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Duality applies under uncertainty. In particular, Chambers and Quiggin (1998) have

shown that dual cost structures exist for the continuous, stochastic technologies most fa-

miliar to agricultural economists. Beyond merely demonstrating existence, however, this

finding has important implications for the analysis of stochastic decisionmaking. For years

now, agricultural economists have intensively studied decisionmaking by producers facing

stochastic technologies. And yet. no commonly accepted body of 'stylized facts' exists for

most truly interesting formulations of this problem. Some have even questioned the relevance

of the cost minimization hypothesis for risk-averse decisionmakers (Pope and Chavas). More

generally, apart from a number of results that have been established for trivially stochastic

situations, e.g., price but not production uncertainty, there is no common agreement as to

what one can expect from a risk-averse producer facing a stochastic world.

A particular case in point is the literature on the economic implications of the public

and private provision of crop insurance. The basic theory of crop insurance has been stud-

ied by several authors (Nelson and Loehrnan, Chambers). However, few really new results

have emerged. For example. under the expected-utility hypothesis, a primary result is that

optimality requires that a risk-neutral insurer offer full insurance to risk-averse farmers pro-

ducing a single stochastic output so long as no informational asymmetries exist between the

insurer and the farmer (Nelson and Loehman). But it is easy to recognize this result as a

direct consequence of basic re-insurance results established much earlier by Borch.

Other authors have studied the related and potentially more important question of how

input utilization is affected by the provision of crop insurance or income support (Quiggin

1992, Ramaswarni, Hennessey). Intuitively, one expects that providing insurance encourages

producers to undertake risky activities that carry with them the promise of higher expected

returns. Reasoning thus, one also expects that inputs which might be perceived as enhancing

the riskiness of the production outcome would be used more intensively in the presence of

insurance than in its absence. Conversely, inputs which do little to enhance productivity,

but which act as damage-control agents, would be used less intensively in the presence of

insurance than in its absence. When stated in this fashion, these facts seem to be self-

evident. However, the existing literature suggests that this is not generally the case even

if attention is restricted to single-output, single-input technologies (Ramaswami; Horowitz



and Lichtenberg). Because such technologies are highly restrictive, the nat
ural implication

seems to be that little, if anything, can be said for more realistic technolog
ies.

-
The goal of this paper is to demonstrate, by way of theoretical example, the

 importance

of the duality between cost and stochastic technologies by studying the impa
ct of crop in-

surance upon input utilization. The basic model is a state-contingent
 formulation of the

problem, which encompasses both production and price uncertainty, and
 that allows full ex-

ploitation of the duality between the technology and the cost structure in
 comparative-static

analyses. In particular, we can rely on this duality and a stochastic versi
on of Shephard's

lemma to allow us to examine input responsiveness to the provision of
 crop insurance in a

new and informative manner that does not rely on the single-input, single
-output stochastic

production function model that has dominated most previous studies. 
Moreover, this for-

mulation carries it with the additional benefit that it also allows us t
o consider preference

structures that are far more general than the expected-utility preferen
ce structures that have

been used in the existing literature.

Using this formulation of the problem, we show that it is straight
forward to develop a

complete, analytical framework for analyzing the impact of crop insur
ance (and more gener-

ally any other comparative static problem regarding input utilizatio
n) that can be usefully

illustrated with graphical techniques that should be familiar to virtuall
y all economists. In

particular, the analytical framework presents a decomposition of the p
roblem reminiscent

of the classic Hicks-Allen decomposition of the Slutsky effect familiar 
from rudimentary

consumer theory.

1. Model and Assumptions

1.1. A State-Contingent Technology

Following Chambers and Quiggin (1996, 1997, 1999), the stochastic 
technology is represented

by a multi-product, state-contingent input correspondence. To ma
ke this explicit, suppose

that the states of nature are given by the set SI = {1,2, ..., let x E R_1\FT be a vector of

inputs committed prior to the resolution of uncertainty, and let z E R
m+ xs be a vector of

state-contingent outputs. So, if state s E 12 is realized (picked by 'Natu
re'), and the producer



has chosen the ex ante input-output combination (x, z), then the realized or ex post ou
tput

vector is zs corresponding to the sth column of z. In other words, the observed output is a
n

M-dimensional vector zs where zrns corresponds to the mth output that would be produced

in state 8.

The input correspondence, X : —+ maps matrices of state-contingent outputs

into input sets that are capable of producing that state-contingent output matrix. For
mally,

it is defined by

X (z) = {x E RN+ : x can produce z E Rs}.

We impose the following axioms on X (z):

X.1 X(Omis) = R1N_ (no fixed costs), and ON E X (z) for z > Omis and z Omxs (no

free lunch).

X.2 z'< z= X (z) c X(z').

X.3 x'> x E X (z) E X (z) .

X.4 AX (z) + (1 — A)X(z1) C X(Az + (1 — A)z') 0 < A< 1.

X.5 X (z) is closed for all z E Rrs .

The first part of X.1 says that doing nothing is always feasible, while the seco
nd part

of X.1 says that realizing a positive output in any state of nature requires the comm
ittal

of some inputs. X.2, free disposability of state-contingent outputs, says that 
if an input

combination can produce a particular matrix of state-contingent outputs then it c
an always

be used to produce a smaller matrix of state-contingent outputs. X.3 impli
es that inputs

have non-negative marginal productivity. X.4 tells us that the state-contingent
 technology

is convex, and intuitively it leads to diminishing marginal productivity of inp
uts. X.5 is a

technical assumption that ensures the existence of the revenue-cost function tha
t we develop

next.

1.2. The revenue-cost function

Denote by p ERm++xs the matrix of state-contingent output prices corresponding to
 the matrix

of state-contingent outputs. The interpretation of p is basically the same as z
. If 'Nature'

picks s E CZ, then the vector of realized spot prices is ps G Ri4v/_±. We as
sume that the
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producers in question are competitive in the sense that they take these state-contingent

output prices and the prices of all inputs as given. The state-contingent revenue vector

r = pz E R_sf. has typical elements of the form r,ps • ZS.

