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SPECIFICATION SELECTION ISSUES IN MULTIVARIATE THRESHOLD AND 
SWITCHING MODELS 

 
 
A promising avenue of research in time-series analysis that considers structural change, regime switching, 
and threshold-type models has developed in recent years.  Such models arise in situations where the 
underlying economic structure changes in a manner that is unknown a priori to the analyst.  Examples 
include gradual switching models, threshold error-correction models, smooth threshold autoregressive 
(STAR) models, regime switching models, and threshold cointegration models.  These models often 
occur when some “forcing-variable” is driving the switching among regimes.  In the case of standard 
(Chow-type) structural change models, the forcing variable is time, such that any t greater than a break 
point forces the model into a new regime and the change is permanent.  In threshold models, the size of a 
particular variable (i.e., whether the forcing variable is large enough to exceed a threshold) determines the 
regime and switching can occur back and forth among regimes.  Different regimes are typically 
represented by different parameter estimates for the underlying model.   
 The literature has described two general approaches to the selection of thresholds or break points.  
In the overwhelming majority of applied analyses, the criterion for selecting the break point or threshold 
has involved minimization of the sum of squared errors for the model (see, for example, Balke and 
Fomby (1997) and Goodwin and Piggott (2001)).  Alternatively, one may choose to choose the break 
point or threshold that maximizes a likelihood function (see, for example, Obstfeld and Taylor (1997)).  
In cases where normality and homoscedasticity are assumed, these alternative criteria are asymptotically 
equivalent and are fully analogous to maximizing a sup-Chow test of the difference between regimes.   
 This equivalence may break down in multivariate models involving systems of equations (e.g., 
demand systems and vector error correction models).  Multivariate analogs to the criteria discussed above 
are obvious.  In the first case, one could choose to minimize the system sum of squared errors (i.e., the 
trace of the covariance matrix for the system’s residual errors).  In the case of maximum likelihood 
estimation, the kernel of the likelihood function involves the logged determinant of the residual 
covariance matrix.  These two criteria are by no means equivalent since the former ignores cross equation 
correlation while the latter explicitly accounts for it.  It is thus possible that the two different approaches, 
both of which are certainly reasonable, could lead to very different answers in terms of regime switching 
or threshold effects.  It is even possible that one could obtain negative test statistics for evaluating the 
statistical significance of the threshold or switching behavior.  Of course, these test statistics, though 
assuming the form of a conventional chi-square test, are non-standard and thus must be simulated under 
the null hypothesis.   
 Our paper focuses on how model selection may be influenced by these alternative approaches, 
both of which have been applied in the literature.  We conduct a simulation exercise involving a bivariate 
threshold vector error correction model.  We examine the extent to which ignorance of cross-equation 
correlation influences the correct estimation of the threshold variable.  Simulated data over varying levels 
of error variation and correlation are utilized in the simulation.  The results from our Monte Carlo 
experiments suggest, contrary to the initial hypothesis, that the consideration of the cross-equation 
correlation does not increase the accuracy of  small sample parameter estimates. 
 We then apply the methods discussed to a historical analysis of the regional integration of U.S. 
markets for eggs. Our application is to 31 years of monthly egg prices quoted at nine important wholesale 
markets: Atlanta, Baltimore, Boston, Cincinnati, Dubuque, Indianapolis, Memphis, Minneapolis and New 
York. Prices cover the historical period that goes from 1880 to 1911. Our results suggest that threshold 
behavior characterizes spatial price linkages between the markets analyzed. 
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Threshold vector error correction models  
 
Tong (1978) originally introduced nonlinear threshold time series models. Tsay (1989) developed  a 
method to test for threshold effects in autoregressive models and to model threshold autoregressive 
processes. Balke and Fomby (1997) extended the threshold autoregressive models to a cointegration 
framework, thus combining non-linearity and cointegration. 
 Threshold vector error correction models (TVECM) allow nonlinear and threshold-type 
adjustments to long-run equilibrium. These models occur when the size of the (lagged) error correction 
term allows one to distinguish between different regimes and the variables in the model exhibit different 
types of behavior in each regime.  
 We start our analysis by considering a general two-regime bivariate threshold vector error 
correction model. Let 
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be a two-dimensional I(1) time series which is cointegrated with the cointegrating vector α (2x1). Let 
ν αt tx=  be the I(0) error-correction term. A two-regime TVECM can be compactly written in the 
following way: 
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νt −1= variable relevant to the threshold1;γ  = threshold parameter; and β1  and β2  = vectors of coefficients. 
We assume that there is no constant in the model, which is equivalent to assuming that the variables do 
not contain linear trends. The TVECM may also be written as: 
 
∆x X d X d ut t t t= + +− −β γ β γ1 1 1 2 1 2

' '( ) ( )                                                                                          (3) 
 
where: 
 
d t1 11( ) ( )γ ν γ= ≤−  
d t2 11( ) ( )γ ν γ= >−  

                                                 
1 The lag of the error correction term, the variable relevant to the threshold, is assumed to be equal to 1. 
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Estimation of the threshold points  
 
As has been explained above, there are two general approaches to the selection of thresholds in 
multivariate threshold models. In a first approach, the criterion for selecting the threshold involves  
minimization of the logarithm of the determinant of the variance-covariance matrix of the residuals (Σ). 
Under this first approach, the TVECM can be estimated using sequential multivariate least squares in two 
steps. In the first step, a grid search is carried out to estimate the threshold parameter (γ ). Conditional on 
γ , the parameters β1  and β2  can be estimated through the OLS regressions of ∆xt  on X t −1 for the sub-
samples for which ν γt − ≤1  and ν γt − >1 , respectively. From this estimation the logarithm of the 
determinant of the Σ matrix is derived: 
 
S ( ) ln $ ( )γ γ= Σ

                                                                                                                             (4) 
 

where 
$ ( )Σ γ  is a multivariate least squares estimate of Σ = var ( )ut  conditional on  γ . In the second step, 

the least squares estimate of γ  is obtained as: 
 
$ arg min ( )γ γ= S                                                                                                                     (5) 
 
 This approach is equivalent to maximizing a likelihood function: 
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The MLE estimates ( $ , $ , $ , $ )β β γ1 2 Σ  are the values that maximize L( , , , )β β γ1 2 Σ .  Holding γ  fixed, the 
following concentrated likelihood function can be derived (Hansen and Seo 2001): 
 

L
n np

( ) log $ ( )γ γ= − −
2 2

Σ
                                                                                                           (7) 

 
where: 
p = number of variables. 

