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ABSTRACT 
 

Water quality management under the watershed approach of Total Maximum 
Daily Load (TMDL) programs requires that water quality standards be maintained 
throughout the year. The main purpose of this research was to develop a methodology 
that incorporates inter-temporal variations in stream conditions through statistical 
distributions of pollution loading variables. This was demonstrated through a cost 
minimization mixed-integer linear programming (MIP) model that maintains the spatial 
integrity of the watershed problem. Traditional approaches for addressing variability in 
stream conditions are unlikely to satisfy the assumptions on which these methodologies 
are founded or are inadequate in addressing the problem correctly when distributions are 
not normal. 

The MIP model solves for the location and the maximum capacity of treatment 
plants to be built throughout the watershed which will provide the optimal level of 
treatment throughout the year. 

The proposed methodology involves estimation of parameters of the distribution 
of pollution loading variables from simulated data and use of those parameters to re-
generate a suitable number of random observations in the optimization process such that 
the new data preserve the same distribution parameters. The objective of the empirical 
model was to minimize costs for implementing pH TMDLs for a watershed by 
determining the level of treatment required to attain water quality standards under 
stochastic stream conditions. The output of the model was total minimum costs for 
treatment and selection of the spatial pattern of the least-cost technologies for treatment. 
To minimize costs, the model utilized a spatial network of streams in the watershed, 
which provides opportunities for cost-reduction through trading of pollution among 
sources and/or least-cost treatment. The results were used to estimate the costs 
attributable to inter-temporal variations and the costs of different settings for the ‘margin 
of safety’. 

The methodology was tested with water quality data for the Paint Creek 
watershed in West Virginia. The stochastic model included nine streams in the optimal 
solution. An estimate of inter-temporal variations in stream conditions was calculated by 
comparing total costs under the stochastic model and a deterministic version of the 
stochastic model estimated with mean values of the loading variables. It was observed 
that the deterministic model underestimates total treatment cost by about 45 percent 
relative to the 97th percentile stochastic model. 

Estimates of different margin of safety were calculated by comparing total costs 
for the 99.9th percentile treatment (instead of an idealistic absolute treatment) with that of 
the 95th to 99th percentile treatment. The differential costs represent the savings due to the 
knowledge of the statistical distribution of pollution and an explicit margin of safety. 
Results indicate that treatment costs are about 7 percent lower when the level of 
assurance is reduced from 99.9 to 99 percent and 21 percent lower when 95 percent 
assurance is selected.  

The application of the methodology, however, is not limited to the estimation of 
TMDL implementation costs. For example, it could be utilized to estimate costs of anti-
degradation policies for water quality management and other watershed management 
issues.  
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Introduction 

Water quality management under the US Environmental Protection Agency’s 

(USEPA) watershed approach (USEPA, 2002) incorporates the latest attempts to realize 

the original goals of the Clean Water Act of 1972 (CWA): to clean-up and protect U.S. 

waters from both point and non-point sources of pollution. While much progress has been 

made over the past three decades, 40 percent of the U.S. waters currently do not meet 

water quality standards, and about half of the nation’s 2,149 major watersheds continue 

to suffer from serious water quality problems (USEPA, 1998). 

In the initial years of the CWA, management efforts were primarily limited to at-

source control of discharges from individual point sources by requiring use of Best 

Available Technologies (BAT) under the National Pollutant Discharge Elimination 

System (NPDES; Section 402 of the CWA 1972). Attention to non-point source 

discharge control was virtually non-existent because of the perceived relative severity of 

the problems combined with personnel and budgetary limitations. The complexity in 

identifying and determining clean-up responsibility was, and remains, a further 

confounding factor. 

The USEPA and other federal agencies have adopted a watershed approach to 

better integrate non-point sources into the overall water quality management and 

improvement effort. Simply put, the watershed approach is an attempt to develop a 

collaborative approach to environmental management that incorporates all stakeholders 

including the full range of government entities, the private sector, local organizations, 

and special interest groups. This approach attempts to bring out the best balance among 

efforts to control point-source pollution and non-point source runoff and to encourage 
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greater public involvement, accountability and progress toward clean water goals. The 

focus moves away from technology-based point-by-point control to an overall water-

quality based approach (USEPA, 1998). 

Since watershed level planning allows pollution control by the least-cost methods 

and sources and thus provides opportunities for pollution trading, it has a promise of cost-

savings for implementation of the USEPA’s Total Maximum Daily Load (TMDL) 

program. Both the TMDL program which seeks to bring degraded waters up to current 

standards and anti-degradation policies designed to protect current water quality levels 

can benefit from such an integrated approach. Based on a recent U.S. Environmental 

Protection Agency study, the watershed approach is estimated to reduce TMDL 

implementation costs by 25-50 percent over the point-by-point source control approach 

(USEPA, 2001a). 

