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An Analysis of Improving Energy use with Data Envelopment 

Analysis in Apple Orchard 
 

Abstract 

 

In this paper, Data Envelopment Analysis (DEA) technique was applied for 

apple (Red and Golden delicious varieties) producers in West Azarbaijan 

province, Iran (2008-2009). Results showed that the highest share of energy 

consumption belongs to packaging (57%) and irrigation (16%). Highest share of 

expenses were found to be 34% and 30% for labor and packaging, respectively. 

The total energy input for apple production, energy productivity, net energy and 

output-input energy value were estimated as 101,505 MJ.ha-1, 0.23 kg.MJ-1, -

56.320 MJ.ha-1 and 0.44, respectively. Also, The study has helped to segregate 

efficient farmers from inefficient ones, identify wasteful uses of energy by 

inefficient producers and suggest reasonable savings in energy uses from 

effective sources while it describes the process of benchmarking energy inputs 

and apple yield. Technical, pure technical and scale efficiencies were calculated 

(by using CCR and BCC models) for all orchards. Inquiries on 80 orchards were 

conducted in a face-to-face interviewing. The VRS analysis showed that only 41 

out of 80 DMUs were efficient. The TE of the inefficient DMUs was calculated 

as 87.8%. This implies that 12.2% of overall resources could be saved by raising 

the performance of these DMUs to the highest level. Results showed that the 

maximum share to the total energy saving is from diesel (39.7%) followed by 

packaging and about (28.1%). The results of analysis showed that DEA is an 

effective tool to analyze and benchmark productive efficiency of farms. 

 

Keyword: Apple, DEA, Energy ratio, benchmarking, Technical efficiency 

 

Introduction 

 
In 2005, apple orchards‟ area was summed up to 201,000 ha 

with total production of 2.66 Mt in Iran (Anonymous 

2006a). The West Azarbaijan province is the leading apple 

(Delicious and Golden varieties with long legged, 277 trees 

per hectare) producer in Iran, with approximately 27.1% 

share of total apple orchard area and 29.8% share of total 

apple production in Iran (Anonymous 2006a). Also, about 

half of this province‟s apple production and apple orchard 

area is allocated to Oromieh Township (Anonymous 2005).  

 

Energy use in agriculture has been developed in response to 

increasing populations, limited supply of arable land and a 

desire for higher standards of living. More intensive energy 

use of fossil fuel, chemical fertilizers, pesticides, machinery 

and electricity has brought some important human health 

and environmental problems. Thus, efficient use of energy 

inputs is of prompt importance in terms of sustainable 

farming.  

 

An input–output energy analysis provides farm planners and 

policy makers an opportunity to evaluate economic 

intersection of energy use (Ozkan et al. 2004a), In addition, 

Technical efficiency (weighted output energy to weighted 

input energy ratio)  is another  way  to explain the efficiency 

 

 

of farmers (Chauhan et al. 2006). 

 

There are several parametric and non-parametric techniques 

to measure productive efficiency, Data envelopment 

analysis (DEA) is a non-parametric method for evaluating 

the relative efficiency of decision-making units (DMUs) on 

the basis of multiple inputs and outputs, therefore data 

envelopment analysis (DEA) models such as CCR and BBC 

models (Banker, Charnes, & Cooper, 1984; Charnes, 

Cooper, & Rhodes, 1978 require input and output data. 

 

DEA is an established and well-known methodology for 

non-parametrically estimating the relative efficiency of a 

number of homogeneous units, commonly designated as 

Decision Making Units (DMU) (Cooper et al., 2004b; Zhu, 

2002). This method has been conducted for benchmarking 

energy sectors in many countries, Non-parametric 

estimation means that it does not rely on assumptions that 

the data come from any specific production function.  

 

From the observed data and making a minimum of 

assumptions, DEA determines a production possibility set 

which contains those operating points that are deemed 

feasible. Then, DEA formulates and solves, for each DMU, 
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an optimization model (usually a Linear Program, LP) 

producing an efficiency score and a target operating point.  

the efficiency score is a measure of the relative 

improvements in inputs and outputs between the DMU and 

its assigned target. 

