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Abstract

A large literature exists on measuring the allocative and technical efficiency of a set

of firms. A segment of this literature uses data envelopment analysis (DEA), creating

relative efficiency rankings that are nonstochastic and thus cannot be evaluated accord-

ing to the precision of the rankings. A parallel literature uses econometric techniques to

estimate stochastic production frontiers or distance functions, providing at least the pos-

sibility of computing the precision of the resulting efficiency rankings. Recently, Horrace

and Schmidt (2000) have applied sampling theoretic statistical techniques known as mul-

tiple comparisons with control (MCC) and multiple comparisons with the best (MCB) to

the issue of measuring the precision of efficiency rankings. This paper offers a Bayesian

multiple comparison alternative that we argue is simpler to implement, gives the researcher

increased flexibility over the type of comparison made, and provides greater, and more in-

tuitive, information content. We demonstrate this method on technical efficiency rankings

of a set of U.S. electric generating firms derived within a distance function framework.

Keywords: distance functions, electric utilities, Gibbs sampling, technical efficiency rank-

ings, electric utilities, multiple comparisons with the best.

JEL classification: C11, C32, D24



1. Introduction

Situations abound in which economists, decision makers, and other interested par-

ties desire a ranking of some set according to a chosen metric. Academic departments

are ranked according to research output, perceived quality of faculty, and/or reputation.

Hospitals are ranked according to mortality rates (often adjusted for severity of the in-

juries they treat). Firm’s are ranked relative to intra-industry competitors on the basis

of technical efficiency. In all these situations, in addition to the desired ranking, it would

be beneficial to provide information on the precision of the rankings. In laymen’s terms,

can we truly differentiate the units of observation or are we more accurately perhaps only

separating them into groups? In extreme cases, a set of firms might be ranked by efficiency,

yet the most and least efficient firms might not truly be distinguishable due to a lack of

statistical precision. In such a case, the ranking would be best suppressed.

A huge literature exists on measuring the relative efficiency of a set of firms, in both

allocative and technical senses. A segment of this literature uses data envelopment analysis

(DEA), creating relative efficiency rankings that are nonstochastic and thus cannot be

evaluated according to the precision of the rankings. A parallel literature uses econometric

techniques, such as stochastic production frontiers or estimation of distance functions,

providing at least the possibility of computing the precision of the resulting efficiency

rankings. Recently, Horrace and Schmidt (2000) have applied sampling theoretic statistical

techniques known as multiple comparisons with control (MCC) and multiple comparisons

with the best (MCB) to the issue of measuring the precision of efficiency rankings. This

technique allows researchers and users of such rankings to discover the precision with

which certain firms can be ranked above others, along with discovering sets of firms that
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are statistically tied with each other even if the point estimates of their relative efficiencies

differ.

In this paper we offer a Bayesian alternative that we will argue is simpler to imple-

ment, more flexible over possible comparisons, and provides greater, and more intuitive,

information content. The Bayesian method easily allows comparisons between single firms,

a firm versus a group, or a group versus a group. Further, rather than simply answering

the question of “can we differentiate?” with a yes/no (reject/do not reject), the Bayesian

method provides an estimated probability in support of the rankings ability to differenti-

ate between the two firms or groups compared. Thus, statements such as “firm A can be

ranked as more efficient than firm B with a 92 percent posterior probability” are possi-

ble. We demonstrate this method on technical efficiency rankings of a set of U.S. electric

generating firms derived within a distance function framework.

The remainder of this paper is organized as follows. In section 2, we review the MCB

and MCC approaches pioneered by Horrace and Schmidt for the purposes of efficiency

rankings. In section 3, we introduce the Bayesian approach and discuss differences and

potential advantages to the Bayesian methodology. Section 4 discusses the model, the data,

an overview of the derivation of our efficiency rankings, and the results of our empirical

application. In particular, we focus on the results produced by the Bayesian multiple

comparison approach and contrast them with the original MCC and MCB approaches.

Conclusions follow in section 5.

2. MCB and MCC Approaches to Testing Efficiency Rankings

Horrace and Schmidt (2000) pioneered the use of MCB and MCC in creating statistical

confidence intervals for use with comparisons of multiple firm efficiency scores. Their
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procedures allow some hypothesis tests to be conducted in a sampling theory framework

so that researchers can state whether a firm is “significantly” more efficient than some

group of firms.

While Horrace and Schmidt (2000) focuses on MCB, MCC seems the more natural

application. Referring to efficiency rankings for concreteness, the distinction is that MCC

involves comparing the estimated efficiency of a chosen (and fixed) firm to another firm or

group of firms while MCB adjusts for the case where the “best” or index firm is unknown.

It is clear that once one recognizes the stochastic and imprecise nature of the estimated

rankings, one should also realize that the most efficient (best) firm is unknown. However,

in most real world application (as opposed to academic ones), it is quite reasonable to use

the firm estimated to be best as the index firm and investigate how many of the other

firms can be declared statistically less efficient. Choosing this index firm as fixed leads one

to the MCC algorithm, so we explain that first.

2.1 The MCC Method

Begin by denoting the estimated measure for each firm i (technical efficiencies in the

application to follow) by θi, i = 1, . . . , N . Assume for simplicity that firms were ordered

in such a way that θN has the largest measure (highest efficiency) and is thus the best,

or index, firm against which we wish to compare the others. The MCC method computes

a joint confidence interval of a desired probability level for all the differences between

individual firm efficiencies and the best. That is, for the vector [θN − θ1, θN − θ2, . . . , θN −

θN−1]. When the efficiency estimates are independent, this joint confidence interval can

be given by equation (5) from Horrace and Schmidt (2000), rewritten slightly here as

(1− α) = Prob(θ̂N − θ̂i − h ≤ θN − θi ≤ θ̂N − θ̂i + h, ∀ i = 1, N − 1), (2.1)
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where h = d(2kσ̂2)1/2, d is the critical value for the joint two-sided confidence interval

which has been adjusted to account for the multiple comparisons, and k is the factor of

proportionality which scales the identity covariance matrix of θ̂. For details see Horrace

and Schmidt (2000), equation (6). Tables of critical values for MCC can be found in Hahn

and Hendrickson (1971), inter alia. Horrace and Schmidt (2000) also discuss how to extend

the results to cases where the efficiency estimates are correlated (the most common case).