Objectives 

This paper presents a methodology that can incorporate economic decisions into 

the watershed management process as part of an integrated management approach. The 

approach takes as given the water quality standards and other exogenously determined 

factors that managers face and develops a portfolio of treatment/management options that 

accounts for stochastic inter-temporal variations in pollution loads in a watershed into a 

framework that minimizes treatment costs. The model can be utilized to estimate 

watershed-based TMDL implementation costs based on the inter-temporal maintenance 

of water quality standards under a variety of conditions with a specified probability of the 

‘margin of safety’. It can also be use to estimate costs for anti-degradation policies for 

water quality management and other watershed management issues. 
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Motivation 

Stream conditions in any watershed constantly change. Water flow as well as 

pollution levels in streams vary with time and season. Traditional approaches to deal with 

these types of variability developed a model based on a single observation or the average 

of a few samples and then performed a sensitivity or scenario analysis on the factors 

subject to change (Liebman and Lynn, 1966; Loucks et al., 1967; Fletcher et al., 1991; 

and Phipps et al., 1991, 1992, 1996). In the context of mathematical programming 

models, the sensitivity analysis amounts to parametric programming or post-optimality 

analysis where the model is run again and again while changing the values for some of 

the variables. 

Other approaches that deal with variability with regard to water quality 

management problems include chance-constrained programming (Charnes and Cooper, 

1959, 1962, 1963; Sengupta, 1970) and first-order uncertainty analysis (Benjamin and 

Cornell, 1970). In chance-constrained programming the constraints are expected to 

satisfy the right-hand-side resource vector for a predetermined degree of confidence 

(Lohani and Thanh, 1978; Zhu et al., 1994). In first-order uncertainty analysis the first 

two moments of the variable factors are explicitly included in the model (Burges and 

Lettenmaier, 1975; Burn and McBean, 1985). 

What is missing in all these approaches, however, is the explicit consideration of 

statistical distributions of the variable factors in the model. Shortle (1990) emphasized 

this point by suggesting that for stochastic emissions, pollution control essentially 

requires ‘improving the distribution of emissions’. Models based on a single observation 

or mean values do not perform well when distributions of the relevant variables are not 



 5

normal. Averages or the mean values often hide valuable information. They are biased in 

the direction of extreme observations if the distribution is skewed. The mean value can be 

considered as a good representative of the data only if the true distribution is normal. 

With few exceptions (e.g., Zhu et al., 1994), chance-constrained programming models 

usually assume normality when the probabilistic constraints are translated into their 

deterministic equivalents. First-order analysis does not require normality explicitly. 

However, the first two moments inadequately describe the data if distributions are not 

symmetric or normal. Higher order moments for many distributions are equally important 

to modeling accuracy. In the case of water pollution abatement cost comparisons, Shortle 

(1990) also pointed out that if the mean and variance of the damage function move in the 

same direction, the covariance between marginal damage and changes in the emissions is 

negative and abatement is beneficial. However, if the mean and variance move inversely, 

the sign of the covariance is ambiguous and abatement may not be beneficial. The first-

order analysis implicitly assumes zero weight to the higher order moments than the first 

two.  

The US Environmental Protection Agency (USEPA) has adopted a watershed 

approach to water quality management but continues to require states to promulgate and 

enforce regulations to maintain water quality standards at all points throughout the year. 

The implications for these USEPA imperatives for water quality management in a 

stochastic environment and the inadequacy of traditional stochastic approaches dealing 

with the non-normal distributions of pollution loading variables were the motivation for 

developing the stochastic mixed-integer linear programming model presented in this 

paper. 
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The General Model 

 Consider the following stylized description of the watershed management 

problem. A watershed is defined as the area of land that catches rain and snow and drains 

or seeps into a common point. Since water always flows downhill, there is a route with a 

monotonically non-increasing elevation from any point in the watershed to what is called 

the pour point. Within a watershed, overland flow and/or groundwater discharges 

combine to form streams that further combine to form larger streams and rivers. The 

beginning streams are called headwater streams or tributaries, the point where two or 

more streams join is referred to as node, and the stream reach joining two nodes defines 

downstream segments. The watershed area can be divided into sub-watersheds or 

catchments associated with each stream segment. Pollution loading in a tributary can 

come from non-point or point sources within the catchment’s area. Pollution loading in 

downstream segments can come from either the direct catchments or from the upstream 

segments that meet at the upstream node. 

In any given situation, the specific details of the stream network, the measures of 

water quality, and the point and non-point sources of pollutant loadings can be quite 

complex. The models developed to understand the effects of the underlying geology, land 

composition, and human intervention that lead to elevated pollution levels are often 

highly non-linear and reflect a wide variety of hydrological, chemical, and biological 

activities. When remediation efforts are implemented in an attempt to improve water 

quality, further complexities are introduced. The approach suggested in this model is to 

impose a simplified approximation to this complex structure which can be used to inform 

the management or implementation process. 
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Let 0
iy  (may be a vector composed of different pollutants) denote the initial 

pollution load in stream segment i (i = 1, 2, …, I). This load comes from the exogenous 

contribution of point and non-point sources (denoted as ix ) within the sub-watershed or 

catchment area for tributaries. For downstream segments, 0
iy represent the combination 

of net contributions of pollution loading from the respective sub-watershed and the initial 

loading received from upstream segments. Suppose that there are a number of treatment 

or control technologies indexed by m (m = 1, 2, …, M), which could include point source 

control and non-point source practices that reduce the pollution load within a given 

stream segment with associated fixed costs of implementation of mif ,  and variable costs 

for a unit of treatment of miv , . Let miu , denote the level of treatment by technology m 

utilized within each segment and mc , if applicable, denote the upper bound on the 

treatment that can be realized. Note that the stream segment designations are explicitly 

included to reflect the spatial structure of the watershed problem. Appropriate bounds on 

the water quality parameters after treatment can also be included as bounds on the post-

treatment water quality, iy . 