 

Considerable research studies have been conducted on 

energy use and DEA in agriculture, however, relatively little 

attention has been paid to apple production. Nassiri and 

Singh (2009), analyzed energy use efficiency, In this paper 

(DEA) technique was subjected to data of paddy producers 

in Punjab state (India), Technical, pure technical and scale 

efficiencies were calculated (by using CCR and BCC 

models) for farmers category-wise and zone-wise. Reig-

Martinez and Picazo-Tadeo (2004), identified the efficient 

production units in citrus farming in Spain that determine 

the technological or best practice frontier, and they 

compared their characteristics with those of the average 

farm. Chauhan et al. (2006) studied improving energy 

productivity in paddy production through benchmarking. In 

their study, a DEA approach has been used to determine the 

efficiencies of farmers with regard to energy use in rice 

production activities in the alluvial zone in the state of West 

Bengal in India. Omid et al. (2011) studied benchmarking 

productive efficiency of selected greenhouses in Iran using 

DEA based on eight inputs: human labor, diesel, machinery, 

fertilizers, chemicals, water for irrigation, seeds and 

electricity, and output yield values of cucumber, The results 

of analysis show that DEA is an effective tool for analysis 

and benchmarking productive efficiency of agricultural 

units. 

 

This paper presents an application of data envelopment 

analysis (DEA) to discriminate efficient farmers from 

inefficient ones, pinpoint best operating practices of energy 

usage, recognize wasteful uses of energy inputs by 

inefficient farmers and suggest necessary quantities of 

different inputs to be used by each inefficient farmer from 

every energy source, in other words, The aim of this paper is 

to benchmark productive efficiency of apple orchards in 

Oromieh Township in Iran to illustrate the need to include 

more than one resource involved in the productive process.  

 

Materials and Methods 
 

The West Azarbaijan province is located in the northwestern 

of Iran, The average annual rainfall is 300-400 mm 

(Anonymous 2007a) and altitude above sea level is 1,313 m 

with average high and low annual temperatures of 19.4°C 

and 6.7°C, respectively (Aryanpour et al. 2007).  

 

Data were collected from 80 apple orchard in the Oromieh 

Township by using a face to face questionnaire in 2008. 

Sample orchards were randomly selected from the villages 

in the study area by using a stratified random sampling 

technique. Based on the energy equivalents of the inputs and 

outputs (Table 1), the metabolisable energy was calculated. 

Energy ratio (energy use efficiency) and energy productivity 

were calculated as Eq. (1) and Eq. (2) (Mandal et al. 2002): 

 

Output - input ratio (ER) = Energy output (MJ.ha-1) / 

Energy input (MJ.ha-1)          (1) 

 

Energy productivity (EP) = Total output (kg.ha-1) / Energy 

input (MJ.ha-1)           (2)  

 
Table 1: Energy Equivalents of Inputs and Output in Agricultural Production 

Inputs (unit) Energy equivalent (MJ.unit-1) Reference 

1. Chemical fertilizers (kg) 

 (a) Nitrogen 78.1 MJ.kg-1 Kitani 1999 

 (b) Phosphate (P2O5) 17.4 MJ.kg-1 Kitani 1999 

 (c) Potassium (K2O) 13.7 MJ.kg-1 Kitani 1999 

 (d) Superior Chemical 120 MJ.kg-1 Singh, Mittal 1992 

2. Farmyard manure (kg) 0.0303 MJ.kg-1 Singh, Mittal 1992 

3. Chemical biocides (L) 

 (a) Insecticides 199 MJ.L-1 Helsel 1992 

 (b) fungicides 92 MJ.L-1 Helsel 1992 

4. Diesel fuel (L) 47.8 MJ.L-1 Kitani 1999 

5. Electricity (kWh) 12 MJ.kWh-1 Kitani 1999 

6. Wood (packaging) (kg dry mass) 18 MJ.kg-1 Singh, Mittal 1992 

7. Transportation (t.km) 2.6 MJ.(t.km)-1 Kitani 1999 

8. Tractor (kg) 138 MJ.kg-1 Kitani 1999 

9. sprayer (Fertilizer) (kg) 129 MJ.kg-1 Kitani 1999 

10. Disk harrow (kg) 149 MJ.kg-1 Kitani 1999 

11. Human labor (h) 0.27 MJ.h-1 Kitani 1999 

12. Apple (kg) 1.9 MJ.kg-1 Singh, Mittal 1992 

13. Refrigerating (t.day) 1.15 MJ.(t.day)-1 Anonymous 2007b 
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DEA is a non-parametric technique that computes efficiency 