Given the joint confidence interval, Horrace and Schmidt (2000) identify all firms

that are statistically less efficient than the best firm, along with all the firms that cannot

be differentiated from the best. These two groups of firms are simply those for whom

the joint confidence intervals, respectively, do not and do include a zero difference at the

chosen significance level.

2.2 The MCB Method

The extension from the MCC to the MCB method is that now the best firm is con-

sidered unknown, implying that each firm’s efficiency needs to be compared to a best firm

whose identity is uncertain. Thus in equation (2.1), we would need to replace the fixed

index firm θN with an unknown best index firm, θ(N), in Horrace and Schmidt’s nota-

tion. This somewhat complicates the construction of the joint confidence interval, but

the simplified version of the results is that the set of firms which cannot be statistically

differentiated from the uncertain best firm are those for which

θ̂j − θ̂i ≤ h, ∀ j 6= i, (2.2)

where h is the same as in equation (2.1) and represents one half of the width of the

confidence interval. All firms for which the condition in equation (2.2) holds are in the set

of possible best firms as defined by Horrace and Schmidt, although technically this is the

4



set of firms whose estimated efficiency measures are not statistically significantly below

the measure of the uncertain most efficient firm. Those firms for which the condition

in equation (2.2) does not hold are obviously outside that set and can be said to be

statistically less efficient than the best firm.

To extend MCC and MCB to the case in which the estimated TEs are correlated (the

common case), the h described here becomes a function of the firms being compared and so

is replaced by a comparison-specific hji. This comparison-specific confidence interval width

is computed by multiplying a firm-specific adjusted critical value dj and a comparison-

specific covariance σ̂ji that replaces 2kσ̂2 in the formula for h from section 2.2.

3. A Bayesian Approach to Measuring the Precision of Efficiency Rankings

In contrast to the sampling theory approach outlined above, we show in this section

that a Bayesian approach can be taken using the empirical results that arise naturally from

the Markov Chain Monte Carlo (MCMC) algorithm employed to derive the numerical es-

timates in our application and from any other numerical Bayesian estimation technique.

This Bayesian Multiple Comparison (BMC) methodology provides exact (posterior) prob-

ability levels for each comparison statement to be evaluated. Thus, rather than simply

stating that “firm A is (not) significantly more efficient than all firms in group 4 using

a 5 percent significance level,” we can make statements along the lines of “there is an

estimated 97 percent probability that firm A is more efficient than all firms in group 4”

and “there is only a 15 percent probability that firm A is more efficient than all firms in

group 4.” These statements contain much more information and a much higher degree of

specificity than the ones developed using the MCC/MCB framework.

The BMC is simple to implement with the parameter draws, generated in our appli-

cation by a Gibbs sampling algorithm, which we use to compute posterior estimates of the
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unknown parameters and the technical efficiency scores. As will be detailed precisely in

the next section, numerical Bayesian techniques rely on random draws from throughout

the parameter space to generate approximate values for parameters of interest, functions

of the model parameters (such as efficiency measures), precision measures, and probability

levels in support of hypotheses of interest. The preciseness of the numerical approxima-

tion is controlled by the choice of the Bayesian numerical technique and the number of

parameter draws generated, so researchers can obtain any desired level of precision.

Reserving the discussion of exactly how to get a set of such draws for the next section,

for now it suffices to establish that given a set of random draws from the posterior density

function of a vector of parameters θ one can estimate the posterior mean of a function of

interest, say g(θ), by the arithmetic mean of the draws. See for example, Tierney (1994).

The technical efficiencies which researchers want to compare are just such a function of

interest and can be expressed as a function of the randomly drawn parameter vector.

Each Gibbs draw is used to compute TE scores for each firm, denoted by TE
(b)
i for

firm i and draw b. In addition to using these draws to find posterior means, medians,

standard deviations, they can be compared across firms. To estimate the probability that

firm i is more efficient than firm j, we count the number of draws for which firm i’s TE

score is greater. Formally, for a set of B draws on the TE scores,

prob(TEi > TEj) = B−1
B∑

b=1

H(TE(b)
i > TE(b)

j ), (3.1)

where H is a logical operator equal to one when the argument is true and zero otherwise.

If one uses a different numerical Bayesian approach that yields draws where weights are

needed to arrive at accurate posterior means (such as in importance sampling), then the

weights would scale the right-hand side of equation (3.1) above. To estimate probabilities
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for multiple comparisons, simply replace one or both of the single TE scores with the sets

desired. For example, to compare firm i to a group J, the logical operator would evaluate

the truth of TE(b)
i > max{TE(b)

j , j ∈ J}.

These probability levels essentially create a Bayesian analog to the MCC procedure,

with the advantage of simplicity and greater information content on the strength of support

in favor (or against) differentiation between compared firms or groups. However, since the

index firm has been fixed, an extension of the above procedure is necessary to generate

a Bayesian MCB. While the frequentist idea of joint confidence intervals for differences

between TE scores does not translate perfectly into the Bayesian framework, one could

create a Bayesian analog. Rather than create a single analog, we choose to list several

possible Bayesian MCB-type measures.