A mass-balance approach to water quality can be imposed at any point in time by 

applying a piecewise linear approximation to the vector of outputs from a non-linear 

water quality model. Inter-temporal variability can be incorporated by modeling the 

statistical distributions of concentrations and flows that combine to give the pollutant 

loadings. This involves two steps: (1) determining the distributions and their parameters, 

and (2) using these parameters to generate observations in a simulation process that can 

be utilized in further cost minimizing optimization. Let n (n = 1, 2, …, N) further index 
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the draw from the distribution of random loadings with specified parameters used to 

reflect the stochastic elements of pollution loadings. With this new index, the initial water 

quality 0
iy  becomes 0

,niy , the exogenous contribution of pollution loadings ix  becomes 

nix , , the decision or choice variable miu ,  becomes nmiu ,, , and the post-treatment water 

quality iy  becomes niy , . 

Although pollution clean-up can be accomplished in a variety of ways such as at-

source control, flow-augmentation, isolation of polluted waters, etc., only the issues 

involved with the option of treatment of polluted watershed are addressed in this paper. 

Costs for such treatment usually involve two components: a fixed set-up or installation 

cost and a variable per unit cost of treatment. The presence of fixed costs introduces non-

linearity in the cost function. Mathematical programming for this type of ‘fixed-charge 

problems’ usually takes the form of a mixed-integer model (MIP), which allows both 

continuous and discrete (integer) variables. Let ,i mb  denote the use of technology m 

within segment i. If the appropriate objective is to determine the levels of treatment that 

would meet mandatory water quality standards over a specified flow regime at minimum 

costs, then a general mixed-integer programming model can be specified using the 

notation introduced as follows: 

,
, , , , ,{ } 1 1

1Minimize   E(cost)  
i m

I M N

i m i m i m i m nu i i m n

Min f b v u
N= = =

  = +  
  

∑ ∑ ∑   (1) 

subject to: 

(a) Water quality constraints: 

 ,i nLO y UP≤ ≤        (2) 
(b) State of water quality transition equations: 
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, , , ,

1

, , , , ,
1

.

Tributary segments:              

Downstream segments:        ,

M

i n i n i m n
m
M

i n i n i n i m n
upstream m
seg of i

y x u

y y x u i n

=

=

= −

= + − ∀

∑

∑ ∑
(3) 

(c) Technology capacity constraints: 

 , , , ,i m n m i mu c b n≤ ∀        (4) 
(d) Constraints on choice variables: 

 , ,

,

0
0 1 , ,

i m n

i m

u
b or i m n

≥

= ∀
      (5) 

(e) Technology selection constraints: 

 , 1     i m
m

b i≤ ∀∑        (6) 

 
where, 

0
, ,i n i nx y≡    for tributary segments 

0 0
, , ,

.

i n i n i n
upstream
seg of i

x y y≡ − ∑   for downstream segments 

i is the index for stream segments or reaches. 

m is the index for treatment technologies. 

n is the number of observations drawn to re-generate the statistical distributions of 
pollution loadings (y0

i). 

ui,m,n represent the choice or decision variables. There are n such variables for 
each stream segment. 

vi,m represent the variable costs or the per unit cost of treatment with technology m 
for segment i. 

fi,m represent the fixed costs or set-up costs for technology m for segment i.  
0
,i ny represent the initial states of water quality for segment i. The distribution and 

parameters of this variable are determined from existing data. The 
optimization model draws random observations following those parameters to 
re-generate the distributions.  

yi,n represent the post-treatment states of water quality for stream segment i 
resulting from a positive level of treatment. The levels of treatment must be 
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chosen in such a way such that the post-treatment water quality remains 
within the lower (LO) and upper (UP) bounds of the mandatory standards.  

bi,m is a binary auxiliary choice variable for stream segment i. It assumes the value 
1 when treatment is chosen by technology m, and 0 otherwise. 

xi,n represent residual or exogenous pollution drainage to segment i from 
respective sub-watersheds. 

cm represent the capacity of plants of treatment technology m.  

The objective function in this model minimizes total expected costs which is the sum of 

fixed costs and average variable costs. The fixed costs are added to the total only when 

bi,m = 1, i.e., when treatment is required. The levels of treatment are determined in such a 

way that water quality standards (2), mass-balance conditions (3), and technology 

capacity constraints (4) are maintained. An optional constraint (6) is also defined to limit 

the number of technologies to one per segment. It may or may not be included in the 

model depending on the preference of the policy makers and the specifics of the problem 

to be addressed. 