scores in a described data set, therefore, DEA does not 

require any assumption about the functional form. The first 

time, Farrell conducted non-parametric method in 1957, 

then Charnes  et al. (1978) introduced DEA techniques in a 

paper that used mathematical programming to pursue Farrell 

  ُ s approach to technical efficiency measurement (see 

Farrell, 1957). Their approach involved an important 

improvement: instead of a single-output and single-input 

measure, they developed a method which appraising the 

relative efficiency of homogeneous units by considering 

multiple inputs and outputs production systems to be 

benchmarked, by constructing a piece-wise linear surface 

over the data points. This goal was achieved by computing a 

maximal performance measure for each production unit 

(DMU) relative to all other units (DMU) in the sample with 

the sole requirement that each farmer lies on or below an 

external frontier.  

 

DEA determines efficiency in three different forms by using 

energy inputs (MJ/ha) and yield (kg/ha) as an output: 

technical efficiency, pure technical efficiency and scale 

efficiency. Technical efficiency is principally a measure by 

which DMUs are evaluated for their performance relative to 

other DMUs. Its value is, however, influenced by scale 

efficiency, which quantifies the effect of the presence of 

variable returns to scale in the DMUs. Pure technical 

efficiency is, thus, technical efficiency that has the effect of 

scale efficiency removed. The relationship among these 

forms of efficiency is given as Eq. (3) 

 

Technical Efficiency= (Pure Technical Efficiency) × (Scale 

Efficiency)  (3) 

 

It may be noted here that the technical efficiency combines 

the effects of both pure technical efficiency and scale 

efficiency. Determining these efficiencies of DMUs 

facilitates planners pinpointing the sources of inefficiencies. 

The technical efficiency can be explained as Eq. (4) [Cooper 

et al 2004a]:  

 

Efficiency = Weighted sum of outputs/ Weighted sum of 

inputs.  (4) 

Or mathematically as Eq. (5) 

 

TEj (θ) = 

mjm2j21j1

njn2j21j1

x v+.…+ x v+ xv

yu +.…+ yu + yu
 = 









m

s sjs

rj

n

r r

xv

yu

1

1  (5) 

 

where TEj  or θ is the technical efficiency of the DMU 

under consideration; n the total number of outputs; m the 

total number of inputs;  „x‟ and „y‟ are input and output; ur  

the coefficient of the nth output (r = 1,. . . ,n); vs the 

coefficient of the mth input (s = 1,. . . ,m), „and „j‟ 

represents jth of DMUs (j = 1,2,. . .,k). The value of 

technical efficiency varies between zero and one. To solve 

Eq. (5), following Linear Program (LP) was developed by 

Charnes et al. (1978) which was called CCR model, CCR is 

The first DEA model, the CCR DEA model becomes non-

linear as apart from the weights, CCR optimizes model and 

exhibits under constant returns to scale (CRS) condition, 

This condition usually does not exist in most real life 

problems. CCR model is structured as follows Eq. (6): 

 

Maxu,v : θ = u1y1j + u2y2j +……….+ uryrj(6) 

Subjected to    v1x1j + v2x2j +……….+vsxsj = 1   (7) 

u1y1j + u2y2j +…….+uryrj≤ v1x1j + v2x2j +…….+ vsxsj(8) 

u1, u2,…,ur≥ 0   (9) 

v1 , v2,….., vs ≥ 0 and (i and j = 1, 2, 3,…..,k) 

 

i represents ith DMU, In this study inputs were pesticides, 

chemical fertilizers, manure, packaging, machinery, 

transportation, irrigation, refrigerating, labor and diesel, and 

output was yield (main and secondary (decayed apples) 

yields). The value of inputs and output weights would be 

calculated during the solving of LP, so that, the value of 

technical efficiency approaches to the maximum value. 