In all cases we consider, producers will be concerned with state-contingent revenue rather

than output per se, and it is useful to consider the revenue-cost function defined as

{C (w, r, p) = min w • x : x EX (z) ,
771 }mszms > rs , s E Ci

if there exists a feasible state-contingent output array capable of producing r and oo oth-

erwise. Here w ER_1\FI± represents a strictly positive vector of input prices that the producer

takes as given. The properties of C (w, r, p) that follow from X.1-X.5 (Chambers and Quig-

gin, 1999):

Properties of the Revenue-Cost Function (CR):

CR.1C(w, r , p) is positively linearly homogeneous, non-decreasing, concave, and con-

tinuous in w E

CR.2 Shephard's Lemma.

CR.3 C(w, r, p) > 0 with equality if and only if r = 0.

CR.4 r'> r = C(w, r', p) r, p).

CR.5 p'> p = C(w, r, p') < C(w, r, p).

C(w. r 5, Ors,, Ops) .C(w, r_5, Ors,, Ops), 9> 0.

CR.7C(w,r,p) = C(w, r/k, p/k), k> 0.

CR.8 C(w, r, p) is convex in r.

For analytic simplicity, we shall typically assume that C (w, r, p) is smoothly differen-

tiable in all state-contingent revenues and input prices. By assuming a differentiable in

revenues cost structure, we, therefore, rule out the stochastic-revenue function approach and

the non-stochastic production approach of Sandmo (Chambers and Quiggin, 1998, 1999).'

If production is non-stochastic, then it follows immediately that

C(w, r, p) =Max125 {Cf (w,r,,ps)}

where

C1 (w,r,,ps) = Min {wx f (x) r3}.

Generally, neither this function or the one corresponding to the stochastic-revenue function will be everywhere

4



1.3. Preferences

The producer's preferences are represented by an increasing function of his vector of state

contingent net returns.

y = r— (w • x) 1,,

where ls is the S-dimensional unit vector. As Chambers and Quiggin (1998) demonstrate,

without loss of generality, the producer's preferences can thus be expressed in terms of the

revenue-cost function as

y = r

Following Quiggin and Chambers (1998) and Chambers and Quiggin (1999), these prefer-

ences over state-contingent net returns will be represented in terms of a continuous, strictly

increasing preference function I : R. A producer is said to be risk-averse with respect

to the probability vector 7r E 11

w(915) w (y) vy

where 0.8 is the state-contingent outcome vector with y =Esen rrsys occurring in every

state of nature (Yaari, 1969: Quiggin and Chambers, 1998).

If preferences are smoothly differentiable, the vector of probabilities is unique and pro-

portional to the marginal rate of substitution between state-contingent incomes along the

equal-incomes vector. More concretely, without loss of generality, if preferences are smoothly

differentiable
Ws 01

7rs = , s G c GEten (cis)

Pictorially, therefore, the fair-odds line, which gives the locus of points having the same

expected value and whose slope is given by minus the relative probabilities is given by the

slope of the tangent to the producer's indifference curve at the bisector. Figure 1 illustrates.

In order to impose some structure upon preferences other than simple aversion to risk,

consider the partial ordering of risky outcomes which possess a common mean for the

probability vector This partial ordering is defined by

Y

smoothly differentiable in revenues or outputs respectively.
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if and only if y and y' have the same mean and y is less risky than y' in the sense of

Rothschild and Stiglitz. Chambers and Quiggin (1997) define a function W: S—+R to be

generalized Schur-concave for 7r if y y' = W (y) > W(3,1).

A comment about generalized Schur concavity is worthwhile. Unlike the assumption of

expected-utility maximization, generalized Schur concavity doesn't impose additive separa-

bility across states of nature. Consequently, it does not rely upon the independence axiom

which has proved vulnerable to a variety of criticisms. Even so, the expected-utility func-

tional with concave u is generalized Schur-concave as can be recognized from the result due

to Rothschild and Stiglitz that if y y' then y would be preferred to y' by all individuals

with risk-averse expected-utility preferences. More generally, generalized Schur concavity

characterizes a number of preference classes, which are consistent with risk-aversion in our

sense, but which are not consistent with expected utility. An obvious example is given by

individuals with maximin preferences

W(y) = min {Yi,

This class of preferences is risk-averse in our sense for all possible probability vectors (note

it is not differentiable), and it is also generalized Schur concave. Another obvious class of

generalized Schur concave preferences is the mean-variance class. More generally, virtually

all preference functions currently in use, including the rank-dependent models (Quiggin 1982,

Yaari 1987) and weighted-utility models (Chew 1983) are consistent with generalized Schur

concavity. The main result of Machina (1982) may be restated in our terminology as saying

that preferences are generalized Schur concave if and only if the local utility function is

everywhere concave.

In what follows, we shall frequently restrict attention to the case where W is smoothly

differentiable. In that case, a basic result due to Chambers and Quiggin (1997), which we

state in lemma form for future use, will prove useful:

Lemma 1 If W: is generalized Schur-concave and once continuously differentiable

everywhere on its domain, then:

( Ws (Y) Wr(Y)) (y, — yr) < 0,

for all s and r.
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2. Production Equilibrium in the Absence of Insurance

As a point of comparison, we first present some basic results on the production choices of

risk-neutral and risk-averse producers in the absence of insurance. Suppose the risk-neutral

producer's subjective probabilities are given by the vector Then her first-order conditions

on r may be written in the notation of complementary slackness as

7r5 — Cs(w,r,p) < 0, r5 >O, s E

where
aqw,r,p)

Cs(w,r,p)
ars

That is, the marginal cost of increasing revenue in any state is at least equal to the subjective

probability of that state. Pictorially, therefore, we represent the producer equilibrium by a

hyperplane being tangent to an isocost curve of the producer. Figure 2 illustrates. Here the

slope of the hyperplane is determined by the ratio of the producer's subjective probabilities,

the fair-odds line, and the isocost curve is determined by the equilibrium level of revenue-

cost. This is exactly analogous to the representation of production equilibrium in the non-

stochastic, multi-product case. Instead of determining an optimal mix of outputs as in the

non-stochastic multi-product case, however, the producer equilibrium now determines the

optimal mix of state-contingent revenues. This analogy naturally suggests interpreting the

producer's subjective probabilities as the producer's subjective prices of the state-contingent

revenues.