Defining J as the set of all firms other than firm i and retaining the above definition

for the logical operator H, one can estimate the probability that firm i is the most efficient

firm by

prob(TEi = TEmax) = B−1
B∑

b=1

H(TE(b)
i > max{TE(b)

j , j ∈ J}). (3.2)

Given some value δ, chosen perhaps to represent an economically significant difference

in TE scores, one can compute the probability that a firm’s TE score lies within the

specified range of the best:

prob(TEmax − TEi ≤ δ) = B−1
B∑

b=1

H(max{TE(b)
j , j ∈ J} − TE(b)

i ≤ δ). (3.3)

This equation can clearly be used to create an analog to the MCB procedure’s set S

of firm’s in contention to be the best. Simply allow i to vary for firms i = 1, . . . , N and
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place all firms in the set S that yield probabilities of greater than some prespecified level

(1-α) for being within a distance δ of the best TE score. Because of the small differences

between Bayesian MCC and MCB analogs, we will simply refer to the BMC procedure

without using an additional C or B designation for control or best.

Within a numerical Bayesian estimation framework, whether dealing with simple

Monte Carlo integration, MCMC approaches such as Gibbs sampling, or even importance

sampling, one can always estimate the probability of a ranking being accurate (or correct)

by simple evaluation of the frequency of the ranking occurring within the large set of ran-

dom parameter draws employed in the numerical integration. For more discussion of the

foundations of numerical Bayesian methods, see Geweke (1999).

Horrace and Schmidt (2000) do not perform comparisons between groups or of a

single firm versus another single firm or subgroup. While the sampling theory MCC and

MCB approaches can be extended to accomplish the same tasks just introduced with

the Bayesian approach, to accomplish these different types of comparisons the statistical

foundation of their procedure must be resolved to yield the correct critical values for each

such comparison. Because the adjustment for the multiple comparisons is conditional on

the nature and number of such comparisons made, the MCC and MCB algorithms must

be adjusted whenever the format of the multiple comparisons changes. Thus, while there

is no theoretical barrier to stop MCC and MCB approaches from performing the same

sorts of comparisons as our BMC approach, the task is daunting until more work is done

to develop user-friendly software.

4. Empirical Application

We apply our methodology to a panel of U.S. electric utilities observed at five-year

intervals from 1980–1995. There are two outputs: the quantity of electric power generated
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(a good output) and the quantity of SO2 emissions (a bad output which locally has a

direct negative effect on health and welfare and regionally can lead to acid rain). Three

inputs are applied to produce these outputs: capital, labor, and energy. This application is

particularly relevant since allowable SO2 emissions from electric utilities have been reduced

dramatically over the last decade and since electricity is currently in short supply in the

State of California, where State Implementation Plans are very strict. Title IV of the

1990 Clean Air Act Amendments reduced emissions of SO2 from U.S. coal-burning electric

utilities from about 19 million tons in 1980 to 8.95 million tons by the year 2000. The

increased reduction of SO2 emissions over time has likely had an important impact on the

levels of technical efficiency for these utilities. Proper crediting for reduction of this bad is

essential to obtain unbiased estimates of efficiency levels. It also can provide insights into

what the tradeoff has been between emissions and output.

4.1 The Model

Let x be a vector of inputs x = (x1, . . . , xN ) ∈ RN
+ and let y be a vector of good out-

puts denoted by y = (y1, . . . , yM ) ∈ RM
+ . Disregarding bads, one can write the production

technology, S(x,y, t), as

S(x,y, t) = {(x,y) : x can producey at time t}, (4.1)

where t = 1, . . . , T is time.

This application, however, has a bad output (air pollution) that must be accounted

for to accurately measure the technical efficiency of the various utilities. Ignoring the bad

would allow a firm to look more efficient by ignoring the environment, while a firm that
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spent effort on mitigating its pollution would be unrewarded and measured as relatively

inefficient.

Symmetric treatment of bads (denoted by a vector b) and goods using an input

distance function is legitimate and can be specified as

Di([y,b],x, t) = sup
λ
{λ : ([y,b],x/λ) ∈ S(x,b,y, t)}. (4.2)

Here the goods and bads are held constant and inputs are proportionally scaled downward

to their minimum required level. Since the input distance function in (4.2) is dual to the

cost function, we can write

Ci([y,b],p, t) = min
x
{px : Di([y,b],x, t) ≥ 1}, (4.3)

where p = (p1, . . . ,pN ) ∈ RN
+ is a vector of input prices and C([y,b],p, t) is a unit

cost function if costs are minimized. This equation implies that unless inputs are used in

their cost-minimizing proportions, the input distance measure will be greater than one.

Formulating the associated Lagrangian and taking the first-order conditions, Färe and

Primont (1995) show that the shadow value for each input is given by

p = C([y,b],p, t)∇xDi([y,b],x, t). (4.4)

Equivalently, the bads can be treated as exogenous shifters of the technology set,

similar to a time trend or state of technology variable. The intuition is that conditional

on the level of the bad, efficiency measures over the desirable outputs and inputs are well-

defined and behave as expected. Yet, ignoring the bads would lead to biased results since

firms would not receive credit for input use that is directed at reducing output levels of

the bad. Treating the level of the bad as a shifter of the technology set allows firms to be

credited (penalized) for reducing (increasing) the level of bad that they produce.
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To emphasize this point, equation (4.2) can be written as

Di(y,x, t|b) = sup
λ
{λ : (x/λ,y|b) ∈ S(x,y, t|b)}. (4.5)

The appropriate monotonicity condition for the bad in the context of the input dis-

tance function can be derived as follows. Assuming a single bad, we compute the partial

total differential of equation (4.5) evaluated on the frontier at a fixed time [implying

Di(y,x, t|b) = 1 and dt = 0] to obtain

dDi =
∑ ∂Di

∂ym
dym +

∑ ∂Di

∂xn
dxn +

∂Di

∂b
db = 0. (4.6)