 

In 1984, Banker, Charnes and Cooper introduced a model in 

DEA, which was called BCC model to draw out the 

technical efficiency of DMUs. This model would permit the 

existence of variant returns to scale (VRS) and the CCR 

model becomes the BCC model. With DEA, we can identify 

which units present CRS or VRS. the VRS is more flexible 

and envelops the data in a tighter way than the CRS, the 

score or pure TE (θVRS) is equal to or greater than the CRS 

or overall TE score (θCRS).  

 

With respect to technical efficiency (in CCR model), 

technical efficiency of BCC model, which is called Pure 

Technical Efficiency, Pure technical efficiency is, thus, 

technical efficiency that has the effect of scale efficiency 

removed  and could separate both technical and scale 

efficiencies. It can be expressed by Dual Linear Program 

(DLP) Eq. (10): 

 

Maximize  z = uyi - ui        (10) 

Subjected to  vxi = 1         (11) 

_ vX  + uY _ uoe ≤ 0   (12) 

v ≥0 , u ≥0 and u0 free in sign  (13) 

 

where „z‟ and „u0‟ are scalar and free in sign. „u‟ and „v‟ are 

output and inputs weight matrixes, and „Y‟ and „X‟ are 

corresponding output and input matrixes, respectively. The 

letters Xi and Yi represent the inputs and output of ith 

DMU. 

 

 The particular DMU is scale inefficient, which can be 

determined by running the CRS (constant returns to scale) 

and the VRS (variable returns to scale) models on the same 

data; a difference between the two TE scores indicates a 

scale-inefficient unit. Hence, scale efficiency (SE) is 
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TECRS/TEVRS. Although critical, the degree of scale 

inefficiency is not very useful from a managerial point of 

view, unless one can determine whether a DMU is operating 

in a region where DRS (decreasing returns to scale) or IRS 

(increasing returns to scale) returns to scale exist. A 

shortcoming of the SE (TECRS/TEVRS) score is that it 

does not indicate if a DMU is operating under IRS or DRS. 

This is resolvable by simply imposing a non-increasing 

return of scale (NIRS) condition in the DEA model (Coelli, 

1996; Scheel, 2000). If the two TE scores (TEVRS and 

TENIRS) are equal then DRS apply; else IRS prevail. The 

data analysis was carried out using Excel 2007 spreadsheet, 

SPSS 16.0 software and DEA- Frontier professional Release 

4.0. The Frontier software was used to calculate Technical 

efficiency and pure technical efficiency with radial distances 

to the efficient frontier and to rank DMUs using the 

benchmark method, also determine the amount of energy 

loss and energy saving of inefficient DMUs. 

 

Results and Discussion 

 

The average size in the surveyed orchards has been found to 

be 1.2 ha with a range from 0.1 up to 5 ha. Machine power 

was used for only sprayer (in all orchards), fertilizing and 

plotting (in few orchards) due to the fact that most apple 

orchards are designed in a conventional way in which 

machineries traffic is really limited. The source of labor in 

the surveyed orchards is from either family members or 

mainly from hired (seasonal) labors and most of the 

machineries are mainly provided by rent. Total physical 

energy input consists of diesel, fertilizer, chemical biocides, 

human power, machinery, irrigation, packaging, 

refrigerating and transportation. Apples are packaged with 

wood because owners of apple orchards are believed that 

wooden boxes that store more power box than plastics or 

other types of packing boxes. Irrigation methods were 

conventional or semi-mechanized (mostly with electric 

pump and conventional), an apple orchard is irrigated 8 to 

10 times a year. The most frequently used fertilizer is 

farmyard manure and even in some orchards chemical 

fertilizers is not used because of soil structure and soil 

nutrients preservation. The diesel energy was mainly 

utilized for operating tractors; (mostly Messy Ferguson 

(MF) & Goldoni in the surveyed apple orchards). 

 

Analysis of input–output energy use in apple production 

The energy consumption and its sources for apple 

production are presented in Table 2. As can be seen from 

Table 2, the total energy used in various farm inputs is 

101505 MJ.ha-1. The last column in Table 2 gives the 

percentage share of each input from the total energy inputs. 