Summing the first-order conditions on r yields an arbitrage condition

E cs (w, r, p)
sell sell

= 1. (2.1)

Intuitively speaking, Eses-i Cs (w, r, p) is the marginal cost of increasing all state-contingent

revenues by the same small amount in each state of nature, i.e., it is the marginal cost of

a sure increase in revenue of one unit. Hence, (2.1) simply requires that this cost b
e at

least as large as the associated sure increase in returns. If it were not, the decisionmaker

could increase profit with probability 1, and she would thus have an incentive to continue

expanding all revenues equally. For an interior solution, (2.1) must hold as an equality.



We shall refer to the set of revenue vectors r satisfying (2.1) for g
iven w,p as the efficient

set, denoted E. (w, p) ,

E (w, p) {r : C's(w, r, p) ?_ 1} .

We call the boundary of.7.:% (w, p) the efficient frontier and note 
that its elements are given

by:

(w, p) = {r : Cs (w, r, p) = 1}

sEfi

By the homogeneity properties of the revenue-cost function, we ca
n conclude that: E (Ow, 0p) =

(w, p) and E, (Ow, Op) = 0 (w, p) , 0 > 0 (Chambers and Qui
ggin, 1999). That is, the

efficient set and the efficient frontier are positively linearly ho
mogeneous in input and output

prices.

Different risk-neutral producers may hold different subjecti
ve probabilities. Regardless

of the individual's subjective probabilities, however, a revenue
 vector r is potentially optimal

for some risk-neutral decision-maker only if (2.1) holds. Hence,
 (w, p) can be interpreted

naturally as the collection of state-contingent revenues that a
re potentially expected-profit

maximizing. To see why, suppose that (2.1) holds for an ar
bitrary revenue vector, call it

I. Now construct a set of probabilities by setting irs = Cs(w, f, p) for all s. Because they

belong to the efficient set and are derived from a non-decreasing
 revenue-cost function, these

probabilities are positive and sum to one. Moreover, a risk-
neutral individual having such

probabilities would choose 1 as the expected-profit maximizi
ng vector of state-contingent

revenues. The correspondence of the producer's subjective
 probabilities with these state-

contingent marginal costs then determines the optimal point o
n the efficient set.

Now let us turn to the case where the producer is not risk-n
eutral but risk-averse with

generalized Schur-concave preferences2. The producer chooses
 state-contingent revenues to

maximize:

W(Y) = W(r — 13)1s)

So long as the preference function is smoothly differen
tiable in state-contingent revenues,

2Risk-neutral preferences are trivially generalized Schur
-concave.
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then the first-order condition on rs is:

W, (y) — C,(w.r,P)Wt (Y) <0, Ts > 0,

tell

with complementary slackness.

The arbitrage condition (2.1) can be derived as a consequence of summing thes
e first-

order conditions

Ecs(,,r,p) 1. (2.2)

sEC2

We conclude from (2.2) that a producer with generalized Schur-concave preference
s chooses

a revenue vector that is in the efficient set. Hence, as observed by Chambers and 
Quiggin

(1997), there always exists a vector of probabilities that will induce a risk-neutra
l individual

to choose the same production pattern as that chosen by one with generalized Schur-c
oncave

preferences. In general, however, these probabilities derived from the efficient f
rontier will

not correspond to the producer's subjective probabilities unless she is herself risk
-neutral.

Observe, that condition (2.2) holds with equality for an interior solution even 
in the

absence of differentiability of W. Suppose that

C,(w, r, p) > 1,
sEs2

and that r is strictly positive. Then, as before, revenue can be reduced by one unit in
 every

state of the world generating a cost reduction of more than one unit leading to a
n increase

in net returns with probability 1. Pictorially, this production equilibrium is illustra
ted by a

tangency between the producer's indifference curve and one of her isocost curves as 
illustrated

in Figure 3.

More generally, the production equilibrium will be characterized by a level curve
 of the

producer's indifference curve just sitting on a level curve of his revenue-cost fun
ction. This

implies, for example, that when preferences are of the ma)drnin form, producers 
completely

stabilize revenues and produce where the efficient frontier intersects the equal
-revenue curve

(the bisector).

Several points should be made here to facilitate comparison of the risk-neutral 
production

pattern with that associated with generalized Schur-concave preferences. Fo
r an interior

9



solution, it is obvious that a risk-neutral producer chooses his state-contingent revenues so

that for all t, s E
Cfs(w, r, p) Ct(w, r, p)

7r, 7rt

Moreover, summing the first-order conditions for a risk-neutral producer, it follows immedi-

ately by complementary slackness that

7r,r, — E (w, r, p)r, = 0. (2.3)

scs-z sec

Expression (2.3 ) requires that the marginal profitability of increasing the optimal state-

contingent revenue vector radially is zero for a risk-neutral producers.

However, assuming an interior solution and differentiable preferences, it follow/from the

risk averter's first-order condition and Lemma 1 that:

( Cs (w, r, p) Ct(w, r, p)  )
(rs — rt) 5_ 0. (2.4)

7, 7rt

Expression (2.4) implies an inverse covariance between the elements of the state-contingent

revenue vector r and the vector with typical element, c (w'r'P). Hence, we conclude:7r ,

Ecs (w, r, p) (rs
sefi tEn

7rtrt ) <0. (2.5)

Expression (2.5) and the arbitrage condition imply that a risk averter with generalized Schur-

concave preferences will choose an optimal state-contingent revenue vector that is charac-

terized by the fact that a small radial expansion of it will lead to an increase in expected

profit'.

More formally, the left-hand side of (2.3) is the directional derivative of expected profit in the direction

of the state-contingent revenue vector, i.e.,

a [
aA sE0

7r5Ar5 — C(w,Ar,p)]

evaluated at A = 1. Expression (2.3) requires that this directional derivative be set to zero. Hence, a radial

change in revenue has no effect on expected profit.

'The finding that a radial expansion of the optimal state-contingent revenue vector for an individual with

generalized Schur-concave preferences increases expected profit generalizes to the case of multiple-output

price and production uncertainty and general preferences Sandmo's result that in the absence of production

10



Generally speaking, therefore, the risk-averter does not equate his marginal rate of trans-

formation between state-contingent revenues to the ratio of probabilities as a risk-neutral

individual would. Furthermore, the risk averter operates on a smaller scale than a risk-neutral

producer in the sense that the former can radially expand his optimal state-contingent rev-

enue vector and increase profit while the latter cannot. In a word, the risk averter trades

off expected return in an effort to provide self insurance against the price and revenue risk

that he faces. And because the preference function is generalized Schur concave, then, in the

neighborhood of the equilibrium, the revenue-cost function must behave as though it, too,

were generalized Schur concave. Accordingly, in that neighborhood, there must a negative

correlation between marginal cost and the level of the state-contingent revenues.