Using the properties that the input distance function is monotonically nondecreasing

in inputs (∂Di

∂xn
≥ 0) and monotonically nonincreasing in outputs ( ∂Di

∂ym
≤ 0), and setting

dym = 0,∀m, in order to keep the firm on the input distance frontier, we obtain

∂Di

∂b
= −

∑ ∂Di

∂xn

dxn

db
. (4.7)

As in Pittman (1983), with constant desirable output and technology, bads can only be

reduced through increased input usage. This implies that dxn

db ≤ 0, which combined with

the nonnegativity property for inputs, ∂Di

∂xn
≥ 0, yields

∂Di

∂b
≥ 0. (4.8)

As a flexible approximation to the true distance function in (4.5) , we adopt the

translog functional form. Thus, the empirical model for firm f = 1, . . . , F in period
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t = 1, . . . , T has the form

0 = γ0 +
∑
m

γm ln ymft +
∑

z

γz ln bzft

+
∑

n

γn lnxnft + γt1t + (1/2)γt2t
2

+ (1/2)
∑
m

∑
m′

γmm′ ln ymft ln ym′ft + (1/2)
∑

z

∑
z′

γzz′ ln bzft ln bz′ft

+ (1/2)
∑

n

∑
n′

γnn′ lnxnft lnxn′ft +
∑
m

∑
n

γmn ln ymft lnxnft

+
∑

z

∑
n

γzn ln bzft lnxnft +
∑

z

∑
m

γzm ln bzft ln ymft

+
∑
m

γmt ln ymftt +
∑

z

γzt ln bzftt

+
∑

n

γnt lnxnftt + lnh(εft), (4.9)

where

h(εft) = exp(vft − uft), (4.10)

so that ln h(εft) is an additive error with a one-sided component, uft, and a standard noise

component, vft, with zero mean.1

In principle, the uft can be treated as fixed or random, but the choice between the two

entails a tradeoff. With the fixed effects approach, identification is potentially difficult,

since the number of parameters increases with the number of firms, F . To identify the

uft for each f and t, we require that additional restrictions be imposed on the pattern of

technical efficiency over time. Using the model for time-varying inefficiency proposed by

Cornwell, Schmidt, and Sickles (1990), we choose a specification of the form,

uft =
Q∑

q=0

βfq df tq, f = 1, . . . , F, (4.11)

1 Since the inclusion of vft makes the frontier distance function stochastic, it is possible for h(εft) to
be greater than 1.
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where t is a trend and df is a dummy variable equal to one for firm f and zero for the other

firms.2 With a fixed effects approach, the βfq are firm-specific parameters to be estimated.

This avoids the distributional and exogeneity assumptions that would otherwise be required

in a random effects setup. Thus, the estimated equation is obtained by substituting (4.11)

into (4.10), which in turn is substituted into (4.9), so that the βfq are fit directly with the

other parameters.

In the application that follows, we undertake a Bayesian method of moments estima-

tion based partially on the moment conditions E(vft | zft) = 0, where zft is a vector of

instruments. In distance function applications, it is highly unlikely that (ln yft, lnxft) will

be uncorrelated with vft, thus pointing to the need for an instrumental variables approach.

Since we do not impose one-sidedness (non-negativity) on the uft in estimation,

we need to do so after estimation, by adding and subtracting from the fitted model

ût = minf (ûft), which defines the frontier intercept. With ln D̂(y,x, t) representing the

estimated translog portion of (4.9) (i.e., those terms other than h(εft)), adding and sub-

tracting ût yields

0 = ln D̂i(y,x, t) + v̂ft − ûft + ût − ût = ln D̂∗
i (y,x, t) + v̂ft − û∗ft, (4.12)

where ln D̂∗
i (y,x, t) = ln D̂i(y,x, t)−ût is the estimated frontier distance function in period

t and û∗ft = ûft − ût ≥ 0.

Using (4.11), we estimate firm f ’s level of technical efficiency in period t, TEft, as

TEft = exp(−û∗ft), (4.13)

where our normalization of û∗ft guarantees that 0 < TEft ≤ 1.

2 An alternative approach by Koop (2001) parameterizes the mean of an exponential technical ineffi-
ciency distribution using a vector of variables thought to correlate with firm-specific effects.
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Prior to estimation, several sets of parametric restrictions are imposed on (4.9). We

impose symmetry, linear homogeneity in input quantities, and constrain βfq, ∀q, to equal

zero for one firm in order to achieve identification. Symmetry requires that

γmm′ = γm′m,∀ m,m′, m 6= m′

γzz′ = γz′z,∀ z, z′, z 6= z′

γnn′ = γn′n,∀ n, n′, n 6= n′. (4.14)

In addition, linear homogeneity in input quantities implies

∑
n

γn = 1,∑
n

γnn′ =
∑
n′

γnn′ =
∑

n

∑
n′

γnn′ = 0,∑
n

γmn = 0, ∀ m,∑
n

γzn = 0, ∀ z, and∑
n

γnt = 0. (4.15)

Finally, identification requires that βfq, ∀q, must be constrained for one firm in (4.11).

4.2 Data

Our dataset is an updated and refined version of the panel of utilities originally an-

alyzed by Nelson (1984).3 Subsets of that data were used by Baltagi and Griffin (1988)

and Callan (1991). The sample used here is comprised of 43 privately owned U.S. electric

3 We are grateful to Professor Nelson for making his data available to us.
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utilities for the years 1980, 1985, 1990 and 1995.4 A list of the utilities and the firm num-

ber by which they are referenced henceforth in our tables is provided in Table 1. Since

technologies for nuclear, hydroelectric, and internal combustion differ from that of fossil

fuel-based steam generation and because steam generation dominates total production by

investor-owned utilities during the time period under investigation, we limit our analysis

to fossil fuel-based steam electric generation.