Of all the inputs, wood packaging has the largest share 

(57%), Packaging energy is followed by the irrigation 

energy (16%), based on duration of irrigation (5-24h for one 

ha); Energy for diesel is ranked third (10%). diesel energy 

was accounted for 10% of total energy inputs. The total 

energy equivalent of chemical fertilizers consumption 

placed fourth among the energy inputs and constituted (9%) 

of the total energy input, and nitrogen (7%) was in the first 

place followed by phosphate (1%), potassium (0.7%) and 

superior chemical (0.3%).The contribution of transportation, 

farmyard manure and machinery energies remained at low 

level of 1% (in total) as indirect energy inputs. Hasanzadeh 

& Rahbar (2005) reported that the most energy consuming 

input for apple production in West Azarbaijan province was 

that for irrigation, nitrogen chemical fertilizing and 

chemical biocides, respectively. According to Kizilaslan 

(2009), percentage shares for fertilizers (42%), electricity 

(22%) and fuel (21%) showed highest from total energy 

used in cherry production in Turkey. Strapatsa et al. (2006), 

calculated that the most energy inputs for orchard apple 

production in Greece were fuel (33%), machinery (25%) 

and fertilizers (15%), mainly N (where orchards were 

irrigated 1-2 times a year), respectively, in all studies sited, 

post-harvest operation were not included. 

 

Table2: Amounts of Inputs and Output Energy in Apple Production 

Inputs (unit) Total energy equivalent (MJ.ha-1) (%) 

A. Inputs 

Nitrogen  (kg) 7105 7 

Phosphate (P2O5) (kg) 1015 1 

Potassium (K2O)  (kg) 710 0.7 

Superior Chemical  (kg) 305 0.3 

Water for irrigation (m3) 16241 16 

Chemical biocides  (L) 2030 2 

Wood Packaging (kg) 57858 57 

Refrigerating (ton.day) 2030 2 

Diesel (L) 10151 10 

Human labor (h) 3045 3 

Transportation  

Farmyard manure  

 Machinery  

(ton.km) 

(kg) 

(h) 

1015 1 

Total energy input  (MJ) 101505 100 

B. Outputs 
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Yield (main) (kg) 19447  

Yield (secondary)  (kg) 4335  

Yield (main & secondary) (kg) 23782  

Output Energy (main) (MJ) 36949  

Total energy output (main & secondary) (MJ) 45185  

 

Output–input ratio is one of the essential indicators that 

provide an understanding of the efficiency of orchard 

holdings. The energy use efficiency, energy productivity 

and net energy of apple production in the Oromieh 

Township are tabulated in Table 3. Energy use efficiency 

(energy ratio) was calculated as 0.36 and varied from 0.23 

to 0.52 in the sampled orchard holdings, showing the 

inefficient use of energy in the orchard apple production. It 

is noteworthy that the ratio can be increased by increasing 

the crop yield (energy equivalent of apple is low relatively) 

and/or by decreasing energy inputs consumption (input 

management). Similar results have been reported for 

different orchard plants such as 0.96 for cherry (Kizilaslan, 

2009) and 0.97 for apple (Hasanzadeh & Rahbar, 2005) 

(postharvest operation were not included), some higher 

energy ratios have been reported such as 1.00 for apple 

(Strapatsa et al., 2006) and 3.37 for apricot (Gezer et al. 

2003) in the literature. The results indicate that energy 

productivity and net energy were 0.19 kg.MJ1- and -64556 

MJ.ha1-, respectively. This means that 0.19 units output was 

obtained per unit energy. Calculation of energy productivity 

is well documented in the literature for different crops such 

as soybean (0.18) (De et al., 2001), potato (0.35) 

(Mohammadi et al. 2008) and cherry (0.51) (Kizilaslan, 

2009). The calculated net energy is negative (less than zero) 

implying that in apple production, energy has been lost.  