Expression (2.4) corresponds to Peleg and Yaari's notion of risk-averse efficiency. Risk-

averse efficiency intuitively means that any state-contingent revenue vector satisfying this

property would be optimal for some risk-averse individual who incurred the same level of

revenue-cost. Pictorially, one can visualize the result by returning to Figure 3 and noting

that the producer equilibrium is characterized by a tangency between her indifference curve

and her isocost curve. Also recall from Figure 1 that the ratio of probabilities (the slope of

the fair-odds line) is given by the slope of the producer's indifference curve at the bisector.

As drawn in Figure 3, it follows immediately that, in absolute value, the slope of the fair-odds

line is flatter than the slope of the isocost curve at the optimum. Then coupling this fact

with the fact that 7-2 > ri in the illustration gives (2.4) in the two-state case. It also follows

from (2.4) that any suitably small mean preserving multiplicative spread of the equilibrium

revenue vector leads to a fall in revenue cost. In Figure 3, this is illustrated by the fair-odds

line cutting the isocost frontier from below.5

uncertainty and in the presence of expected-utility preferences, a risk averter always produces less than a

risk-neutral producer. When there is a single non-stochastic output and price uncertainty, then even for

generalized Schur concave preferences, the current result implies that a risk-averter produces less than a

risk-neutral individual.

3A mean-preserving multiplicative spread is represented by a movement from the equilibrium point to

the northwest along the fair-odds line.
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3. Decomposing Input Adjustments

Having provided a brief survey of productive decisionmaldng under uncertainty in a sta
te-

contingent framework, our next task is to specify an algorithm for examining how in
put

utilization responds to the provision of crop insurance. Our starting point is the rec
ognition

via CR. 2 (Shephard's Lemma) that optimal input demands can be recaptured directly 
from

the revenue-cost function as

x (w, r, p) = vwC( r* (w, p) ,p)

where r* (w, p) denotes the producer's optimal state-contingent revenue vector. So, for exam
-

ple. if input and output prices remain constant, comparing input demands for a risk
-neutral

individual with those of an individual with strictly generalized Schur-concave pr
eferences,

assuming both share the same technology, is simply a matter of comparing the 
same input

demand function evaluated at two different optimal state-contingent revenue vect
ors. More

generally, comparing different input demands arising from the same technology re
quires the

ability to compare different state-contingent revenue vectors.

In an uncertain world, different state-contingent revenue vectors may usefully be
 com-

pared in two dimensions. The first compares their relative expected returns, while
 the latter

contains some measure of their riskiness. A risk-averse individual is, by definitio
n, willing

to trade off some increase in expected returns in return for an (appropriately 
defined) re-

duction in riskiness. Hence, it is imperative that any decomposition that we migh
t suggest

should clearly recognize these two dimensions of the decisionmaker's problem.
 Therefore,

in what follows we decompose all comparisons of different revenue vectors, and h
ence their

associated input demands, into two effects. The first is a pure risk effect which kee
ps means

constant but allows riskiness to vary, and the latter is an expansion effect whic
h measures

the difference in expected returns.'

'In actuality, there are an infinity of ways to compute the pure risk effect and 
expansion effect depending

upon how one makes the adjustment in mean values. Here we always restrict at
tention to the case where the

mean adjustment is consistent with a radial expansion because we think it would 
be most familiar to most

economists. More generally, the expansion can be measured in any direction. Wh
ich direction is chosen

will be typically determined by a number of factors. For example, if it is assumed
 that individuals have

12



Figure 4 illustrates our proposed decomposition for revenue changes. Let point A in that

figure be the risk-neutral individual's optimum and point B be the risk-averter's optimal

point. Now suppose that we want to compare these two optima and their associated input

demands. For the purpose of discussion, we will make the comparison in terms of moving

from B to A. However, it is also perfectly plausible to consider the move from A to B, but

we defer that analysis to the reader's initiative.

The decomposition we employ breaks that move down into two effects. The first is the

movement from B to the point C which is on the same fair-odds line as B. Point C has the

same expected revenue as at B. but the same revenue mix as at A (is on the same ray as A).

Because comparing points B and C involves comparing outcomes with the same mean, then

in some sense (which we define precisely in a minute) the difference between B and C must

be solely a difference in the riskiness of the two prospects. We shall call that comparison the

pure risk effect.

The second effect, which measures the difference in the means of the two prospects, is

associated with the movement (in this case) outward along the ray from C to point A. (A

is arrived at by deflating point C by the ratio of C's mean to B's mean.) We shall refer

to this movement in the revenue vector as the (radial) expansion effect. Combining these

two effects allows us to arrive at a mean-compensated decomposition of revenue and input

adjustments.

To make the mean-compensated decomposition meaningful, we need a clear definition

of what it means for one state-contingent revenue vector to be riskier than another which

possesses the same mean. Following Chambers and Quiggin (1999), we define a risk ordering,

denoted --<w, directly in terms of the preference function W. Hence, if y and y' share a

common mean, then y y' if W (y) > W (y'). (Strictly speaking, y --<vv y' should be

read as y is less risky than y' for preferences W. However, we shall simply say that y is less

risky than y'.) So, in terms of Figure 4, C is riskier than B if it lies on a lower indifference

preferences exhibiting constant relative risk aversion then the radial decomposition we suggest is usually the

most appropriate because the expansion effect involves no change in the riskiness of the revenue bundle.

However, if preferences exhibit constant absolute risk aversion, then an expansion effect measured in the

direction of the equal-incomes vector would be more appropriate as it would involve no change in the

inherent riskiness of the revenue bundle.

13



curve than B.

Now that we have defined a risk-ordering, the final piece that we need is a way to re-

late that risk-ordering to input utilization. In the past, considerable attention has been

devoted to the notions of risk-reducing and risk-increasing inputs (Pope and Kramer). In-

tuitively, these notions seem clear: risk-reducing inputs reduce the riskiness of output, and

risk-increasing inputs increase the riskiness of state-contingent outputs. Clear as this in-

tuition seems, writers on production under uncertainty have struggled with formalizing a

definition of risk-increasing and risk-reducing inputs that matches this simple intuition and

which accords with general notions of increases and decreases in risk7.