Hence, the MLE( $ )γ   estimates  thus minimize     
log $ ( )Σ γ

 
 
Under a second approach, the TVECM estimation method differs in the grid search process. 

While the fist proposal minimizes the log determinant of the variance-covariance matrix of the residuals, 
the second minimizes the trace of the Σ matrix: 
S trace( ) ( $ ( ))γ γ= Σ                                      (8) 
 
 As has been noted above, in finite sample estimation of multivariate models, the two approaches 
may not be not equivalent. While the maximum likelihood estimation accounts for cross equation 
correlation, the second approach ignores it.  Hence, it is possible that the two different approaches could 
lead to different answers in terms of threshold effects. It is even possible that one could obtain negative 
test statistics for evaluating the significance of the threshold effects.  
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 A common approach to test for the significance of the differences in parameters across  regimes is 
the sup-LR statistic. The sup-LR statistic tests for a linear vector error correction model (VECM) against 

the alternative of a TVECM. The model under the null is ∆x X ut t t= +−β'
1 , while the model under the 

alternative can be expressed as ∆x X d X d ut t t t= + +− −β γ β γ1 1 1 2 1 2
' '( ) ( ) . The sup-LR statistic can be 

computed in the following way: 
 

LR n= −ln $ ln $ ( )Σ Σ γ
                                                                                                               (9) 

where: 
$Σ  = is the variance-covariance matrix of the residuals of the VECM; 
$ ( )Σ γ  = represents the variance-covariance matrix of the residuals of the TVECM; and n = is the number 
of observations. 
 
The sup-LR statistic has a non-standard distribution because the threshold parameter is not identified 
under the null hypothesis and thus simulation of the test statistics under the null is needed in order to 
conduct hypothesis testing.  
 
 
A simulation exercise 
 
In order to  evaluate how parameter estimation and model selection may be influenced by the two 
alternative approaches to the selection of the threshold, Monte Carlo experiments are conducted in this 
section. The experiments are based on the following bivariate TVECM with two regimes: 
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We generate the errors  u1t and u2t from a multivariate normal distribution (N(0,Σ)) and consider 

four different parameter sets for the variance-covariance matrix of the residuals (Σ), corresponding to no 
cross equation correlation, positive cross equation correlation, negative cross equation correlation and a  
positive cross equation correlation with different degrees of error variation2: 
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Two sample sizes are considered n=100 and n=250. Our simulations are divided into two main 
groups. First, we estimate the parameters of the TVECM under the two described approaches. The grid 
searches to find the optimum threshold are restricted to ensure an adequate number of observations for 
estimating the parameters in each regime. The thresholds are searched between 1% and 99% percentiles 

                                                 
2 The Σ matrices correspond to 0 (case 1), 0.5 (case 2), -0.5 (case3) and 0.5 (case 4) correlation coefficients. 
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of the error correction term3.  We asses the finite sample distribution of the estimators using 1000 
simulation replications. Second, by using 100 simulation replications and focusing on one sample size, 
n=100, we also consider the sup-LR test and its associated probability-value. To determine the p-value of 
the sup-LR statistic, we run 100 simulations for each model whereby the dependent variables ∆xt  are 
replaced by iid N(0,1) draws (see Hansen (1997)  for a detailed discussion of this approach). The 
proportion of simulations under the null for which the simulated sup-LR statistic exceeds the observed 
sup-LR statistic gives the asymptotic p-value of the sup-LR test. 
 In table 1 we report the mean, root mean squared error (RMSE) and mean absolute error (MAE) 
of each estimator 4 of the parameters of the TVECM in 1000 simulation replications. In table 2 we report 
the same statistics for each estimator of the parameters of the TVECM, as well as the mean of the sup-LR 
test and its p-value5 in 100 simulation replications.  
 The results indicate that, contrary to our initial expectations, choosing the threshold parameter 
through minimizing the logged determinant of the covariance matrix does not improve the accuracy of the 
estimates, at least for the sample size and simulation terms that we consider.  
 