Any number of observations N can be drawn to re-generate the distributions of the 

stochastic variables depending on the level of accuracy required. However, since each 

observation also increases the number of constraints in the model, there is a direct trade-

off between model size and statistical accuracy. For this general model, the number of 

constraints can be derived from the expression [I × N (3 + M) + I] and the number of 

variables from [I × N (1 + M) + I × M]. The primary difference of this stochastic model 

over other stochastic approaches such as chance-constrained programming and first-order 

uncertainty analysis is that unlike the chance-constrained models where the constraints 

are satisfied with a predetermined confidence levels, all constraints are satisfied in this 

approach with 100 percent certainty. Unlike the first-order uncertainty analysis, this 
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approach does not depend on the first two moments only. The level of significance is 

controlled by the process that draws the observations to be included in the model. Any 

level of probability can be specified by the cut-off point selected in this simulation 

process. 

Application – AMD Treatment in the Paint Creek Watershed 

To demonstrate the application of the methodology, the model described by 

equations (1) through (6) is adapted to estimate the pH TMDL implementation costs for 

the Paint Creek watershed located in south-central West Virginia. Total drainage area of 

this watershed is about 123 square miles. The stream network is composed of 62 

segments, 32 headwater or tributaries and 30 downstream segments, which serve to 

divide the watershed into 62 catchments or sub-watersheds. 

Paint Creek, a tributary of the 

Kanawha River, flows north through 24 

small communities with a combined 

population of about 7,200. Over the past 

90 years both surface and deep coal 

mining activities have taken place in this 

watershed, but very little attention was 

paid to environmental degradation 

resulting from mining activities until the 

passage of the West Virginia Surface 

Coal Mining and Reclamation Act 

(WVSCMRA) and the Surface Mining Control and Reclamation Act (SMCRA) in 1977. 
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 After coal extraction, mine openings and boreholes were abandoned allowing 

surface water to seep into deep mines and react with sulfur and metal ions to form acidic 

solutions. These acidic solutions flow out of the mine to the adjacent streams and 

tributaries. The West Virginia Department of Environmental Protection (WVDEP) and 

the Paint Creek Watershed Associations conducted water sampling at locations in both 

the mainstream and tributary segments. The water in many locations was highly acidic 

and far exceeded the West Virginia water quality standards which require waters to be 

between pH 6.0 and 9.0. 

Data Sources 

Data for the empirical model of the Paint Creek watershed were obtained from 

two major sources. Daily estimates of water flow and net acidity for all 62 stream 

segments for a five year period (1992-96) were generated by the Total Acidic Mine 

Drainage Loadings (TAMDL) model. TAMDL is a computer simulation model developed 

by Stiles (2002) at the West Virginia Water Resources Institute, West Virginia University 

to provide the analytical capabilities necessary to model in-stream concentrations and 

reaction of the various constituents of acid mine drainage (AMD). The output of the 

TAMDL model provided estimates of flow level and acid loadings in units of CaCO3 

equivalent per year. TAMDL was applied as part of the development of the TMDL 

allocations for the Paint Creek Watershed (USEPA, 2001b). 

Detailed information on plant sizes and related fixed costs of operation for four 

alkaline treatment technologies – soda ash (Na2CO3), caustic soda (NaOH), ammonia 

(NH3), and hydrated lime (Ca(OH)2) – as well as per unit chemical reagent costs were 

obtained from various studies conducted by Fletcher et al. (1991) and Phipps et al. 
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(1996). Soda ash based technologies can be applied to treat smaller amounts of acidity 

with a plant capacity of 10 metric tons of CaCO3 equivalent acid per year. The other three 

technologies can be applied to a wide range of flow-acidity conditions but may require 

bigger capacity plants for high-flow-high-acidity waters. Treatment capacities of two 

different plant sizes for caustic soda and ammonia and four different plant sizes for 

hydrated lime were used. For caustic soda and ammonia, the derived capacities were 10 

and 4,975 metric tons of CaCO3 equivalent per year, and for hydrated lime, the derived 

capacities were 10, 199, 249, and 4,975 metric tons of CaCO3 equivalent acid per year 

respectively. The model treated the various combinations as separate technologies – a 

total of nine plant size, chemical technology combinations. 

The Specific Model  

The specific model for the Paint Creek watershed is thus written with 62 stream 

segments and 9 technologies. The objective function takes the form: 

,

62 9

, , , , ,{ } 1 1 1

1Minimize   E(cost)  
i m

N

i m i m i m i m n mu i m n

Min f b v u mwt
N= = =

  = +  
  

∑ ∑ ∑  (7) 

The mwtm term represents the molecular weight factor of the chemical reagent used in 

technology m. It is defined as the product of the ratio of the molecular weight of a reagent 

to the molecular weight of CaCO3 and the number of units of that reagent is needed to 

neutralize one unit of CaCO3 equivalent acid load. Some chemicals such as ammonia and 

sodium hydroxide require two units to neutralize one unit of CaCO3 equivalent acid. The 

product of the average treatment levels , ,
1

1 N

i m n
n

u
N =

 
 
 
∑ and molecular weight factor mwtm 

gives the amount (in metric tons/year) of reagent m required for treatment. This amount is 
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then multiplied by the $/metric ton costs of reagent m, vi,m, to derive the total average 

variable costs in $/year. The water quality constraints are written as: 

(a’) Water quality constraints: 

 
, ,

, ,

Upper bound:  6
Lower bound:  9

i n i n

i n i n

y w s k
y w s k

≤ × ×

≥ × ×       (8) 

where, s6 and s9 represent the mg/L equivalent net acidity corresponding to pH 6 and 9 

respectively. Since water flows (wi,n) are measured in gallons per minute, the right-hand-

sides of these two equations give the allowable upper and lower bounds of acid loadings 

corresponding to the West Virginia water quality standards expressed in metric tons of 

CaCO3 equivalent acid load per year. 