Variable definitions for inputs quantities and prices as well as output quantities are

generally consistent with those in Nelson (1984). The inputs are quantities of fuel (xE),

labor (xL), and capital (xK), measured as ratios of input expenditure to price. Electrical

output (y) is defined as the sum of residential and industrial-commercial output in 10

millions of kilowatt hour sales and SO2 emissions (b) are measured in tons. Details are

available from the authors. The output observations compiled by Daniel McFadden and

Thomas Cowing were updated using the Statistics of Privately Owned Electric Utilities in

the U.S. Over the 1980–1995 time period, xK declined somewhat. More dramatic was the

greater than 20 percent reduction in xL and b. Finally, xE and y increased moderately.

Data on SO2 emissions is published on the EPA Acid Rain Website.5 The primary

data is for Clean Air Act Amendment Phase I and Phase II units and was aggregated to

the utility level. Whenever units were owned by more than one utility, emissions were

allocated by ownership share. Emissions of SO2 are measured in tons. Data on emissions

are available for 1980, 1985, and 1990 as historical EPA estimates, while the 1995 data are

actual (measured) emissions from EPA’s Continuous Emission Monitoring System. Thus,

4 The primary sources for Nelson’s sample are the Federal Power Commission’s Statistics of Privately
Owned Electric Utilities in the U.S., Steam Electric Plant Construction Cost and Annual Production
Expenses, and Performance Profiles – Private Electric Utilities in the United States: 1963–70 . Additional
data were taken from Moody’s Public Utility Manual .

5 http://www.epa.gov/acidrain/scorcard/es1995.html
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our panel is comprised of 43 firms for the years 1980, 1985, 1990, and 1995, for a total of

172 observations.
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4.3 Bayesian Estimation Procedure

We estimate the model in a Bayesian generalized method of moments (BGMM) frame-

work. To do so, we must specify priors for the unknown parameters and a set of moment

conditions for the data. We can then follow earlier work to find the maximum entropy

(maxent) density that is compatible with our prior and moment information. In total, we

have a system of four equations: the distance function and three first-order conditions for

the three inputs. Our BGMM approach follows and extends Zellner (1998) and Zellner

and Tobias (2001) which both present estimates using a Bayesian method of moments

(BMOM) approach. Our extensions allow the use of instruments to address the endogene-

ity inherent in estimation of a distance function, the nonlinear nature of our system of

equations, and the incorporation of informative priors on the random parameters while

still yielding exact finite sample posterior moments for the parameters of interest (Zellner,

1998). To implement the BGMM algorithm, we combine two sets of moment conditions

and a proper prior density, yielding a proper posterior density for the unknown random

parameters.6

Our estimated distance system consists of (4.9), subject to (4.10) and (4.11), and

a set of first order conditions in (4.4), for a total of four equations. As indicated, we

impose symmetry and linear homogeneity. An additive iid error term, wk
ft, k = 1, . . . , 3,

is appended to each equation in (4.4). After setting Q = 2 in (4.11), we test a number

of null hypotheses by computing a quasi-likelihood ratio test statistic that equals the

sample size times the difference between the restricted and unrestricted criterion functions,

which is asymptotically distributed as chi-square. At the .01 level we fail to reject the

null hypothesis that βf0 = 0,∀f and subsequently drop the corresponding firm dummies.

6 For full details of the estimation algorithm, see Atkinson and Dorfman, 2001.

17



Similarly, we fail to reject the null hypothesis that βf2 = 0,∀f and therefore Q is set equal

to 1 in (4.11). Further, we set β11 = 0 to achieve identification.

Since input and output quantities in all distance function specifications may be en-

dogenous, we use an instrumental variables approach. To examine identification issues we

use the Hansen (1982) J test. We found support for the use of the set of instruments con-

taining firm dummies, time period dummies, the interaction of continuous time and firm

dummies, the interaction of continuous time squared and firm dummies, and the interac-

tion of continuous time cubed and firm dummies. This set of moment conditions generated

the largest p−value for the J test statistic. We also confirm that the instruments are highly

correlated with the regressors.

4.3.1 Specification of the Prior

In the specification of the prior, we differ from Zellner (1998) and Zellner and Tobias

(2001), by going beyond a maxent prior to a more informative one. The full prior dis-

tribution is a product of independent priors on the structural parameters of the distance

function, the prior on the covariance matrix of the vector of errors, and a set of indicator

functions that restrict prior support to the region where the theoretical restrictions are

satisfied.

The structural parameters of the distance function are each given a normal prior

distribution with zero mean and variance of 100. This is a very diffuse prior, having

virtually no effect on the posterior means, but does ensure that the prior is proper in any

dimensions that are not restricted to a finite subspace by the indicator function part of

the prior. It also makes the posterior sample density more straightforward to work with

when we begin Gibbs sampling. The prior for Σ (the matrix of variances and covariances

of the four errors appended to the equations to be estimated) is a standard Jeffreys prior.
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The indicator function part of the prior restricts positive prior support to the region,

R, that satisfies a set of conditions derived from economic theory. Monotonicity is required

for all inputs, the good, and the bad. These conditions have to be evaluated at a particular

point in the data set. Due to potential measurement errors, we do not require monotonicity

at 100% of our data points. Instead, we define monotonicity as satisfied when 85% of the

data points meet their required monotonicity conditions.

We can write this prior distribution as the product of its three parts: a multivariate

normal for the γ parameters, the Jeffreys prior on Σ, and an indicator function to represent

the restrictions from economic theory. Write this as

p(γ, Σ) ∝ MVN(go,Ho)|Σ−1|−5/2I(γ,R), (4.16)

where go is the vector of prior means on the parameters in γ, Ho is the prior variance-

covariance matrix on the same parameters, and I(γ,R) represents the indicator function

that equals one when the restrictions are satisfied and zero otherwise.