 
An Empirical application: Regional integration of  Nineteenth Century U.S. egg markets  
The last decades of the nineteenth century have been identified as an era of increased economic 
integration. Improvements in transportation, refrigeration and communication mechanisms made it easier 
for buyers and sellers to contact each other, yielding a higher level of market integration. Economic 
integration resulted in an increase in trade, a more efficient use of resources and an increase in 
productivity and overall production (Goodwin, Grennes and Craig 2002). 
 Economic in tegration was not limited to capital or labor markets. It also characterized the 
evolution of some agricultural markets such as grain markets (O’Rourke, 1997). Mechanical refrigeration 
played a key role in the spatial integration of markets for short shelf life commodities such as meat, butter 
and cheese (Williamson  1995 and Goodwin, Grennes and Craig 2002).  
 With the exception of the analysis of Goodwin, Grennes and Craig (2002), there are no 
econometric estimations of the effects of the technological improvements mentioned above on the level of 
market integration of agricultural commodities.  In this empirical application, we study the effects of  
transport, refrigeration and communication improvements on the level of integration of regional markets 
for eggs. 
 Though the adoption of technical improvements at the end of the XIX century, specially the 
introduction of the mechanical refrigeration, contributed to a significant increase in the regional price 
convergence of perishable commodities, these changes may not have substantially affected egg markets.  
By the end of the nineteenth century, the egg industry was still at a very early stage of its development. 
Freezing egg operations were only at an experimental phase. The industry was mainly operating at a small 
scale, due to the fact that eggs were manually separated until 1912, when the hand separator was invented. 
Additionally, the egg industry was struggling to solve relevant sanitary and refrigeration problems 
affecting egg products. Another drawback precluding the expansion of the egg industry was the lack of 
demand for its products, mainly due to the low quality of the final outcome. The use of dried eggs, prior 
to the freezing of eggs, was scarce and principally limited to army camps.  The consumption of frozen 
eggs, also limited, was mainly coming from bakers and other food manufacturers. It was not until World 
War II that the U.S. egg industry, specially the egg drying industry, considerably expanded as a result of 
both public programs to encourage an increased production of eggs through government purchases at 
supported prices and an  increased demand from the Armed Services (Koudele and Heinsohn).  Due to 
the lack of a high scale operating egg industry, along with the high perishability of fresh refrigerated eggs, 

                                                 
3 When more than one optimum threshold is found, we take the median of the range. 
4 Selected percentiles of each estimator of the parameters are also available from the authors upon request. 
5 No measure of error can be computed for the sup-LR test and its p-value.  
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arbitrage operations of egg products may have been limited during the period of analysis, thus limiting the 
integration of markets through price convergence for this commodity. 
 
 
Econometric methods  
 
In order to study how technical developments at the end of the nineteenth century affected the level of 
market integration of eggs in the U.S., we focus on the transmission of price shocks across space using 
threshold vector error correction models. These nonstructural models allow us to estimate bands within 
which regional prices might not be linked to one another due to transactions costs, recognizing that 
deviations must exceed a certain amount to provoke equilibrating price adjustments and lead to regional 
market integration. 
 We define pairs of prices composed by a central market price – we choose New York– and  
another wholesale market price. For each pair of markets, we estimate a TVECM (eq. 3) with two 
thresholds (γ1 and γ2) in order to allow for asymmetries in the process of price adjustment. We include 
lagged price  differentials to represent short-run price dynamics. The error correction term is given by the 
lagged residuals derived from the OLS regression  that represents the equilibrium between each pair of 
prices.  We conduct the two grid searches described above in order to estimate the thresholds. In 
particular, in each grid search, the thresholds are searched over 1% and 99% of the largest (in absolute 
values) negative and positive lagged error correction terms. The searches are restricted to ensure an 
adequate number of observations for estimating the parameters in each regime. We then estimate the 
TVECM conditional on the threshold parameters. 

Our  specific estimation strategy can be summarized as follows. First, in order to determine 
whether the price series are stationary, standard Dickey-Fuller unit root tests are applied on individual 
price series. Second, we test for cointegration among the pairs of prices using the Johansen cointegration 
test. We then follow the general approach of Engle and Granger and utilize ordinary least squares 
estimates of the cointegration relationships among the pairs of prices. The lagged residuals derived from 
these relationships are used to define the error correction terms. The next step consists of determining 
whether the dynamics of the long-run relationships among prices are linear or whether they exhibit 
threshold-type nonlinearities. We use Tsay’s (1989) nonparametric test. 

We then estimate a three-regime multivariate TVECM for each pair of pr ices. Finally, we test for 
the significance of the differences in parameters across relative regimes using the sup-LR test statistic (eq. 
9). As we have mentioned above, the sup-LR statistic has a non-standard distribution because the 
threshold parameters are not identified under the null hypothesis. To determine the p-value of the sup-LR 
statistic, we run 100 simulations for each model whereby the dependent variables (∆Xt) are replaced by 
iid N(0,1) draws (see Hansen (1997) for a detailed discussion of this approach)6. The proportion of 
simulations under the null for which the simulated LR statistic exceeds the observed LR statistic gives the 
asymptotic p-value of the sup-LR test. 

 
 

                                                 
6 To keep calculations manageable, we reduce the number of gridpoints in these simulations. 
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Data and empirical application  
 
Our empirical analysis utilizes U.S. monthly egg prices7, observed from October 1880 to October 1911.  
Prices were quoted at nine relevant wholesale markets: Atlanta, Baltimore, Boston, Cincinnati, Dubuque, 
Indianapolis, Memphis, Minneapolis and New York.  The monthly prices are taken from Holmes (1913) 8. 
As explained above, we formulate the hypothesis that the technological  developments at the end of the 
nineteenth century, especially the adoption of mechanical refrigeration, may not have exerted  a strong 
influence on the level of  market integration for eggs.  
 Standard unit-root tests confirm the presence of a unit root in all price series9. Johansen 
cointegration tests (table 3) indicate that there is no long run relationship between the prices10, a result 
which is expected in light of the scarce development of the egg industry in the period analyzed11.  
  We compute the OLS estimates of the error correction terms for all pairs of variables using the 
New York price as the regressor. Contrary to the Johansen cointegration tests, the DF and ADF 
cointegration tests of Engle and Granger (1987) indicate the existence of a long run relationship between 
the pairs of prices12.  
 Tsay’s test is conducted using the error correction term derived form the OLS cointegration 
regression. Tsay’s test supports nonlinearity at the 10% significance level in all models except for the 
Dubuque – New York model (see table 4).  The thresholds derived from the two dimensional grid 
searches and the sup-LR statistics are presented in table 4. Our results suggest that, with the exception of 
Indianapolis-New York model, threshold effects are statistically significant at the 10% level for all pairs 
of prices.  If we select the thresholds by minimizing the natural log of the determinant of the Σ matrix, we 
find the transactions costs bands to be maximum for Atlanta-New York, Memphis-New York and 
Minneapolis-New York, indicating a high variability in egg prices between these cities.  Atlanta, 
Memphis and Minneapolis markets are close to major production areas and likely to have been net 
exporters of the product analyzed. New York, as is the case for other major cities like Boston and 
Baltimore, is likely to have been a net importer of eggs. Hence, prices in New York, as well as prices in 
Boston and Baltimore, do probably include a significant transactions costs charge.  In light of the 
previous argument, transactions costs bands are expected to be wider between an exporter and an importer 
market, than between importing markets. Bands for importing markets  should be narrower to refle ct the 
smaller price differentials usually observed for these pairs of prices, since both prices will include 
transactions cost components. In accordance to the previous argument, our results suggest much more 
lower transactions costs bands for Boston-New York and Baltimore-New York than for Atlanta-New 
York, Memphis-New York and Minneapolis-New York. The finding that bands for Cincinnati-New York 
and Dubuque-New York are the smallest is difficult to explain in terms of the above argument, though, as 
it is noted in Goodwin, Grennes and Craig (2002), because we have not restricted the price transmission 
cointegration parameter to be equal to 1, the interpretation of the  thresholds as transactions costs is 
somewhat complicated.  