The water quality transition equations following the mass-balance conditions are 

expressed as, 

(b’) State of water quality transition equations: 

 

9

, , , ,
1

9

, , , , ,
1

.

Tributary segments:      

Downstream segments:  

i n i n i m n
m

i n i n i n i m n
upstream m
seg of i

y x u

y y x u

=

=

= −

= + −

∑

∑ ∑   (9) 

The only modification in these two sets of equations is that the total number of treatment 

technologies m is now defined. The technology capacity constraints remain the same as 

they were in the generic model with i and m explicitly defined. 

(c’) Technology capacity constraints: 

 , , , ,  i m n m i mu c b n≤ ∀        (10) 

The constraints on the choice variables also remain the same as in the generic model. 
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(d’) Constraints on choice variables:  

 , ,

,

 0
  0, 1

i m n

i m

u
b or

≥

=
       (11) 

Finally, the technology selection constraints are modified to indicate the nine 

technologies included in the Paint Creek model. 

(e’) Technology selection constraints: 

 
9

,
1

1,i m
m

b i
=

≤ ∀∑        (12) 

Assumptions 

In addition to the mass-balance conditions of the generic model, three more 

assumptions are made for the specific Paint Creek model due to unavailability of 

appropriate information. These are: 

(1) Water flow and acid loadings are independent. In reality, there is a negative 
covariance between these two variables. The implication of this assumption is 
that the estimates of acid loadings and treatment levels will be higher. As a 
result, treatment costs are overestimated in this study. 

 
(2) No variations in the set-up costs of treatment technologies across different 

sub-watersheds. In reality, these costs are expected to vary because of the 
topography, accessibility, unavailability of electricity, etc. 

  
(3) Per unit treatment costs do not change with the level of treatment for the same 

chemical but different capacity plants. However, they do vary for different 
chemical technologies.  

 

Distributions of Water Flow and Net Acidity 

The five-year daily data on water flow and net acidity for all 62 stream segments 

of the Paint Creek watershed obtained from the TAMDL model were tested with the 

distribution fitting software BestFit (Palisade Corporation, 2000) to determine the 

appropriate distributions and the related parameter estimates. It was observed that water 
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flow follows the lognormal distribution and net acidity follows the triangular distribution 

for almost all segments. Some minor adjustments were made for those segments where 

lognormal and triangular were not a perfect fit. Parameters of these distributions were 

noted and used to re-generate these distributions through random draws in the 

optimization model. 

Two transformation functions linking a standard normal variable to the lognormal 

parameters and a standard uniform variable to the triangular parameters were used in the 

optimization programs to transform the normal and uniform variables directly available 

in GAMS (Brook et al., 1998) as appropriate. 

The triangular distribution is bounded by the minimum and maximum values 

while the lognormal distribution is unbounded. The characteristic fat tail of the lognormal 

probability density function (pdf) is asymptotic to the horizontal axis. The implication is 

that the probability of obtaining an extremely large observation is never zero; random 

observations drawn from the lognormal distribution will be arbitrarily large with some 

positive probability. Acid loadings corresponding to these observations will also be large 

and may go well beyond the treatment capacity of all feasible plants resulting in 

infeasible model solutions. Even when the solution is feasible, the optimal solution will 

include larger capacity treatment plants at a very high fixed cost and may significantly 

overstate any observed or expected outcome. 

To avoid this problem, an upper limit or treatment up to a selective percentile of 

the distribution was used in the model, not the complete distribution. A large number of 

observations (50,000) for the acid loadings for all 62 stream segments were drawn to 

serve as the empirical distribution. These draws were then sorted in ascending order and 
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the 90th, 95th, 97th, 99th, and 99.9th percentile values noted. During the optimization 

process, if any random draw resulted in a value greater than the appropriate percentile 

values for a given run, they were censored appropriately. The model was run with 700 

sample observations for each of the percentile levels of treatment noted above and 

treatment levels, fixed, and variable costs compared. 