4.3.2 The Posterior Density

Following Zellner (1998) and Zellner and Tobias (2000), a maxent framework is used to

yield the least informative posterior density that is still proper and consistent with the prior

in (4.16) and the first and second moment conditions specified by our instrumental vari-

ables, generalized method of moment approach. This joint density is a truncated version

of the standard multivariate normal-inverted Wishart distribution common in Bayesian

econometrics,

p(γ, Σ|data) ∼ MVN−IW(gp,Hp)I(γ,R), (4.17)
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where MVN is a multivariate normal density, IW is an inverted Wishart density,

H−1
p = H−1

o + H−1
d (4.18)

and

gp = Hp[H−1
o go + H−1

d gd], (4.19)

where gd is the conventional GMM estimator of γ and Hd is the conventional GMM

estimated covariance matrix of γ.

Because the joint posterior density is complicated to deal with due to the prior restric-

tions, we use Gibbs sampling to generate draws sequentially from conditional distributions

of parameter subsets.7 In this model, we only need two subsets. First, we can draw the

covariances from an inverted Wishart distribution conditional on the previous draw for the

γ vector. Then the γ vector can be drawn from a truncated multivariate normal distribu-

tion conditional on the drawn value of the Σ matrix. In terms of a “recipe,” the Gibbs

sampler in our application is comprised of the following steps:

0. Obtain initial value for covariance matrix of errors, S(0), either through conventional

GMM estimation as ê′ê/ν, where the (4FT × 1) column vector e = (v′, w′
1, w

′
2, w

′
3)
′,

or after arbitrary choice of all parameters.

1. Draw Σ(i) from IW(S(i), ν), where ν = FT −K, and K is the number of estimated

parameters (Draw system covariance matrix conditional on covariance estimate in 1.)

See the Appendix for futher details on this step.

2. Compute g(i) = GMM(y, X,Z|Σ(i)), ( Compute GMM estimate conditional on Σ(i))

This requires iterating until convergence using GMM with the covariance of the errors

held constant at Σ(i).

7 For a good and simple explanation of Gibbs sampling for the non-Bayesian, see Casella and George
(1992).

20



3. Compute H(i) = cov(g(i)) ( Calculate estimated covariance of GMM coefficients)

4. Compute H
(i)
p = [H−1

o + (H(i))−1]−1 (combining prior variance with data variance

to get posterior variance)

5. Compute g
(i)
p = H

(i)
p [H−1

o go + (H(i))−1g(i)] ( Combine prior mean of coefficients with

moment conditions through the maxent principle to get posterior mean.)

6. Draw γ(i) from MVN(g(i)
p ,H

(i)
p ) (Draw candidate parameters from a multivariate

normal distribution )

7. If γ(i) ∈ R, continue, otherwise go back to step 6 (Satisfy restrictions that impose

economic theory)

8. Compute S(i) from the residuals.

9. Return to step 1 conditioning on new values of all parameters.

In the above, GMM represents an operator to compute a standard GMM estimator

with four arguments representing the y data, the X data, instruments, and fixed covariance

matrix, respectively. To begin this procedure, arbitrary initial values γ(0) and S(0) are

needed; we use GMM estimates for this purpose. Then steps 1 through 8 are repeated in

a loop, each step conditioned on the most recent values of all other parameters and values

in the process. Such a process converges to a random sample from the full joint posterior

distribution as in Chib (1995). For details on performing MCMC with these and other

distributions, see Tanner (1996).

The first 500 draws were discarded to remove dependence on the initial conditions.

We then continued drawing 3,000 more parameter vectors for computation of the posterior

distribution. Computation of the posterior standard deviations proved this number of

draws to be sufficient. To test convergence the posterior means were compared to those

of other runs of the Gibbs sampler and to subsamples of the 3,000 draws from the run
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reported here; because these multiple parallel runs and subsamples produced very similar

empirical results, we can conclude that our Gibbs sampler has converged. Posterior means

are computed as the simple average of the Gibbs draws (or a function of the parameters

from each draw), while posterior medians are defined as the median value of a particular

parameter or function of parameters from all the draws.

4.4 Results

Estimated TEs for all 43 firms in the sample are displayed in Table 2. While a detailed

analysis for all 43 firms would be excessive, we more closely examine the results for the

most and least efficient firms in our sample. The least efficient firm is Alabama Power

with a posterior mean TE of 0.2795 (posterior standard deviation of the mean, 0.0015)

and posterior median of 0.2705. A symmetric (not shortest) 90% highest posterior density

region for Alabama Power’s TE ranges from 0.1625 to 0.4306. The most efficient firm is

Rochester (NY) Electric with a posterior mean TE of 0.9115 (posterior standard deviation,

0.0020)and posterior median of 0.9563. Rochester Electric’s 90% highest posterior density

region spans from 0.6888 to 1.0000.

An analysis of the 43 firms’ estimated technical efficiencies suggests grouping the firms

into four groups. Group 1 (G1) contains the seven firms with the highest posterior mean

TEs, all of which have at least a 90% posterior probability of being more efficient than at

least 25 other firms. Group 2 (G2) contains the next 14 firms, representing the remainder of

the top half of the firms when sorted by posterior mean TE. Group 3 (G3) contains the next

18 firms in this ranking by posterior mean. Finally Group 4 (G4) contains the bottom four

firms, the least efficient according to the posterior mean TEs. These firms were placed

in Group 4 due to their all having less than a 50% posterior probability of being more
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technically efficient than any single firm outside of G4. Our firms are identified by these

groupings in Table 2, with the groups identified by the numbers 1 (most efficient) through

4 (least efficient). The posterior mean estimates of each firm’s TE are also displayed

graphically in Figure 1, sorted from least to most efficient along with their firm IDs and

group numbers. One can clearly see differentiation between the most and least efficient

groups and the firms in the middle two groups. Visually differentiating between G2 and G3

is more problematic. This visual information motivates us to go beyond the firm by firm

analysis briefly mentioned above used in initially categorizing the firms. A use of Bayesian

multiple comparisons will allow us to precisely define which firms can be differentiated

from each other.