The state-contingent approach adopted in this paper, however, leads to a rather different

perspective. Rather than thinking of input choices, in combination with random variation,

determining a stochastic output, we consider inputs and state-contingent outputs to be

chosen jointly, in a preference maximizing fashion subject to a state-contingent input corre-

spondence. Hence, it is natural to think in terms of complementarity between input choices

and more or less risky state-contingent output patterns rather than in terms of simple causal

relationships between input choices and risk.

Therefore, following Chambers and Quiggin (1996, 1999)8, we define input n as a risk

complement (risk substitute) at r if

r w r' = x„(w, r', p) > xri(w, P)(xn(w, r', p) < xri(w. P))•

Here the intuition is clear. Something is a risk complement if more of it is used with

more risky state-contingent revenue vectors than with less risky state-contingent revenue

vectors. Just the reverse logic applies for a risk substitute. Because we have been able to

make our notion of 'more risky' precise and to compensate for mean differences in state-

contingent revenue vectors, this intuition accords closely with the more commonly popular

notion of a risk increasing (risk reducing) input. However, we prefer our terminology because

it emphasizes the simultaneity between the input choice and the state-contingent revenue

7An input is typically called risk-increasing or risk-reducing depending upon the sign of a 
second partial

derivative of stochastic production function (e.g., Quiggin 1992, Rainaswami).

In Chambers and Quiggin (1996), the terms risk increasing and risk decreasing were used in 
place of risk

complements and risk substitutes.
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choice. and it is a proper risk comparison as a mean-compensation is involved.

Several comments are in order. First, it's not a purely technological definition. It depends

upon both the technology and the producer's objective function W. (Also recall that proba-

bilities. which are required for the mean compensation, in our framework are determined i
n a

subjective manner from the producer's preferences over state-contingent outcomes.) Seco
nd,

it's a local notion as it's expressly given at a point in state-contingent output space. An
d

third,

r r =-,<w

if W is generalized Schur concave. Thus, via Lemma 1 this definition leads to a n
atural

characterization of risk complementarity and risk substitutes in terms of partial
 derivatives

of input demand functions

Lemma 2 Suppose that the revenue-cost function is twice differentiable in all its a
rguments.

Input n is a risk complement for a generalized Schur-concave preference structure a
t r

only if for all r, s E

oxit(w,r,p) dx„(w,r,p)

dr, drs

7rr 7rs
(r.r. rs) > 0.

Input n is a risk substitute for a generalized Schur-concave preference structure
 at r

only if for all r, s E

dx,i(w,r,p) dxs,(w,r,p)

dr, ors

7rr
(rr — rs) <0.

ozn,(w,r,p) 

From Lemma 2, it follows immediately that !7 is inversely (positively) correlated

with if xn is a risk substitute (complement), whence for risk substitutes

E axn(w, r, p)
rs —

ars
sEn rEn

rrrr) < 0,

with the reversed inequality for risk complements. In words, an input is a risk 
substitute if

its responsiveness to state-contingent revenue variation is large and positive for 
the lowest

revenue states and small, and possibly negative, for the highest income st
ates. Here the

intuition is relatively straightforward. If an input is a risk substitute, it will tend
 to be used
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the most in producing the least risky revenue distributions. It is, therefore, natural to expect

it to be most positively responsive to the lowest revenue states and the least responsive to

the highest revenue states because this type of flexibility will be associated with smoother

(less risky) revenue distributions.

4. Input Use and Insurance

4.1. Producer Equilibrium

We assume that the insurer is risk-neutral and competitive. For simplicity, we assume that

the insurer has the same information set as the producer, and the producer is risk-averse for

the insurer's subjective probabilities, which we continue to denote as 7r. Because the insurer

can observe 'Nature's' draw from Q, he can write state-contingent insurance contracts. An

actuary employed by the insurer would regard as fair any contract for which

7rsis = 0.

where Is denotes the net indemnity paid by the insurance company in state s. Any equilib-

rium insurance contract offered by a competitive, risk-neutral insurance company must be

actuarially fair in this sense. To be actuarially fair, therefore, the net indemnity schedule

must involve positive payouts in some states and negative payouts in other states of nature.

We now consider how the farmer would optimally exploit the presence of a competi-

tive crop insurance market. Given the freedom to choose any actuarially fair contract, the

representative farmer's optimal production cum, insurance scheme solves:

Recognizing that now

max W(r+I—C (w, r, p)) :
12r

.51= 0} . (4.1)

ys rs + is — C (w, r, p) ,

shows that (4.1) can be rewritten after a simple change of variables as

max 
W 
(Y)

y,r
7rs Ys = }71-3r8—C (w, r, p) .
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Therefore, it follows immediately that, regardless of whether her preferences are smoothly

differentiable or not, the farmer chooses her state-contingent revenue vector to

max }7r8r8 — C (w, r, p) .

Verifying this fact is easy. Suppose that the farmer has chosen a particular state-contingent

revenue vector, an indemnity vector, and thus a net-returns vector which is not consistent

with this strategy. The farmer then can obviously hold her net-return vector constant while

rearranging her production choices to generate a larger amount of income than before. This

extra income could then be used to raise all state-contingent net returns thus making the

farmer better off with certainty. Because her objective function is non-decreasing in these

state-contingent net incomes, she'll choose her production vector to maximize expected profit.

Presuming she chooses the expected profit maximizing state-contingent revenue vector,

notice that by her risk aversion' the indemnity schedule (evaluated at the expected profit

maximizing state-contingent revenue)

= 7r-trt — rs, s E 11.

dominates all others because it guarantees her a certain income of

max {>77,r, —

which is the best that she could possibly hope for. Even a risk-neutral individual would

at least weakly prefer this contract to all others. Moreover, this indemnity schedule breaks

even for the insurer.

So we've established that: Risk-averse farmers who face an actuarially fair insurance

contract will produce in the same fashion as a risk-neutral fanner. In the presence of an

actuarially fair insurance market, a risk-averse farmer's production pattern is independent

of her risk preferences. An immediate implication is that a farmer's optimal revenue choice

in the presence of actuarially fair crop insurance contract belongs to the efficient set. These

uNotice risk aversion with respect to 7r is sufficient here. We need not invoke generalized Schur concavity

of W.
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results confirm, for our more general preference and production structure, the full-insurance

result originally obtained by Nelson and Loehman.