 
Table 3: Energy input–output ratio in apple production 

Items Unit apple 

Energy use efficiency (main)   0.36 

Energy productivity (main)  (kg.MJ-1) 0.19 

Net energy (main)  (MJ.ha-1) -64556 

Energy use efficiency (main & 

secondary)  
 0.44 

Energy productivity (main & 

secondary)  
(kg.MJ-1) 0.23 

Net energy (main & secondary)  (MJ.ha-1) -56320 

 

Direct, indirect, renewable and non-renewable energy forms 

used in apple orchard production are also investigated and 

the results are shown in Table 4. It is clear that the share of 

direct input energy (29%) was much lower compared to that 

of indirect energy (71%). Also, non-renewable and 

renewable energies contributed to 96.7% and 3.3% of the 

total energy input, respectively (this is a serious threat for 

environment). The proportion of non-renewable energy use 

in surveyed orchard holdings is very high. Several 

researchers found that the ratio of direct energy was higher 

(lower) than that of indirect energy, and the rate of non-

renewable energy was greater than that of renewable energy 

consumption in cropping systems (Esengun et al. 2007; 

Ozkan et al. 2007; Kizilaslan, 2009). Results revealed that 

orchard operations is carried out mostly by human energy 

and its share is insignificant (almost zero) in energy 

consumption compared to other energy inputs. Human 

energy is highly consumed in pruning and harvesting 

operations (pruning operation requires technical labor). 

 
Table 4: Total Energy Input in the Form of Direct, Indirect, 

Renewable and Non-Renewable for Apple Production (MJ ha-

1) 

Form of energy (MJ ha-1) Apple %e 

Direct energya (MJ.ha-1) 29437 29 

Indirect energyb (MJ.ha-1) 72068 71 

Renewable energyc (MJ.ha-1) 3350 3.3 

Non-renewable energyd (MJ.ha-1) 98155 96.7 
a Includes human labor, diesel, water for irrigation. 
b Includes seeds, fertilizers, manure, chemicals, machinery. 
c Includes human labor, seeds, manure, water for irrigation. 
d Includes diesel, electricity, chemical, fertilizers, machinery. 
e Indicates percentage of total energy input. 

 

Identifying Efficient and Inefficient Farmers 

The ANOVA test revealed that packaging, machinery, 

farmyard manure and chemical fertilizers are significant and 

effective inputs in apple orchards. Accordingly, input-

oriented DEA analysis was performed with mentioned 

inputs and single output (yield). Fig. 1 shows the results of 

technical efficiency analysis for 80 apples orchards unit 

(DMUs). The VRS analysis shows that of the total 80 apples 

orchards considered for the analysis, 41 orchards have 

efficiency score of unity (Fig.1). Thus, they are efficient. On 

the other hand, the remaining 39 orchards which secured 

efficiency scores less than one were in the efficiency range 

of 0.41-0.99. However, the technical efficiency estimation 

indicates that only 34 producers were efficient under the 

CCR model.  
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Fig.1: Efficiency score distribution of farmers 

 

Use of DEA Results to Study Inefficiency on Individual 

Farms 

The performance assessment may be carried out by 

comparing a particular system with key competitors having 

best performance within the same group or another group 

performing similar functions. This process is called 

benchmarking (Jebaraj & Iniyan, 2006). 

 

Efficient DMUs can be selected by inefficient DMUs as best 

practice of DMUs, making them a composite DMU instead 

of using a single DMU as a benchmark. A composite DMU 

is formed by multiplying the intensity vector λ in the inputs 

and outputs of the respective efficient DMUs. BCC is 

modeled by setting the convexity constraint (The 

summation of all intensity vectors in a benchmark DMU 

must be equal to 1. (Omid et al. 2011)). Table 5 shows the 

worst inefficient DMUs (AO51 and AO45) and the best 

inefficient DMUs (AO24 and AO46). For example, in the 

case of AO51 the composite DMU that represents the best 

practice or reference composite benchmark DMU is formed 

by the combination of AO06, AO10 and AO28. This means 

AO51 is close to the efficient frontier segment formed by 

these efficient DMUs, represented in the composite DMU. 