Methodology 

The MIP model for the Paint Creek watershed was estimated using the CPlex 

solver available with the GAMS software. The lognormal and triangular parameters 

obtained from the BestFit software were used in the GAMS program and transformation 

functions were used to link these parameters with draws from standard normal and 

standard uniform variables to re-generate the distributions of lognormal water flow and 

triangular net acidity. The simulated flow and acidity data were then used to calculate the 

acid loadings included in the optimization model. All stream segments were assigned the 

same randomly drawn value in a particular draw to reflect the high spatial autocorrelation 

between flows and loadings at a specified point in time. The implication of this drawing 

process is that any change in the upstream loadings will affect the downstream loadings 

proportionately and is in accordance with the mass balance approach used in the linear 

approximation. During the optimization process, a suitable number of sample 

observations for lognormally distributed water flow and triangularly distributed net 

acidity were drawn and corresponding acid loadings calculated and checked against those 

percentile values. Loadings that exhibit values greater than a specific percentile value 

were replaced by that percentile value. The GAMS/Cplex solvers used dual simplex and 

branch-and-bound algorithms. 
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Results 

Increasing the percentile values implies usage of more area from the positively 

skewed tail of the lognormal distribution. This increases the probability of encountering 

more extreme observations in the optimization process. For the present problem, these 

more extreme values simply mean higher levels and costs of treatment. If a larger plant is 

required to treat the higher load, this may require installation of higher capacity treatment 

plants as well. This issue is investigated for a fixed sample size of 700 observations and 

for variable levels of treatment. The results are presented in Table 1. 

Summary results in Table 1 suggest that total expected costs (TEC) of treatment 

increase with increases in the percentile of loads fully treated. The increase in the cost is 

primarily due to the higher amount of acid treatment which sometimes requires higher 

capacity treatment plants. Smaller caustic soda plants were sufficient to meet the 

treatment requirements for the 90th percentile treatment. When the required level of 

treatment increases from the 90th to the 95th percentile, smaller caustic soda plant 

originally selected for stream segment 4 is no longer sufficient. For treating the 97th 

percentile treatment, segments 4 and 33 both require larger caustic soda plants. For even 

higher 99th percentile treatment level, stream segments 4, 33, 43 and a new segment 13 

which do not require any treatment previously for lower bounds, also need the larger 

caustic soda plants. This increased capacity simply translates to higher fixed costs. 

With 700 sample observations, the activity matrix had 520,862 rows and 434,558 

columns with 1,736,417 non-zero elements. The proportion of non-zero elements was 

7.67×10– 6. The CPlex solver used 153,969 iterations to achieve the optimum solution and 

required 1.7 GB virtual memory and 21 minutes CPU time with a P-III 550. 
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Table 1: Effects of Different Percentile Treatment on Total Expected Costs 

Results for sample size = 700

Segments Least-cost Average Average Annualized Average Total Expected Coefficient
to be method of acid load to reagent Fixed variable cost, TEC = of variation

treated treatment be treated requirement cost (F) cost (AVC) (F + AVC) for acid load
(mt/yr) (mt/yr) ($/yr) ($/yr) ($/yr) treated

90th percentile treatment
4 C. Soda-1 0.27 0.22 7,045.00 104.80 7,149.80 3.44

10 Ammonia-2 210.68 71.63 10,050.00 23,638.03 33,688.03 1.23
12 Ammonia-2 174.62 59.37 10,050.00 19,592.32 29,642.32 1.50
19 Ammonia-2 13.48 4.58 10,050.00 1,511.94 11,561.94 1.38
21 Ammonia-2 19.42 6.60 10,050.00 2,178.78 12,228.78 1.63
25 Ammonia-2 43.51 14.79 10,050.00 4,881.55 14,931.55 1.13
33 C. Soda-1 1.09 0.87 7,045.00 422.80 7,467.80 1.10
43 C. Soda-1 0.03 0.02 7,045.00 11.61 7,056.61 5.67
57 C. Soda-1 0.003 0.002 7,045.00 1.21 7,046.21 6.42

Total for all segments 463.09 78,430.00 52,343.04 130,773.04
95th percentile treatment

4 C. Soda-2 0.66 0.53 7,498.00 257.17 7,755.17 3.39
10 Ammonia-2 260.97 88.73 10,050.00 29,280.83 39,330.83 1.51
12 Ammonia-2 231.01 78.54 10,050.00 25,919.22 35,969.22 1.81
19 Ammonia-2 23.65 8.04 10,050.00 2,653.57 12,703.57 3.12
21 Ammonia-2 29.40 9.99 10,050.00 3,298.24 13,348.24 2.22
25 Ammonia-2 57.37 19.51 10,050.00 6,437.33 16,487.33 1.49
33 C. Soda-1 1.42 1.14 7,045.00 549.81 7,594.81 1.23
43 C. Soda-1 0.09 0.07 7,045.00 33.95 7,078.95 4.78
57 C. Soda-1 0.01 0.01 7,045.00 3.41 7,048.41 6.80

Total for all segments 604.58 78,883.00 68,433.53 147,316.53
97th percentile treatment

4 C. Soda-2 1.01 0.81 7,498.00 390.78 7,888.78 3.64
10 Ammonia-2 289.83 98.54 10,050.00 32,518.79 42,568.79 1.70
12 Ammonia-2 264.03 89.77 10,050.00 29,624.00 39,674.00 2.05
19 Ammonia-2 28.39 9.65 10,050.00 3,185.24 13,235.24 3.71
21 Ammonia-2 34.58 11.76 10,050.00 3,879.55 13,929.55 2.33
25 Ammonia-2 74.43 25.31 10,050.00 8,351.51 18,401.51 2.10
33 C. Soda-2 1.60 1.28 7,498.00 618.03 8,116.03 1.33
43 C. Soda-1 0.15 0.12 7,045.00 58.94 7,103.94 5.00
57 C. Soda-1 0.01 0.01 7,045.00 5.40 7,050.40 10.00