These arguments can be illustrated by using calculus based arguments. Note that if

preferences are smoothly differentiable, the farmer's first-order conditions are:

aw (Y) Ars = 0, s E R
aYs

aw (y) ac (w, r, p) ow (y) < 0
ars sEn

rs > 0,8 E (4.2)

in the notation of complementary slackness. Here, A is the non-negative Lagrangian mul-

tiplier associated with the zero profit constraint for the insurance company. Because W is

increasing in all state-contingent net revenues, A > 0. This Lagrangian multiplier is inter-

pretable in several ways: Most familiarly, it is the shadow value of the zero-profit constraint

in the farmer's maximization problem. However, an alternative interpretation is also possi-

ble. Sum the first set of S conditions in ( 2.4) to obtain:

= aw (Y) 
Ld :issGt-/

(4.3)

The Lagrangian multiplier can also be interpreted as the directional derivative of the farmer's

preference function in the direction of the equal income ray (the bisector), which is economi-

cally interpretable as the marginal utility associated with raising all state-contingent incomes

by one (small) unit. Expression (4.3), therefore, represents an arbitrage condition between

the insurer and the farmer. The opportunity cost of an another dollar available for indem-

nities must equal the farmer's marginal gain from receiving such a payment with certainty.

Hence, it follows immediately from these conditions that for an interior equilibrium the

farmer produces where for all r, s E

C's(w, r, p) = Ct( P) 
rs irt

just as would a risk-neutral individual. Now by Lemma I on generalized Schur concave

preferences it follows immediately that the producer completely stabilizes his income stream

through the use of net indemnities.
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Figure 5 illustrates pictorially for the case of smooth preferencesw. The isocost curve

in that figure represents the level curve of C (w, r, p) as evaluated at the optimal level of

state-contingent production. It is drawn as tangent to the fair-odds line at the optimal state-

contingent production point (rI, r') reflecting the fact that the farmer picks her revenue

vector to maximize expected net income. The farmer will now trade with the insurance

company along the fair-odds line until her marginal rate of substitution between state-

contingent incomes is the same as the insurer's. And since this equalization occurs at the

bisector for smooth generalized Schur-concave preferences, the producer ultimately locates

there.

4.2. The effect of insurance on input use

Assessing the impact that actuarially fair crop insurance has on input utilization, thus,

reduces to comparing the input decisions made by a risk-neutral producer and a risk-averse

producer. Generally speaking, there are four possible outcomes when expressed in terms of

the expansion effect and the pure-risk effect. Both the expansion effect and the risk effect

can be positive, in which case the overall effect on an input's use is positive. The expansion

effect can be positive and the risk effect can be negative, in which case the overall effect is

ambiguous. The expansion effect can be negative and the risk effect negative, in which case

the overall effect is negative. And finally, the expansion effect can be negative and the risk

effect positive, in which case the overall effect is ambiguous.

More finely, however, there exists an even larger number of possibilities. For example,

the expansion effect on input utilization could be positive because the expansion effect on

revenues is positive and the input is non-regressive to radial expansions in revenues. Alterna-

tively, the expansion effect on input utilization could be positive because the expansion effect

on revenues is negative, but the input is regressive in radial expansions of revenues. Simi-

larly, a negative effect could emerge from a positive (negative) expansion effect on revenues

'More generally, since a dominance argument was used to establish these results, it follows immediately

that they apply regardless of whether preferences or the technology are smooth. Moreover, in the case of

non-smooth preferences, Chambers and Quiggin (1999) following Segal and Spivak show that farmers can

fully insure even in the absence of an actuarially fair insurance contract.
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and non-regressivity (regressivity) to radial expansions of revenues.

Similar ambiguities arise from the risk effect as well. For example, an input could be a

risk substitute and the risk effect in terms of revenues could be associated with an increase

in risk. The input risk effect would then be negative. The other obvious possibilities can be

enumerated by the reader.

Our strategy for sorting through the possible results is somewhat different than the strat-

egy typically pursued in previous studies. There the common strategy is to impose so
me

type of structure upon the producer's preference structure, for example, constant absolute

risk aversion or decreasing absolute risk aversion. The results, thus obtained, are lim
iting

for at least two reasons. First, compared to the preference structure utilized in the curr
ent

paper, the preference structure utilized in other studies (expected utility) is quite r
estrictive

in that it imposes additive separability across states of nature. Moreover, it is widely
 recog-

nized to rely on a weak conceptual basis because empirical evidence routinely refutes 
the

crucial independence axiom underlying expected-utility theory. Thus, these studies 
are in

the position of imposing additional structure on a model that has already been demon
strated

to be empirically flawed.

Second, the production structure that underlies all these studies is even more rest
rictive

because it imposes an extreme form of non-substitutability between state-contin
gent out-

puts (Chambers and Quiggin, 1998). And as Chambers and Quiggin (1999) demon
strate,

the differences between a risk-neutral producer's production pattern and a risk-averter's
 pro-

duction pattern in that framework ultimately reduce to determining whether the risk
-averter

produces more or less of a single reference state-contingent revenue which automati
cally de-

termines all other revenue levels and the level of input utilization. In effect, the st
ochastic

production function model can always be reduced to a trivial single-input problem
. Given

the extreme restrictiveness of the production model and the fact that input com
mittal really

plays no role in determining the inherent riskiness of the state-contingent reven
ue vector,

it's not surprising, therefore, that one is forced to place even more stringent re
strictions on

preferences to obtain results.

So in what follows, we follow an alternative strategy and place no restrictions 
on prefer-

ences other than that they be consistent with risk aversion and generalized Schur 
concavity.
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Instead, we examine restrictions on the shape of the isocost frontiers for the state-contingent

technology.

The first restriction that we consider is what Chambers and Quiggin (1999) have referred

to as constant relative riskiness of the revenue-cost function'. Constant relative riskiness, in

the current context, is equivalent to requiring that the revenue-cost function be homothetic in

state-contingent revenues. The main economic consequence of this fact is that the expansion

path in state-contingent revenue space that is defined by the locus of points which are

expected-revenue maximizing for fixed levels of revenue cost is linear. This emerges from

the fact that isocost frontiers for this technology are radial blow-ups of a reference isocost

(:urve 12.