The selection of these efficient DMUs is made on the basis 

of their comparable level of inputs and output yield to 

AO51. In Table 5, the benchmark DMU for AO51 is 

expressed as 6(0.42) 10(0.37) 28(0.21), where 6, 10 and 28 

are the DMU numbers while the values between brackets 

are the intensity vector λ for the respective DMUs. The 

higher value of the intensity vector λ for AO09 (0.515) 

indicates that its level of inputs and output is closer to AO45 

compared to the other DMUs.  

 
Table 5: Results of Technical Efficiency Analysis 

DMU PTE score (%) Benchmarks 

DMU51 59.3 6(0.42) 10(0.37) 28(0.21) 

DMU45 71.8 9(0.515) 16(0.222) 66(0.007) 72(0.198) 75(0.058) 

DMU24 97.5 7(0.131) 9(0.012) 57( 0.44) 75(0.417) 

DMU46 98.3 6(0.298) 7(0.095) 9(0.143) 10(0.098) 28(0.366) 

 

Efficiency Estimation  

The average TE (resource use) provides information about 

the potential resource savings that could be achieved while 

maintaining the same output level. The average values of 

the pure technical efficiency, scale efficiency and technical 

efficiency are summarized in Table 6. The average values 

(for all 80 orchards considered) of pure technical efficiency, 

technical efficiency and scale efficiency were found to be 

0.932, 0.951 and 0.98, respectively. Researchers in previous 

studies calculated average pure TE calculated for asparagus 

0.8 and for tomato 0.89 (Iraizoz et al. 2003), Mean levels of 

technical efficiency were 77%, 73% and 75%, respectively, 

for groundnut monocrop, maize monocrop and maize-

groundnut farming systems suggesting existence of 

substantial gains in output and/or decreases in cost with 

available technology and resources (Binam et al. 2004) and 

mean pure technical efficiency of commercial pig farming 

in Greece was 0.83, indicating that there is ample potential 

for more efficient input utilization in domestic pig farming 

(Galanopoulos et al. 2006). The average values of pure 
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technical efficiency, technical efficiency and scale 

efficiency for 18 cucumber greenhouses were found to be 

0.972, 0.879 and 0.9, respectively (Omid et al., 2011). 

 
Table 6: Technical, Pure Technical and Scale Efficiencies 

DMU 
Technical efficiency Scale efficiency 

(CRS/VRS) CRS VRS 

Average 0.932 0.951 0.980 

SD 0.091 0.077 0.004 

 

The average TE of the inefficient DMUs at the orchard unit 

was calculated as 0.878. This implies that the same level of 

output could be produced with 87.8% of the resources if 

these units were performed on the frontier. Another 

interpretation of this result is that 12.2% of overall resources 

could be saved by raising the performance of these DMUs 

to the highest level. Some CCR-inefficient farmers moved 

toward the BCC-efficient frontier. The RTS indicated that 

all efficient units (based on pure technical efficiency) were 

operating at CRS, whereas 40% inefficient ones were at 

DRS and 60% inefficient units were at IRS, which indicates 

that for considerable changes in yield, technological change 

is required.  

 

Optimization of Energy Use for Inefficient Producers 

 

The pure TE score of a producer being less than one 

indicates that, at present, farmer is using more energy than 

required from different sources. Therefore, it is desirable to 

suggest input energy levels for the inefficient farmers that 

provide viable benchmarks for inefficient farmers. The BCC 

model, when solved, gives the pure TE of a farmer. This can 

be done by using the value of slacks. According to Coelli 

(1996) slacks are related to allocative inefficiency. 

Allocative efficiency indicates a DMU‟s capacity to use 

inputs in optimal proportions. The slack values indicate that 

apart from reducing inputs by the amount of (1 – TE), the 

inefficient DMUs have to reduce their inputs by the amounts 

indicated by the respective slacks in order to become 

allocatively efficient.. For each inefficient producer, there 

have been calculated the actual energy use, the 

recommended target energy use for each input and the 

percent saving in total energy use. Table 7 summarizes the 

energy saving (MJ.ha-1) from different sources. Using the 

information of Table 5, it is possible to advise a producer to 

apply the better operating practices followed by his/her 

peers in order to reduce the input energy levels to the target 

values indicated in the analysis while achieving the output 

level presently achieved by him. It gives the average energy 

spent and targeted (MJ.ha-1), possible energy savings and 

percentage contribution of each energy source in the total 

energy savings. The sources of allocative inefficiency at the 

unit farms are identified as the overuse of diesel fuel, 

packaging, irrigation and chemical fertilizer. 