We find the threshold estimates to be more reasonable when the estimation aims at minimizing 
the natural log of the determinant of the Σ matrix than when the trace of this matrix is minimized: the 

                                                 
7 We conduct the analysis for prices in levels. 
8 A detailed description of the price data is available from the authors upon request.  
9 Monthly dummies to allow seasonality are introduced in the model specification. It should be noted here that the 
standard unit-root tests are very sensitive to the model specification. We use the SBC information criteria to select 
the deterministic components introduced in the model.  
10 The specification of the model estimated to carry out the Johansen test is determined  according to the SC and HQ 
information criteria.  
11 It should be noted here that, in spite of their limitations (Barrett 1996), cointegration tests have been widely used 
to evaluate the degree of market integration. 
12 Results are available from the authors upon request.  
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distance between the thresholds for Boston-New York and Baltimore-New York models is much smaller 
if the first method is utilized.  

As the Monte Carlo results presented above suggest, the two grid search techniques that have 
been used do not lead to significant differences in the results. Both techniques yield the same LR test 
result, though there are some differences in the threshold parameters estimates.  

In order to better interpret the dynamic relationships among prices, impulse response functions 
are considered for the models with significant threshold effects. In threshold models, responses to a shock 
depend on the history of the series, as well as on the size and sign of the shock.  As a consequence, many 
different impulse response functions can be computed. We chose a single observation (the last 
observation of our data) to evaluate the responses to one standard deviation positive and negative price 
shocks in each of the markets. We adopt Koop, Pesaran and Potter’s (1996) proposal, which defines 
responses (It+k) on the basis of the observed data (zt, zt-1, …) and a shock (v) as: 
 
I v Z Z E Z Z z v Z z E Z Z z Z zt k t t t k t t t t t k t t t t+ − + − − + − −= = + = − = =( , , ,...) , ,... , ,...1 1 1 1 1  
 
 Because the prices are not stationary, we may find transitory as well as permanent responses. 
Specifically, for those pairs of variables with a nonstationary error correction term, shocks may provoke a 
permanent alteration of the variables’ time path. 
 Figure 1 illustrates the impulse-response functions 13.  The responses appear to be highly 
consistent with long-run market integration. Shocks in one market generate responses in the other 
markets, leading to a tendency for prices to equalize.  The long run price convergence takes, in the 
majority of cases analyzed, 4-6 months following the shock, though in some cases a longer adjustment 
period is required. These adjustment periods are very similar to the findings of Goodwin, Grennes and 
Craig (2002) for butter markets in the same historical period. In most models the shocks originate 
permanent adjustments in the price series, reflecting the nonstationary nature of the price data. 
 The impulse-response functions also suggest an important role for net importer cities, in this case 
New York, to determine prices. While price changes in net exporter markets follow the price shocks in 
New York, New York prices do not always imitate price changes in the producing areas. When the 
producer regions register a price decline, New York prices end up experiencing a higher drop14. On the 
other hand, when producing areas register a positive shock, New York prices do not follow the 
movement. Instead, they generally register price decreases that force the producing market to correct the 
initial modification. 
 As Goodwin, Grennes and Craig (2002) note, TVECM suffer from an important limitation when 
analyzing periods of relevant changes because they assume constant transactions costs. Our period of 
analysis was characterized by relevant technical changes that may have modified transactions costs. In 
order to  allow for these changes, we split the sample into two subsets (1880-1895 and 1896-1911)15. The 
results are presented in table 5. Though the results do not yield a clear conclusion, in the majority of 
cases, a reduction in the transactions costs band is observed.  This result is in accordance with our initial 
expectations and with the results for butter markets in Goodwin, Grennes and Craig (2002). These authors 
find refrigeration mechanisms to increase the distance between the thresholds. As they explain, prior to 
the adoption of refrigeration, wholesalers mainly arbitraged through space as they were willing to ship the 
product to another city, even the price differences were low, to avoid being left with an spoiled product. 
After the adoption of refrigeration, butter could be hold locally requiring a larger price differential to 
motivate spatial trade.  Contrary to Goodwin, Grennes and Craig results (2002), our analysis mainly 
indicates a reduction in the bands. As we have previously explained, in spite of the technical 

                                                 
13 The TVECM that minimizes the natural log of the Σ matrix has been used to compute the impulse response 
functions.  
14 This pattern is not appreciated in the New York – Boston model, as they are two net importer regions.  
15 We use the TVECM that minimizes the natural log of the Σ matrix. 
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developments that occurred in the period analyzed, the egg freezing and drying techniques were still at an 
initial stage. This fact along with the highly perishability of fresh refrigerated eggs was precluding 
temporal arbitrage in the egg sector. Hence, the evolution of transactions costs for eggs does probably 
only reflect improvements in transportation and communication techniques that reduced the costs of 
moving the eggs from one market place to another. But these transactions costs do not reflect the 
advantages of mechanical refrigeration because eggs, even refrigerated, are too perishable to trigger a 
significant temporal arbitrage. 
 