Total for all segments 694.03 79,336.00 78,632.25 157,968.25
99th percentile treatment

4 C. Soda-2 1.66 1.33 7,498.00       642.88           8,140.88            4.15
10 Ammonia-2 328.93 111.84 10,050.00     36,905.95      46,955.95          2.07
12 Ammonia-2 308.92 105.03 10,050.00     34,660.37      44,710.37          2.47
13 C. Soda-2 4.51 3.61 7,498.00       1,745.18        9,243.18            10.16
19 Ammonia-2 45.75 15.55 10,050.00     5,132.80        15,182.80          6.17
21 Ammonia-2 65.5 22.27 10,050.00     7,348.57        17,398.57          4.58
25 Ammonia-2 84.08 28.59 10,050.00     9,433.83        19,483.83          2.42
33 C. Soda-2 1.84 1.47 7,498.00       713.27           8,211.27            1.55
43 C. Soda-2 0.27 0.22 7,498.00       105.13           7,603.13            5.30
57 C. Soda-1 0.02 0.02 7,045.00       8.25               7,053.25            7.00

Total for all segments 841.47 87,287.00   96,696.23    183,983.23      

mt/yr = metric tons of CaCO3 eq per year
Averages were taken over the sample size
C. Soda-1 = Smaller caustic soda plant for low-flow-acidity waters
C. Soda-2 = Larger caustic soda plant for moderate to high flow-acidity waters
Ammonia-2 = Larger ammonia plant for moderate to high flow-acidity waters
Fixed cost includes all costs other than chemical cost
Annualized fixed cost was calculated assuming a 20-year plant life and a 6% discount rate
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Margin of Safety (MOS) 

The TMDL guidelines suggest an ad hoc adjustment to the end-points of 

allowable loads in determining MOS inclusive load allocations for point and non-point 

sources. This approach sidesteps the requirements of examining the actual statistical 

distributions of pollutant loadings. Implementation of such TMDLs requires building 

larger capacity treatment plants at higher costs. If the true distributions of loadings were 

known, allocations would have been lower, requiring lower implementation costs. The 

different costs of these two scenarios would then be interpreted as the savings due to the 

knowledge of the true MOS. 

Since the distributions of polluting variables are known in this study, arbitrary 

adjustments to the end-points of allowable loads are not necessary to get an estimate of 

savings due to the knowledge of MOS. Rather, it is possible to determine the exact 

amount of treatment to be carried out or the level of plant capacity to be built to achieve a 

target level of assurance. This approach is followed in the present study to estimate the 

savings due to the knowledge of MOS corresponding to different levels of assurance. 

Since the 100th percentile treatment of acid load is empirically impossible in the present 

approach due to the presence of the asymptotic tail, the maximum attainable level of 

safety was assumed to be with the 99.9th percentile treatment. Costs associated with this 

level of assurance were compared with that of a more pragmatic and attainable goal of 

the 95th to 99th percentile treatment. The differential costs provide the estimates of 

savings for the knowledge of MOS. The results are presented in Figure 1. 
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Figure 1: Estimates of Margin of Safety for Different Levels of Assurance 

The vertical axis of this graph represents the difference in total expected treatment 

costs of the 95th to 99th percentile treatment levels from that of the 99.9th percentile 

treatment. They can be interpreted as the savings in treatment costs for a guaranteed 95 to 

99 percent assurance. The graph indicates that savings decrease at an increasing rate with 

the levels of assurance. Treatment costs are 7 percent lower when 99 percent assurance is 

desired. If the required level of assurance is lowered to 95 percent, then 21 percent lower 

treatment cost could be achieved.  

Pollution Trading 

The watershed approach of the TMDL process and the spatial linkage of streams 

allow pollution trading when set-up costs for treatment plants vary across sub-

watersheds. The spatial network of streams allows treatment of a downstream segment 

through addition of alkalinity in that stream or anywhere upstream. The implication is 

that low-cost sources upstream can negotiate with high-cost sources downstream to gain 

from trade through treatment by the low-cost sources. This issue is illustrated with the 

help of a deterministic version of the model estimated with constant average values of 

water flow and net acidity data and with reduced fixed cost for a specific segment. The 

results are presented in Table 2. 

Estimates of MOS for Different Levels of Assurance
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Table 2: Potentials for Pollution Trading 

 

The upper panel of this table shows that the deterministic model has selected five 

stream segments – 10, 11, 19, 25, and 33 – in the optimal solution. Among these five 

segments, only 11 is a downstream segment and others are tributary segments. For 

tributaries, the model has no choice but to treat them individually. For downstream 

segment 11, however, the model can neutralize acidity problems through the injection of 

excess alkalinity into its upstream segments 12 or 13 if costs are lower. The lower panel 

shows the results when the model was run again with the fixed installation cost for 

treatment technology for segment 12 reduced by $1000. The optimal solution in this case 

included the low-cost segment 12 instead of the previously selected segment 11. 