 
Table 7: Energy Saving (MJ Ha-1) from Different Sources if Recommendation of Study are Followed 

Input   Present use (MJ ha-1) Target use (MJ ha-1) Energy saving (MJ ha-1) Contribution input to saving 

Water for irrigation  14614.45 10645.24 3969.2 13.18 

Diesel fuel  14110.31 2165.46 11944.8 39.70 

Machinery 399.04 287.92 111.1 0.37 

Chemicals 2491.67 1733.51 758.15 2.51 

Packaging 65550.76 57104.82 8445.9 28.1 

Human labour 858.52 294.12 564.4 1.9 

Chemical fertilizers  7997.95 4033.03 3964.9 13.14 

Farmyard manure 1451.76 1118.33 333.4 1.1 

Total input energy 107474.5 77382.5 30092 100 

 

Fig. 2 shows the share of the various sources in the total 

input energy saving. It is evident that the maximum 

contribution to the total energy savings is from fuel (39.7) 

followed by packaging (28.1%), irrigation (13.2%) and 

chemicals fertilizer (13.1%). A study to determine the 

efficiencies of farmers regarding energy use in rice 

production in the state of West Bengal in India showed that 

on an average, about 11.6% of the total input energy could 

be saved if the farmers followed the input package 

recommended by the study (Chauhan et al. 2006). Results of 

Omid et al. (2011) showed that in cucumber greenhouses 

highest saving energy belongs to diesel and electricity about 

76.7% and 10.3%, respectively.  
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Fig. 2: Total Potential Improvement Summary 
 

The study suggests that better use of fuel and packaging, 

apple producer consume high energy specially fuel and 

packaging in response to inattention and low energy prices 

in Iran, However, it should be noted that low productive 

DMUs may not become efficient by simply reducing the 

level of inputs. Instead a detailed analysis might be required 

to determine other underlying causes of inefficiencies, 

including environmental factors and agricultural practices.  

 

Conclusion 
 

Data used in this study were collected from 80 farmers 

located in the Oromieh Township of West Azerbaijan 

province in Iran. Orchard production consumed a total of 

101.505 MJ.ha-1 energy and energy output was calculated 

as 45.185 MJ.ha-1. The results revealed that wooden 

packaging (57%), irrigation (16%), fuel (10%) and chemical 

fertilizer (9%) were the major contributors of total energy 

use in apple orchards. Energy productivity, net energy gain 

and output–input energy were calculated 0.23kg.MJ-1, -

56,320MJ.ha-1 and o.44 respectively. It was concluded that 

the direct and indirect energy inputs were 29% and 71% of 

the total energy inputs, respectively. Renewable energy 

sources among the inputs had a share of 3.3% of the total 

energy input, which was smaller than that of non-renewable 

energy sources (packaging is considered as non-renewable 

and indirect energy).  

 

In this paper, also we have explored the usefulness of non-

parametric efficiency analysis – Data Envelopment Analysis 

– for the study for improving the energy use efficiency 

apple orchards. More specifically, an input-oriented DEA 

model is used for estimating technical efficiencies in the 

apple production. Based on the results, the following 

conclusions may be drawn: The VRS analysis shows that 41 

orchards have efficiency score of unity. CCR model 

estimation indicates that only 34 producers were efficient. 

The biggest share of energy saving appertain to Diesel fuel 

(11944.8 MJ.ha-1), fuel energy is followed by packaging 

(8445.9 MJ.ha-1). The DEA results are much easier to 

interpret and to utilize for investigating avenues for 

improvements in technology and resource use efficiency on 

orchards. DEA has helped in segregating efficient 

agricultural units from inefficient agricultural units. It has 

also helped in finding the wasteful uses of energy by 

inefficient units and ranking energy sources by using the 

distribution of virtual inputs. The effects of uncontrollable 

exogenous variables, such as rainfall, climatic condition and 

soil fertility can be incorporated in future studies. 
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