 
Concluding Remarks 
 
We compare two general approaches to the selection of  thresholds in multivariate threshold models.  The 
first criteria ignores the cross equation correlation while the latter explicitly accounts for it.  We conduct a 
Monte Carlo exercise involving a bivariate threshold vector error correction model. We simulate data 
over different degrees of error variation and correlation. Contrary to the initial hypothesis, our results 
suggest that the consideration of the cross-equation correlation does not increase the accuracy of the 
parameter estimates.  

We then apply the methods discussed to the analysis of regional integration of U.S. markets for 
eggs during the period that goes from 1880 to 1911. Our analysis is of a pairwise nature. We compare 
monthly prices quoted at several wholesale markets to a central market price – New York. Our results 
suggest that threshold behavior characterizes spatial price linkages between the markets analyzed.  
Impulse response functions indicate that price shocks in one market generate responses in the other 
markets, leading to a tendency for prices to equalize. The long run price convergence takes, in the 
majority of the cases studied, 4-6 months following the shock. These adjustment periods are very similar 
to the findings of Goodwin, Grennes and Craig (2002) for butter markets in the same historical period. 

Results also suggest an important role for net importer cites  in the  determination of egg prices. 
While the price in producer areas mimics the movements of the price in net importing regions, the inverse 
is not true. We observe that when producer areas register a positive shock, net importer areas do not 
follow the movement. Instead, they generally register price decreases that force the producing market to 
correct the initial modification. We also observe that when producer areas experience a price decline, the 
importer market price registers a higher drop.  

When we allow for changes in transactions costs motivated by the relevant technical 
improvements during the period analyzed, results suggest a reduction in these costs in the majority of 
cases.  These findings suggest that, during the period analyzed, eggs trade mainly benefited from an 
improvement in transportation and communication mechanisms. This allowed a reduction in transactions 
costs and an increased spatial arbitrage. Refrigeration techniques, on the other hand, did not allow a 
temporal arbitrage contrary to what  it has been observed in other agricultural markets, because eggs, even 
refrigerated, are too perishable to trigger a significant temporal arbitrage . 
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TABLE 1. Monte Carlo Results 

 n = 100. Replications = 1000. 








=Σ

1,00
04,0  Sample  n = 100. Replications = 1000. 









=Σ

1,01,0

1,04,0  

 MEAN RMSE MAE MEAN RMSE MAE 

 Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ 

T 0.15636 -0.02068 0.67090 0.64422 0.52225 0.50503 0.21051 0.17009 0.51341 0.50919 0.40583 0.40695 

B1 0.53074 0.54661 0.45914 0.46778 0.33128 0.31409 0.63241 0.64693 0.26673 0.25818 0.19786 0.19107 

B2 -0.50183 -0.50793 0.35312 0.35991 0.26762 0.27156 -0.44510 -0.45819 0.32735 0.31121 0.25204 0.23150 

B3 -0.06714 -0.09423 0.40569 0.43770 0.30623 0.30292 -0.05998 -0.05972 0.26014 0.26443 0.20506 0.20978 

B4 0.21870 0.18831 0.42851 0.46350 0.31635 0.34215 0.24139 0.23758 0.32408 0.32481 0.24830 0.24783 

B5 -1.14635 -1.17958 0.24063 0.26925 0.19783 0.22512 -1.19899 -1.22097 0.25242 0.26947 0.21721 0.23407 

B6 -0.36592 -0.37603 0.26044 0.24948 0.21774 0.20444 -0.41165 -0.40059 0.24257 0.24411 0.19860 0.19953 

B7 -0.03452 -0.05067 0.28056 0.28049 0.20415 0.19075 -0.09774 -0.10759 0.16729 0.15832 0.12443 0.11858 

B8 0.21227 0.23727 0.29657 0.32520 0.24521 0.26337 0.17347 0.17903 0.23521 0.24237 0.19407 0.20238 

B9 0.41392 0.41201 0.25247 0.27629 0.18940 0.19012 0.40883 0.39438 0.16922 0.17873 0.13093 0.13998 

B10 -0.44706 -0.37258 0.34382 0.40567 0.25757 0.30024 -0.53498 -0.49502 0.20728 0.23162 0.15869 0.17088 

B11 0.66399 0.68205 0.14113 0.15353 0.11556 0.12597 0.70071 0.70460 0.14353 0.14455 0.12288 0.12432 

B12 0.20931 0.22409 0.31932 0.30560 0.29502 0.28219 0.20091 0.21548 0.32709 0.31702 0.30116 0.29057 

 Where: 
 T = threshold parameter 
 Bi, i= 1,…,6 correspond to the parameters of the first equation of model (10). 
 Bi, i=7,…,12 correspond to the parameters of the second equation of the model (10). 
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TABLE 1. Monte Carlo Results (continuation) 

 n = 100. Replications = 1000. 








−

−
=Σ

1,01,0

1,04,0  n = 100. Replications = 1000. 