Segments Least-cost Optimal Chemical Annualized Variable Total Cost
to be method of acid load to reagent Fixed cost (VC) TC=FC+VC

treated treatment be treated requirement cost (FC) ($/yr) ($/yr)
(mt/yr) (mt/yr) ($/yr)  

Deterministic Model Results
10 Ammonia-2 169.05 57.48 10,050.00     18,967.52      29,017.52      
11 Ammonia-2 104.05 35.38 10,050.00     11,674.85      21,724.85      
19 Ammonia-2 21.28 7.23 10,050.00     2,387.19        12,437.19      
25 Ammonia-2 39.21 13.33 10,050.00     4,399.74        14,449.74      
33 C. Soda-1 1.90 1.52 7,045.00       735.55           7,780.55        

Total for all segments 335.49 47,245.00   38,161.31    85,409.85      
Results When Fixed Costs of Technology for Segment 12 were Reduced by $1000

10 Ammonia-2 169.05 57.48 10,050.00     18,967.52      29,017.52      
12 Ammonia-2 104.05 35.38 9,050.00       11,674.85      20,724.85      
19 Ammonia-2 21.28 7.23 10,050.00     2,387.19        12,437.19      
25 Ammonia-2 39.21 13.33 10,050.00     4,399.74        14,449.74      
33 C. Soda-1 1.90 1.52 7,045.00       735.55           7,780.55        

Total for all segments 335.49 46,245.00   38,164.85    84,409.85      

mt/yr = metric tons of CaCO3 eq per year
C. Soda-1 = Smaller caustic soda plant for low flow-low acidity waters
Ammonia-2 = Larger ammonia plant for moderate to high flow-acidity waters
Fixed cost includes all costs other than chemical cost
Annualized fixed cost was calculated assuming a 20-year plant life and a 6% discount rate
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The implication of this exercise is that if the sources in sub-watershed 11 have 

higher costs for treatment, they can negotiate with the lower cost sources in sub-

watersheds 12 or 13 to come up with a cheaper cost alternative strategy. Sources in sub-

watershed 11 would be willing to offer any price lower than $21,724.85 for this clean-up 

activity while sources in sub-watershed 12 or 13 would be willing to take any price above 

$20,724.85. Both parties will be benefited from this trade and a Pareto optimal 

improvement in the solution will be achieved.  

Estimates of Inter-temporal Variations 

The effect of inter-temporal variations was investigated by comparing the results 

of the stochastic model with that of the deterministic model. The difference in the total 

minimized costs indicates the extent of underestimation in treatment costs if variability in 

stream conditions is ignored.  

 
Table 3: Estimates of Treatment Costs Due to Inter-temporal Variations 

 
 

Table 3 shows that if the variability in stream conditions is not accounted for in 

the model, treatment costs are underestimated significantly. The deterministic model, 

which was estimated with constant average flow and acidity assumptions, underestimated 

treatment cost by about 45 percent relative to the 97th percentile stochastic model. The 

implications of neglecting the inter-temporal variations are that the treatment plants 

would be under-capacity and actual treatment costs would be grossly underestimated. 

Models Total cost
($/yr)

Stochastic (97th percentile treatment) 157,968.25
Deterministic 85,409.85
Under-estimate with deterministic model 72,558.40
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Alternatively, the treatment levels would be far from sufficient a significant proportion of 

the time. 

Conclusions 

In this paper, a stochastic mixed-integer programming methodology is presented 

to address the inter-temporal variations in pollution loadings in the stream network of a 

spatially integrated watershed. Traditional programming approaches are unsatisfactory 

for the assumptions on which they are based or are inadequate when distributions are not 

normal. The proposed methodology makes no a priori assumptions, rather estimates 

distribution parameters from simulated data to use in the optimization process. The 

methodology is applied to estimate pH TMDL implementation costs for the Paint Creek 

watershed in West Virginia. The empirical model provided information on which stream 

segments should be treated, the method of treatment, the levels of treatment for which 

investments need to be made, and the estimated cost. The model also indicates the trade-

off between treatment plant capacities and the level of assurance or margin of safety. The 

approach allows a clear calculation of the cost of increased margins of safety and should 

provide input to stimulate discussion of potential trade-offs possible within a watershed 

framework. 

A deterministic version of the model is also estimated with average levels of 

water flow and net acidity for the Paint Creek streams. The optimal solution included 

four tributary segments and one downstream segment for treatment. These results are 

compared with that for another run of the deterministic model which included a reduced 

fixed set-up costs for a specific upstream segment to demonstrate the potentials for 



 25

pollution trading. Results show that when abatement costs differ among sources, it is 

possible to gain from trade through treatment by lower cost sources. 

A comparison of stochastic and deterministic model results indicates that when 

inter-temporal variability in stream conditions is ignored, the treatment cost is 

underestimated significantly; the difference between the deterministic and the 97th 

percentile treatment with the stochastic model is about 45 percent. 
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