4.4.1 Bayesian Multiple Comparisons

To present TE results obtained using the BMC approach we will use the two firms

identified as the most efficient, firm 31 (F31), and the least efficient, firm 1 (F1), and also

the groups of firms (designated G1, G2, G3, and G4 for this section). Because we hold the

comparison units (firm or group) constant, this is analogous to what Horrace and Schmidt

call MCC.8

Results of comparing each of the four efficiency groups to the others are presented in

Table 3. As can be seen in the table, G4 (the least efficient group) can be differentiated

from G2 and G1 with high probability levels, implying that all firms in G4 are almost

surely less efficient than all firms in both G1 and G2. However, G3 is more efficient as

a group than G4 at a probability support level that would not satisfy many researchers

8 The numerical Bayesian approach easily adapts to the MCB algorithm of an unknown “best” firm. To
compute a probability that firm A is less efficient than the “best” or most efficient firm is likely to result
in a probability near 1 given that firm A’s efficiency level cannot be greater than that of the most efficient
firm in any draw, only equal to it.
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(prob. = 0.383). Similarly, we find that G2 rarely dominates G3, suggesting that these

groups are not clearly differentiated at any meaningful level of statistical precision.

Moving on to firm-specific comparisons, the most and least efficient firms can be com-

pared to the remainder of their respective groups to examine whether they are clearly

identified as best and worst. The posterior probability that F1 is less efficient than the re-

mainder of G4 is 0.641, reflecting a reasonable confidence in this ranking, but not definitive

support. The posterior probability that F31 is more efficient than the remainder of G1 is

0.403, indicating that it does not necessarily deserve to be overly singled out as superior,

although this probability still greatly exceeds the expected probability if all firms in G1

were equally efficient (recall that the group contains a total of seven firms).

Finally, proceeding to the comparisons of the index firms to the other groups, we begin

with F1 again. F1 has a posterior probability of being less efficient than G3 equal to 0.933,

of being less efficient than G2 equal to 0.990, and of being less efficient than G1 equal to

0.994. All of these indicate enormous evidence in favor of the precision of the last-place

ranking of this firm relative to all firms in the top 3 groupings. F31 has an estimated

posterior probability of being more efficient than G4 of 0.996, than G3 of 0.917, and than

G2 of 0.834. Thus, F31 appears to be properly ranked above the firms in the other groups.

The BMC comparisons in this section clearly do not exhaust all possible subsets. Our

intent is only to convey the richness of the possible types of comparisons that can be easily

performed.

4.4.2 Comparing Bayesian to Sampling Theory MCB

The basic sampling theory MCB algorithm of Horrace and Schmidt (2000) provides

a set of firms which cannot be statistically differentiated from the uncertain best firm,
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as detailed above in section 2.2. When performed on the 43 firms in our sample using a

95% significance level, this set contains 29 firms; thus, only 14 firms are statistically less

efficient than the best.

Comparing these results to the values in Table 3 finds reasonable concurrence with

some interesting differences. All seven firms in G1 are in the set of possible best firms

computed by the MCB approach along with 12 out of 14 firms from G2. The two firms

from G2 excluded are F5 and F30, neither of which is near the bottom of the group in

terms of posterior mean TE. In fact, F5 is the median firm within G2. Rounding out the

set are 10 firms from G3, including F13 and F16 which have the 2 smallest posterior mean

TEs within G3. A The set of possibly efficient firms is denoted in Table 2 by a * in the

MCB efficient set column.

The inclusion of firms in the sampling theoretic MCB approach’s efficient set that

are fairly soundly rejected by the Bayesian approach (such as F13 and F16) is somewhat

difficult to explain. One possible explanation is that the sampling theory MCB approach

produces a conservative joint confidence interval. However, this cannot explain the fact

that the MCB approach rejects equality for firms with smaller gaps in point estimates

while fails to reject equality for firms with larger estimated efficiency gaps. Examining

these four firms further from the Bayesian side is interesting. The two firms from G2 that

are excluded from the MCB efficient set, F5 and F30, have Bayesian posterior probabilities

of being more efficient than F31 of only 2.2% and 2.8%, respectively, so their exclusion

appears to make sense. Yet the two bottom firms from G3 which are included in the

MCB efficient set, F13 and F16, both have a Bayesian posterior probability of being more

efficient than F31 of only 0.6%. This makes their inclusion while F5 and F30 are excluded

even more puzzling.
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5. Conclusions

While many researchers have developed and applied methods for estimating the tech-

nical efficiency of firms (or other units of observations), less effort has been expended on

examining the precision of the estimated efficiency scores and the resulting rankings of the

firms studied. Horrace and Schmidt (2000) introduced two multiple comparison techniques

(MCC and MCB) based on sampling theory statistics to this literature. In this paper, we

add a Bayesian approach to the toolkit for measuring the precision of efficiency estimates

and the ability to such estimates to accurately differentiate between the units being ranked.

After presenting the details of how to implement the Bayesian Multiple Compari-

son (BMC) approach, we presented an application to a panel of 43 U.S. electric utilities.

Bayesian estimation of a distance function yields a set of technical efficiency estimates con-

sistent with economic theory that provide an empirical ranking of the 43 firms. Application

of the BMC approach then allows us to analyze which firms can truly be differentiated

from which others at any desired level of probability. That is, we can make statements such

as “there is an 99.6% probability that firm 31 is more efficient than all the firms in group

4” and “there is a 54.7% probability that all the firms in group 1 are more efficient than

all the firms in group 3.” The MCB approach of Horrace and Schmidt was also applied to

the same technical efficiency estimates and provided some contrasting results in terms of

the ability to differentiate firms on the basis of their TE scores.