=Σ

2,0158,0
158,05,0  

 MEAN RMSE MAE MEAN RMSE MAE 

 Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ 

T 0.03732 -0.09970 0.74353 0.74243 0.58578 0.57837 0.28234 0.23177 0.59299 0.57930 0.47613 0.47039 

B1 0.36612 0.43274 0.73308 0.70726 0.54190 0.49261 0.65671 0.66999 0.22791 0.22480 0.17178 0.16763 

B2 -0.77438 -0.75838 0.56890 0.60060 0.40995 0.42343 -0.44886 -0.43352 0.32780 0.31557 0.24125 0.23307 

B3 -0.23662 -0.20933 0.69593 0.71014 0.51201 0.50287 -0.04295 -0.05293 0.25825 0.25083 0.20505 0.20000 

B4 -0.16351 -0.18075 0.86798 0.93038 0.59883 0.64004 0.24031 0.24833 0.30195 0.31791 0.22910 0.24401 

B5 -1.11847 -1.15057 0.25395 0.25674 0.20485 0.21328 -1.21582 -1.23925 0.26185 0.28080 0.22832 0.24777 

B6 -0.30563 -0.33353 0.28147 0.27979 0.24173 0.23423 -0.40798 -0.41795 0.25978 0.23413 0.21386 0.19220 

B7 0.06121 0.00763 0.43978 0.41511 0.32188 0.28735 -0.10254 -0.11858 0.15632 0.14967 0.12061 0.11428 

B8 0.38425 0.41383 0.53256 0.56370 0.41997 0.45024 0.14173 0.14129 0.21507 0.21354 0.17634 0.17758 

B9 0.51685 0.48004 0.40752 0.41736 0.29777 0.29688 0.39380 0.38639 0.17862 0.18255 0.13711 0.14351 

B10 -0.16040 -0.06830 0.73871 0.80864 0.54268 0.61029 -0.56837 -0.54432 0.19209 0.19141 0.14672 0.14777 

B11 0.65745 0.67611 0.15580 0.15166 0.12580 0.12586 0.70015 0.71094 0.14109 0.15128 0.12036 0.12982 

B12 0.20772 0.23459 0.31856 0.30067 0.29705 0.27522 0.21057 0.22477 0.32722 0.31320 0.29501 0.28259 

Where: 
 T = threshold parameter 
 Bi, i= 1,…,6 correspond to the parameters of the first equation of model (10). 
 Bi, i=7,…,12 correspond to the parameters of the second equation of the model (10). 
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TABLE 1. Monte Carlo Results (continuation) 

 n = 250. Replications = 1000. 








=Σ

1,00
04,0  n = 250. Replications = 1000. 









=Σ

1,01,0

1,04,0  

 MEAN RMSE MAE MEAN RMSE MAE 

 Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ 

T 0.47164 0.39687 0.67268 0.59062 0.55482 0.48319 0.41102 0.39385 0.52238 0.51367 0.44892 0.43932 

B1 0.67732 0.68079 0.21355 0.21477 0.15956 0.15875 0.70233 0.70818 0.15034 0.14609 0.11810 0.11361 

B2 -0.60219 -0.58120 0.17374 0.17163 0.13333 0.13119 -0.55619 -0.55840 0.17151 0.16817 0.13429 0.12789 

B3 -0.09600 -0.10067 0.20375 0.20345 0.16522 0.16365 -0.09575 -0.09355 0.15770 0.16143 0.13195 0.13400 

B4 0.16061 0.17071 0.20368 0.20551 0.16102 0.15704 0.18628 0.18846 0.18733 0.18440 0.14698 0.14586 

B5 -1.23717 -1.24371 0.26359 0.27153 0.24024 0.24648 -1.24862 -1.25054 0.26937 0.26986 0.24911 0.25123 

B6 -0.29408 -0.30828 0.23908 0.22626 0.21553 0.20204 -0.32760 -0.32559 0.21768 0.21729 0.18875 0.19074 

B7 -0.13074 -0.13512 0.12611 0.12543 0.09462 0.09125 -0.14501 -0.14846 0.09041 0.08754 0.06944 0.06808 

B8 0.17746 0.18370 0.21606 0.22035 0.18410 0.18972 0.15903 0.16435 0.19142 0.19500 0.16406 0.16874 

B9 0.42878 0.42422 0.12522 0.13006 0.09986 0.10578 0.42433 0.41792 0.10618 0.11508 0.08647 0.09314 

B10 -0.49680 -0.46691 0.18822 0.20481 0.14167 0.15921 -0.53663 -0.52221 0.12880 0.13654 0.09897 0.10529 

B11 0.73709 0.73896 0.15365 0.15704 0.13972 0.14229 0.74031 0.73939 0.15344 0.15238 0.14174 0.14043 

B12 0.22433 0.23357 0.28782 0.27899 0.27582 0.26643 0.21843 0.22033 0.29598 0.29431 0.28175 0.27979 

Where: 
 T = threshold parameter 
 Bi, i= 1,…,6 correspond to the parameters of the first equation of model (10). 
 Bi, i=7,…,12 correspond to the parameters of the second equation of the model (10). 
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TABLE 1. Monte Carlo Results (continuation) 

 n = 250. Replications = 1000. 








−

−
=Σ

1,01,0

1,04,0  n = 250. Replications = 1000. 