Let the farmer's revenue vector in the absence of insurance be denoted by rA and the

farmer's revenue vector in the presence of actuarially fair insurance be denoted by rF. Then,

as discussed earlier, notice that the effect of providing insurance can be broken down into
A

two parts, the mean-compensated move from rA to ,EsEn 8 SF rF and the radial movement
sEft ir3r5

A
E sEn srs  F

from this mean-compensated term to rF 
L

. The expression, p 

isEQ 7sri

C in Figure 4.
F_sEri"S F • •

Now notice that because  „ ial expansion or a radial contraction
z-secz

of rF, it lies on the producer's expansion path and hence must be the most profitable state-

contingent revenue combination for the revenue-cost level

E.Ennsrf+'
, Fr ,p.
Esen 7rsrsF

EsEn'sr;1 FAlso notice, however, that aEn ss7rrf r has the same expected revenue as rA. Thus, the cost

associated with rA must be at least as large as that associated with ,EsEn7rsr prF
• 
If it were

L.sEfl 1r8r 

not, that would mean that the same expected revenue could be obtained from rA at a cost

'srfk -E "ff'

level lower than C (w,
SEn

z_isErt - 5-9rF r
F 
, p) . But this contradicts the fact that 

EsEn 
irrF 

rF lies on

"Constant relative riskiness and constant absolute riskiness as defined below are defined an
alogously to

constant absolute risk aversion and constant relative risk aversion for the general state-contingent 
preference

function W as in Quiggin and Chambers (1999). A straightforward extension of those arguments
 leads to

the maintained relationship between homotheticity and translation homotheticity.

12This result is completely analogous to the result that maximum revenue expansion paths
 for non-

stochastic, multi-output technologies which exhibit output homotheticity are straight lines.
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the firm's expansion path. Figure 6 illustrates this fact by having the point of intersection

between the fair-odds line through rA and the risk-neutral expansion path lie below the

firm's isocost curve for rA.

Revealed-preference arguments, therefore, lead us to conclude that

E.En 7r.r:`rA_c (w, rA, p w  

F rF —C (w, rA, p) .
Es0-2 Irsri

If this ordering of the outcomes did not hold, then rA would not be the optimal choice for a

Eserlffsr:' F
risk averter. Notice that the preceding arguments have established that iEsEn7rsrr r s less

costly than rA, thus it represents a feasible choice for this level of revenue cost. Hence, we

conclude that
E.En7rsr .

A Thw r F 
rF .

2-4sES1 Irsrs

From this observation we can state the following result.

Result 1 If the producer's revenue-cost function exhibits constant relative riskiness, the

pure-risk effect of the provision of actuarially fair insurance on an input is positive if

the input is a risk complement and negative if the input is a risk substitute.

Generally speaking the expansion effect for a technology exhibiting constant relative

riskiness can require either a shrinking or an expansion of the risk-neutral optimum depending

upon the rate at which marginal costs of the state-contingent outputs rise. So, as a general

matter, we cannot make a clear pronouncement as to what will be the effect of the provision

of crop insurance for a producer facing such a technology without placing further structure

upon the problem.

There does exist a class of technologies for which one can obtain clear results about

both the expansion and the pure risk effects. That technology is the member of the class of

translation-homothetic' technologies (Chambers and Fare), which Chambers and Quiggin

(1999) refer to as exhibiting constant absolute riskiness. The technology exhibits constant

absolute riskiness if

r, p) = O(w,T(r,p,w) p)

"Translation homothetic technologies are the class of quasi-homothetic technologies which can be 
repre-

sented by non-decreasing translations of a reference isoquant in a given direction (Chambers and Fare).
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where

T (r + 618,p, w) = T (r, g, w) ± 6, 6 e

T (Ar,Ap,w) = AT (r, p, w) , T(rp,Aw) = T (r,p, w) A> 0,

and e (w, T (r, p, w) , p) is positively linearly homogeneous in input prices, homogeneous of

degree zero in T (r, p, w) and p, non-decreasing and convex in T (r, p, w), non-increasing in

p. T (r, p, w) is non-decreasing and convex in r.

Intuitively, technologies which exhibit constant absolute riskiness have isocost curves

which are parallel to one another as one moves in a direction parallel to the bi-sector.

Therefore, increasing revenue by the same amount in all states of nature has no effect on the

rate at which state-contingent revenues substitute for one another in the technology. In that

sense. constant absolute riskiness is the natural production analogue of general risk-averse

preferences which exhibit constant absolute risk aversion.'

The most important property that technologies exhibiting constant absolute riskiness

have for state-contingent technologies is that the cost level corresponding to the efficient

set is unique for such technologies. Hence, in this special case, the efficient set corresponds

exactly to a unique isocost contour. The easiest way to discern this property is to differentiate

both sides of the expression

T(r+61S,p,w) = T (r, p,

with respect to 6 and evaluate the resulting directional derivative at 6 = 0 to obtain

ETs (r, p, w) = 1.
sEf/

Using this fact and our definition of constant absolute riskiness, it follows immediately that

in this case, the arbitrage condition (2.1) can be written as

CT (W, T (r, p, w) , p) 1.

Thus, assuming an interior solution the arbitrage condition determines a unique level of T

and thus of revenue cost. In this context, notice that T may naturally be thought of as a

"Blackorby and Donaldson refer to this class of functions as unit translatable. Chambers and Fare

call functions which are translation homothetic in the direction of the equal revenue ray BD-translation

homothetic.
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revenue aggregate which has the property that increasing all state-contingent revenues by

one unit increases it by one unit. For technologies exhibiting constant absolute riskiness,

(2.1) simply reduces to equating the marginal cost of that revenue aggregate to one.

Because both risk averters and risk-neutral individuals produce in the efficient set, it

follows immediately that:

Result 2 If the technology exhibits constant absolute riskiness, the introduction of pro-

duction insurance does not affect the level of revenue cost incurred by a risk-averse

entrepreneur.

Accordingly, the only effect that production insurance has on the risk-averse entrepreneur

is to change his optimal revenue mix to that associated with a risk-neutral individual. This

brings with it an increase in expected revenue, at no additional cost, that can be used along

with the production insurance to enhance the producer's overall welfare.