We believe that the Bayesian results provide more flexibility in terms of multiple

comparisons that are possible, particularly for those researchers who are not statistical

experts. Using the procedure outlined in this paper, it is straightforward to compute the

probability of any firm or group of firms being more efficient than any other firm or group

of firms. This probability provides an exact measure of the ability to rank the groups/firms
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according to their technical efficiency estimates (and the appropriate confidence in those

rankings). While the MCB and MCC methods do allow for such flexibility, it is a much

more complex matter to generalize the approach to compute such comparisons. Also, the

sampling theoretic-based MCC and MCB approaches do not yield finite sample probability

values to measure the differentiation between the TE scores of the firms. Instead, the

method provides the normal (for sampling theory statistics) all or nothing test results

where firms are either differentiated from the best (or index firm) or are not.

The greater information content and flexibility of the Bayesian approach are significant

advantages in providing statistical information about the precision of efficiency rankings.

Further, the method is more straightforward from a statistical viewpoint, requiring nothing

more complicated than a basic ability to generate random numbers from known statistical

distributions, a function available in nearly all of statistical and econometrics software

packages on the market today.

The application presented here used a distance function framework with some atten-

dant complications due to the presence of a bad output and endogeneity necessitating the

use of an instrumental variables approach. However, applications of the Bayesian approach

presented can be easily implemented for technical efficiency estimates from a stochastic

frontier model which could be estimated in a simpler manner. Regardless of the approach,

once the posterior distributions of the technical efficiency estimates have been derived (or

numerically approximated), the Bayesian Multiple Comparison (BMC) approach presented

here can be easily performed at little additional cost in terms of programming time and

effort. In contrast to the simplicity of the approach, the information generated by BMC

approach is quite rich. It yields considerable useful information for policy and decision

makers who wish to know the accuracy and differentiability of estimated rankings.
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Appendix: Pseudo Code for Step 1 of the Gibbs Sampler

a. First, generate a Wishart random variable A(i) = [Σ(i)]−1 ∼ W (S−1, ν).

i. Let LL′ = S−1, where L is a lower triangular matrix from the Cholesky de-

composition of S−1. We obtain S−1 as the inverse of the estimated variance-

covariance matrix of the error terms.

ii. Assume that Q ∼ W (I, ν). Then LQL′ ∼ W (LL′, ν) = W (S−1, ν)

iii. Now from Anderson (1984) UU ′ = Q ∼ W (I, ν), where U is lower triangular,

all uij are independent, uij ∼ N(0, 1), i > j, and u2
ii ∼ χ2(ν − i + 1) random

variable, which implies that LUU ′L′ ∼ W (S−1, ν). Thus, we draw uij values

and form Q(i) = U (i)U (i)′ .

iv. Now use L and Q(i) compute LQ(i)L′/ν = A(i).

b. Compute Σ(i) = [A(i)]−1, which is an inverse-Wishart random variable.
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Table 1: Utilities in the Sample

Firm Number Utility

1 Alabama PC
2 Arizona PSC
3 Arkansas PLC
4 Pacific GEC
5 SanDiego GEC
6 PSC Colorado
7 UIC Connecticut
8 Delmarva PLC
9 Potomac EPC
10 Tampa EC
11 Georgia PC
12 C Illinois PSC
13 PSC Indiana
14 PC Iowa
15 Kansas GEC
16 Kentucky UC
17 Louisville GEC
18 C Louisiana EC
19 C Maine PC
20 Baltimore GEC
21 Boston EC
22 Detroit EC
23 Mississippi PLC
24 Kansas City PLC
25 PSC New Hampshire
26 Atlantic City EC
27 PSEGC New Jersey
28 PSC New Mexico
29 Central Hudson GEC
30 CEC New York
31 Rochester GEC
32 Carolina PLC
33 Duke PC
34 Cleveland EIC
35 Ohio EC
36 Oklahoma GEC
37 DLC Pennsylvania
38 Philadelphia PC
39 West Penn PC
40 S Carolina EGC
41 Virginia EPC
42 Appalachian PC
43 Wisconsin EPC
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Table 2: Time-Persistent Technical Efficiency Score by Firm

Gibbs

Efficiency MCB

Utility Tech. Eff. Score Grouping Eff. Set

1 0.279544 4

11 0.309533 4
10 0.335788 4

9 0.357404 4
13 0.410859 3 *

16 0.421139 3 *

2 0.437480 3
12 0.439326 3

27 0.441344 3

17 0.445462 3 *
3 0.452934 3

22 0.484653 3

34 0.487115 3 *
35 0.492744 3 *

41 0.496442 3 *

8 0.497090 3 *
33 0.501968 3

6 0.511428 3 *

32 0.511551 3 *
20 0.513567 3 *

4 0.533391 3
18 0.536600 2 *

42 0.536890 3 *

39 0.537757 2 *
21 0.554688 2

43 0.558791 2 *

30 0.569756 2
14 0.584080 2 *

36 0.590789 2 *

5 0.600555 2
7 0.602033 2 *

40 0.610420 2 *

25 0.611875 2 *
37 0.614052 2 *

38 0.654482 2 *
23 0.665528 2 *

28 0.685584 1 *

15 0.713970 1 *
26 0.768943 1 *

24 0.770113 1 *

29 0.826387 1 *
19 0.851807 1 *

31 0.911533 1 *

Wtd. Avg. 0.551567
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Table 3: Bayesian Multiple Comparison Results

Group A Group B Prob(TEGroup A ≥ TEGroup B)

G3 G4 0.383

G2 G4 0.915

G1 G4 0.980

G2 G3 0.002

G1 G3 0.547

G1 G2 0.069

rest of G4 F1 0.641
F31 rest of G1 0.403

G3 F1 0.933

G2 F1 0.990
G1 F1 0.994

F31 G4 0.996

F31 G3 0.917

F31 G2 0.834
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Figure 1: Technical Efficiency Rankings
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