=Σ

2,0158,0
158,05,0  

 MEAN RMSE MAE MEAN RMSE MAE 

 Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ 

T 0.56384 0.42479 0.78010 0.68387 0.63542 0.53954 0.51195 0.45411 0.62857 0.60050 0.54529 0.51064 

B1 0.65401 0.64344 0.30864 0.31142 0.22421 0.22858 0.71489 0.71880 0.13329 0.12654 0.10380 0.09915 

B2 -0.70294 -0.68669 0.23839 0.23721 0.18916 0.18742 -0.54625 -0.54346 0.15835 0.15749 0.11760 0.12211 

B3 -0.12979 -0.15793 0.30507 0.31231 0.22753 0.23467 -0.10375 -0.09929 0.14346 0.14381 0.11709 0.11870 

B4 0.02486 0.02328 0.30673 0.30306 0.23478 0.23285 0.18690 0.18944 0.17466 0.17605 0.13930 0.13843 

B5 -1.24655 -1.25037 0.28013 0.27894 0.25278 0.25325 -1.26522 -1.26322 0.28572 0.28301 0.26547 0.26341 

B6 -0.27330 -0.28876 0.25185 0.24300 0.23154 0.22065 -0.33868 -0.33829 0.20550 0.20413 0.17951 0.17648 

B7 -0.11761 -0.11424 0.18235 0.18023 0.13301 0.13255 -0.14886 -0.15138 0.08457 0.08068 0.06618 0.06234 

B8 0.23321 0.24667 0.28751 0.29201 0.24060 0.25149 0.12637 0.13854 0.16429 0.17562 0.13802 0.14650 

B9 0.44822 0.45955 0.18104 0.18280 0.13524 0.13853 0.43002 0.42420 0.10122 0.10467 0.08125 0.08492 

B10 -0.39888 -0.35080 0.31531 0.33909 0.23673 0.26870 -0.57002 -0.54958 0.11040 0.12314 0.08484 0.09537 

B11 0.74542 0.74756 0.16601 0.16505 0.15021 0.14979 0.74976 0.74774 0.16307 0.16224 0.15023 0.14894 

B12 0.22859 0.24108 0.28241 0.27148 0.27144 0.25957 0.23087 0.22895 0.28705 0.28852 0.26932 0.27122 

Where: 
 T = threshold parameter 
 Bi, i= 1,…,6 correspond to the parameters of the first equation of model (10). 
 Bi, i=7,…,12 correspond to the parameters of the second equation of the model (10). 
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TABLE 2. Monte Carlo Results 

 n = 100. Replications = 100. 








=Σ

1,00
04,0  n = 100. Replications = 100. 









=Σ

1,01,0

1,04,0  

 MEAN RMSE MAE MEAN RMSE MAE 

 Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ 

LR  76.26100 71.49931     88.78760 84.07158     

p-val 0.00410 0.00620     5.00e -04 1.00e -04     

T 0.33207 -0.03942 0.76745 0.65494 0.60773 0.51160 0.17048 0.03997 0.53181 0.48937 0.40450 0.38968 

B1 0.56682 0.55258 0.40389 0.44416 0.30737 0.31491 0.63418 0.65359 0.29880 0.26109 0.20648 0.19287 

B2 -0.53811 -0.52022 0.34133 0.39768 0.26083 0.29268 -0.48072 -0.43776 0.27823 0.33803 0.22451 0.26193 

B3 -0.02200 -0.08185 0.36798 0.40742 0.28498 0.31949 -0.03643 -0.07812 0.28343 0.30074 0.22454 0.23741 

B4 0.23811 0.18834 0.41429 0.54480 0.32145 0.38982 0.22384 0.24444 0.28543 0.35854 0.22190 0.27483 

B5 -1.13985 -1.18382 0.25278 0.26639 0.21761 0.22151 -1.19112 -1.24974 0.24327 0.29319 0.21246 0.25893 

B6 -0.31646 -0.36226 0.29647 0.24049 0.24596 0.20673 -0.38961 -0.42346 0.23200 0.23576 0.18977 0.19810 

B7 -0.06084 -0.06407 0.25110 0.26077 0.19075 0.18938 -0.09159 -0.10783 0.20192 0.16070 0.13338 0.12617 

B8 0.19853 0.26772 0.29909 0.36773 0.23641 0.29480 0.18949 0.19606 0.24947 0.25989 0.21218 0.21774 

B9 0.37607 0.39926 0.22856 0.25461 0.17562 0.19690 0.41906 0.40966 0.17603 0.20040 0.13921 0.14897 

B10 -0.49004 -0.33654 0.33152 0.47172 0.22750 0.33981 -0.52670 -0.46548 0.23826 0.26086 0.17134 0.20416 

B11 0.66408 0.69025 0.15023 0.15926 0.12395 0.13086 0.70218 0.71626 0.14689 0.14987 0.12641 0.13216 

B12 0.20865 0.20942 0.32890 0.31622 0.29383 0.29430 0.19163 0.20494 0.33401 0.32158 0.31069 0.29752 

Where: 
 T = threshold parameter 
 Bi, i= 1,…,6 correspond to the parameters of the first equation of model (10). 
 Bi, i=7,…,12 correspond to the parameters of the second equation of the model (10). 
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TABLE 2. Monte Carlo Results (continuation) 

 n = 100. Replications = 100. 








−

−
=Σ

1,01,0

1,04,0  n = 100. Replications = 100. 








