) | (sig. value 90%) | (sig. value 90% ) | (sig. value 90%)
r=0 r=1 r=0 r=1
Atlanta-New Y ork 227.53 37.53 265.06 37.53
(10.29) (7.50) (17.79) (7.50)
Baltimore-New Y ork 168.19 3941 207.59 3941
(10.29) (7.50) (17.79) (7.50)
Boston-New York 221.99 31.45 253.43 31.45
(10.29) (7.50) (17.79) (7.50)
Cincinnati-New Y ork 165.90 37.32 203.21 37.32
(10.29) (7.50) (17.79) (7.50)
Dubuque-New York 221.48 60.18 281.67 60.18
(10.29) (7.50) (17.79) (7.50)
Indianapolis-New Y ork 192.69 38.25 230.94 38.25
(10.29) (7.50) (17.79) (7.50)
Memphis-New Y ork 143.65 34.99 178.65 34.99
(10.29) (7.50) (17.79) (7.50)
Minneapolis-New Y ork 167.77 40.45 208.22 40.45
(10.29) (7.50) (17.79) (7.50)

where:

I MAX = Maximum eigenvalue test statistic;
| TRACE = Trace test statistic;
r = number of cointegrating vectors being tested under the null hypothesis.

TABLE 4. Tsay’stedt, thresholds and the sup-L R test

Variables Tsay'stest Minimum In|S| Minimum trace(S)
(p-value) C1l: C2: Sup-LR ClL: c2: Sup-LR
Negative | Positive test Negative | Postive test
threshold | threshold | (p-value) | threshold | threshold | (p-value)

Atlanta-New Y ork 4.36958 -4.21847 470471 35.82876 -4.11347 4.70471 35.77480
(0.03726990) (0.03000) (0.03000)

Batimore-New York | 5.54600 -0.41302 3.65352 48.10246 -1.54302 4.04352 41.01023
(0.01904593) (0.00000) (0.00000)

Boston-New York 2.78421 -2.16453 1.99346 53.02925 -2.56453 3.91346 52.06534
(0.09607421) (0.00000) (0.00000)

Cincinnati-New York | 3.40618 -0.37792 3.62298 50.14700 -0.37792 3.62298 50.14700
(0.06575343) (0.00000) (0.00000)

Dubuque-New York 0.02541 -0.42392 2.68334 51.54597 -0.40392 2.68334 50.63417
(0.87343826) (0.00000) (0.00000)

Indianapolis-New York |3.37622 -2.36443 1.55603 31.21481 -0.50943 0.05103 29.36951
(0.06697451) (0.12000) (0.14000)

Memphis-New York  |5.03133 -3.37125 4.84961 43.35183 -3.45125 4.84961 40.93464
(0.02573216) (0.00000) (0.00000)

Minneapolis-New York |8.48748 -2.28567 3.57694 41.45080 -1.46567 3.76194 30.34356
(0.00381766) (0.02000) (0.08000)
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TABLE 5. Split-sample analysisof TVECM

Variables Minimum In|S| Minimum In|S|
1880-1895 1896-1911

CL C2 CL C2

Negative | Positive | Negative | Positive

threshold | threshold | threshold | threshold
Atlanta-New York -1.55546 1.45993 -1.30101 2.23548
Batimore-New Y ork -0.48756 2.35695 -0.96415 2.99993
Boston-New Y ork -2.36966 3.04362 -1.30268 1.83689
Cincinnati-New Y ork -1.16718 2.17853 -0.06935 1.65395
Dubuque-New York -2.63292 3.38760 -0.43701 2.92077
Indianapolis-New York |-2.17227 2.24428 -0.09240 0.25017
Memphis-New Y ork -3.91461 4.14149 -0.08173 1.31914
Minneapolis-New York | -1.30290 0.16400 -2.06985 3.17009
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Figure 1. Nonlinear | mpulse-response functions
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