=Σ

2,0158,0
158,05,0  

 MEAN RMSE MAE MEAN RMSE MAE 

 Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ Min ln|Σ| Min trΣ 

LR 68.18626 67.71671     82.69171 83.08769     

p-val 0.01000 0.00610     4.00e -04 2.00e -04     

T -0.00925 -0.22862 0.85214 0.82488 0.69235 0.61788 0.17344 0.20063 0.59796 0.55875 0.47576 0.45243 

B1 0.39582 0.46271 0.79312 0.66369 0.52821 0.46732 0.64293 0.66629 0.26225 0.21932 0.18147 0.16232 

B2 -0.79241 -0.79055 0.61598 0.60203 0.43167 0.46939 -0.43328 -0.41973 0.33033 0.31473 0.24175 0.23550 

B3 -0.23282 -0.21619 0.76334 0.69779 0.53758 0.48047 -0.07101 -0.05610 0.25446 0.26118 0.20975 0.21181 

B4 -0.21357 -0.24808 0.96544 0.86935 0.66399 0.67103 0.28883 0.28143 0.35551 0.33514 0.28844 0.25723 

B5 -1.12934 -1.19290 0.24255 0.28946 0.20461 0.24742 -1.22401 -1.24399 0.26185 0.28257 0.23498 0.24693 

B6 -0.32281 -0.34385 0.29680 0.27229 0.25649 0.23460 -0.41333 -0.41116 0.26428 0.23951 0.20510 0.19781 

B7 0.05103 -0.01788 0.47153 0.38911 0.31332 0.26964 -0.09175 -0.12525 0.17447 0.14034 0.12836 0.10806 

B8 0.41802 0.43365 0.57635 0.57419 0.44843 0.48494 0.13907 0.13287 0.20712 0.20221 0.17612 0.16815 

B9 0.51886 0.47120 0.42677 0.40926 0.30445 0.28356 0.40262 0.38726 0.18080 0.18211 0.14345 0.14957 

B10 -0.08881 -0.02374 0.82279 0.79714 0.59734 0.63708 -0.55229 -0.56281 0.19086 0.18706 0.14383 0.14788 

B11 0.66117 0.69911 0.14746 0.17059 0.12290 0.14349 0.69615 0.72519 0.12943 0.15568 0.11220 0.13611 

B12 0.21860 0.23553 0.31751 0.29854 0.29510 0.27823 0.21917 0.22003 0.32137 0.31250 0.28853 0.28645 

Where: 
 T = threshold parameter 
 Bi, i= 1,…,6 correspond to the parameters of the first equation of model (10). 
 Bi, i=7,…,12 correspond to the parameters of the second equation of the model (10). 
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TABLE 3. The Johansen cointegration tests 

Model λ  max 
(sig. value 90%) 

r = 0 

λ  max 
(sig. value 90%) 

r = 1 

λ  trace 
(sig. value 90% ) 

r = 0 

λ  trace 
(sig. value 90%) 

r = 1 
Atlanta-New York 227.53 

(10.29) 
37.53  
(7.50) 

265.06 
(17.79) 

37.53 
(7.50) 

Baltimore -New York 168.19 
(10.29) 

39.41 
(7.50) 

207.59 
(17.79) 

39.41 
(7.50) 

Boston-New York 221.99 
(10.29) 

31.45 
(7.50) 

253.43 
(17.79) 

31.45 
(7.50) 

Cincinnati-New York 165.90 
(10.29) 

37.32 
(7.50) 

203.21 
(17.79) 

37.32 
(7.50) 

Dubuque-New York 221.48 
(10.29) 

60.18 
(7.50) 

281.67 
(17.79) 

60.18 
(7.50) 

Indianapolis -New York 192.69 
(10.29) 

38.25 
(7.50) 

230.94 
(17.79) 

38.25 
(7.50) 

Memphis -New York 143.65 
(10.29) 

34.99 
(7.50) 

178.65 
(17.79) 

34.99 
(7.50) 

Minneapolis -New York 167.77 
(10.29) 

40.45 
(7.50) 

208.22 
(17.79) 

40.45 
(7.50) 

 where: 
 λ MAX =  Maximum eigenvalue test statistic; 
 λ TRACE = Trace test statistic; 
 r = number of cointegrating vectors being tested under the null hypothesis.  

 

 

TABLE 4. Tsay’s test, thresholds and the sup-LR test 

Variables  Minimum ln|Σ | Minimum trace(Σ) 
 

Tsay’s test  
(p-value) C1: 

Negative 
threshold 

C2: 
Positive 

threshold 

Sup-LR 
test 

(p-value) 

C1: 
Negative 
threshold 

C2: 
Positive 

threshold 

Sup-LR 
test 

(p-value) 
Atlanta-New York 4.36958  

(0.03726990) 
-4.21847 4.70471 35.82876 

(0.03000) 
-4.11347 4.70471 35.77480 

(0.03000) 
 

Baltimore -New York 5.54600  
(0.01904593) 

-0.41302 3.65352 48.10246 
(0.00000) 

-1.54302 4.04352 41.01023 
(0.00000) 

Boston-New York 2.78421  
(0.09607421) 

-2.16453 1.99346 53.02925 
(0.00000) 

-2.56453 3.91346 52.06534 
(0.00000) 

Cincinnati-New York 3.40618  
(0.06575343) 

-0.37792 3.62298 50.14700 
(0.00000) 

-0.37792 3.62298 50.14700 
(0.00000) 

Dubuque-New York 0.02541  
(0.87343826) 

-0.42392 2.68334 51.54597 
(0.00000) 

-0.40392 2.68334 50.63417 
(0.00000) 

Indianapolis -New York 3.37622  
(0.06697451) 

-2.36443 1.55603 31.21481 
(0.12000) 

-0.50943 0.05103 29.36951 
(0.14000) 

Memphis -New York 5.03133  
(0.02573216) 

-3.37125 4.84961 43.35183 
(0.00000) 

-3.45125 4.84961 40.93464 
(0.00000) 

Minneapolis -New York 8.48748  
(0.00381766) 

-2.28567 3.57694 41.45080 
(0.02000) 

-1.46567 3.76194 30.34356 
(0.08000) 
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TABLE 5. Split-sample analysis of TVECM  

Variables Minimum ln|Σ | 
1880-1895 

Minimum ln|Σ | 
1896-1911 

 C1: 
Negative 
threshold 

C2: 
Positive 

threshold 

C1: 
Negative 
threshold 

C2: 
Positive 

threshold 
Atlanta-New York -1.55546 1.45993 -1.30101 2.23548 
Baltimore -New York -0.48756 2.35695 -0.96415 2.99993 
Boston-New York -2.36966 3.04362 -1.30268 1.83689 
Cincinnati-New York -1.16718 2.17853 -0.06935 1.65395 
Dubuque-New York -2.63292 3.38760 -0.43701 2.92077 
Indianapolis -New York -2.17227 2.24428 -0.09240 0.25017 
Memphis -New York -3.91461 4.14149 -0.08173 1.31914 
Minneapolis -New York -1.30290 0.16400 -2.06985 3.17009 
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Figure 1. Nonlinear Impulse-response functions  
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