The production decisions for a risk-averse producer in the presence of insurance and in its

absence can be illustrated graphically as in Figure 7 when the technology exhibits constant

absolute riskiness. There the producer produces at rF when insurance is provided and at rA

in its absence. It is pictorially obvious and generally true that

EsEn r

 F <1.

E8€12 7-rsr;

(4.4)

The inequality follows from the fact that rF must be associated with the highest expected

revenue consistent with the constant level of cost.

Result 3 If the technology exhibits constant absolute riskiness, the introduction of pro-

cluction insurance increases the level of expected revenue produced by a risk-averse

producer.

Moreover, a revealed preference argument exactly parallel to the one used in the discussion

of constant relative riskiness reveals that

EsEn IrerhtrA Thw r .
Irsri

Straightforward consequences of (4.5) and (4.4) are
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Result 4 If the technology exhibits constant absolute riskiness, then th
e pure risk effect on

an input is positive (negative) if the input is a risk complement (risk subst
itute).

Result 5 If the technology exhibits constant absolute riskiness, the expa
nsion effect on an

input is positive (negative) if the input is non-regressive (regressive) in
 radial expan-

sions of revenue.

Because there exist unambiguous results for both the pure-risk and
 expansion effects on

input utilization, it is now an easy matter to obtain some clear-cut ove
rall results. We have:

Corollary 1 If the technology exhibits constant absolute riskines
s, an input's utilization

increases as a result of the introduction of insurance if the input
 is a risk complement

and it is non-regressive in radial expansions of the state-contingent
 revenue vector.

Corollary 2 If the technology exhibits constant absolute riskiness, 
an input's utilization

decreases as a result of the introduction of insurance if the input i
s a risk substitute

and it is regressive in radial expansions of the state-contingent reven
ue vector.

5. Discussion of Results

The results that we have presented show that regardless of the prefe
rence structure, there

are a number of things which can be said about the input response
 to the provision of

(actuarially fair) insurance. For example, consider the case of a te
chnology that exhibits

constant absolute riskiness. Then it follows from our discussion that a
ny input which is both

a risk complement and which is not radially regressive in revenues will b
e used more heavily

in the presence of insurance than in its absence.

So intuitively, one might think in terms of an input like chemica
l fertilizer which would

seem to be a natural risk complement and which empirical evide
nce would also suggest is

not a regressive input. Then, one could immediately conclude that 
an individual using a

technology characterized by constant absolute riskiness would use 
more chemical fertilizer

in the presence of insurance. This coincides nicely with popular w
isdom on such inputs.

Conversely, one sees that the pure-risk effect will lead the produ
cer to utilize less risk-

substitute inputs, such as pesticides. But more generally, the 
introduction of insurance
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might ultimately force even these inputs' utilization to rise
 as a result of the expansion effect

if pesticides are not regressive to radial expansions of the
 state-contingent revenues.

For the class of technologies exhibiting constant relativ
e riskiness, we see that the pure

risk effect is always distinguishable and unambiguous. Thu
s the pure risk effect would push

a farmer to use more risk-complementary inputs in the p
resence of insurance and fewer risk

substitutes.

Perhaps the most important aspect of our results is that 
they establish that neither risk

complementarity nor risk substitutability is sufficient to 
determine whether an input's uti-

lization increases or decreases as a result of the provisi
on of insurance. While this may seem

counterintuitive, it is quite reasonable once one recogni
zes that provision of insurance evokes

at least two responses on the part of producers. The first
, which we have called the pure-risk

effect, is the change in the mix of state-contingent revenu
es which changes the riskiness (from

the producer's perspective) of the optimal state-conti
ngent revenue bundle. Generally, we

expect the producer to move to a more risky revenue bun
dle as market provision of insurance

substitutes for the insurer's need to self insure. It is f
or this effect where the notions of risk

complementarity and risk substitutability are most re
levant. But providing insurance also

influences the producer's scale of operation, and these sca
le adjustments can either reinforce

or modulate the pure-risk adjustment depending upon t
he input's responsiveness to radial

changes in the revenue vector.

Our results are most directly comparable with the res
ults of Horowitz and Lichtenberg

and Ramaswami who study input and supply responsiv
eness to the provision of insurance in

the presence of moral hazard. Both of those papers rep
ort sufficient conditions for provid-

ing insurance to increase the use of a single scalar inp
ut. For example, Ramaswami shows

that if that input is risk-reducing, in his sense, and 
preferences are expected-utility pref-

erences exhibiting non-increasing absolute risk aversi
on, its use will fall as a result of an

introduction of crop insurance. Notice, in particular
, that this finding implies that under

these circumstances that output or revenue will fall in e
very state of nature.

In our study, to concentrate our focus on the construc
tion of an analytical framework

we have abstracted from the moral-hazard problem by 
assuming that the insurer can write

state-contingent contracts. However, it is an easy cons
equence of results reported in Cham-
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hers and Quiggin (1999, Chapter 7) that provision of th
e production insurance of the type

considered by Ramaswami moves the producer out of th
e efficient set. This is the natural

extension of the Ramaswami result to the multiple-outpu
t, multiple-input technology that

we consider. Moreover, it is straightforward to show that 
for technologies exhibiting con-

stant absolute riskiness that revenue cost falls after such
 insurance is provided'. Given

these results, it is then straightforward to sort out the 
effects on individual inputs by using

the methodology developed above. Of course, if one is
 willing to impose even more struc-

ture upon preferences (for example, constant absolute r
isk aversion) while still not requiring

maximisation of expected utility, one can obtain even 
sharper results.

6. Concluding Remarks

This paper studies the impact of crop insurance upon
 input utilization by risk-averse de-

cisionmakers using the state-contingent formulation of 
Chambers and Quiggin (1996, 1997,

1999). This framework allows us to rely on a version 
of Shephard's lemma for stochastic

technologies to examine input responsiveness to the p
rovision of crop insurance that does

not rely on the single-output stochastic production funct
ion model that has dominated most

previous studies. The only restriction placed upon p
references is that they be consistent

with a very mild form of risk aversion. Moreover, the me
thodology developed in this paper

can be used in any situation where one seeks to determ
ine the comparative-static effect on

input use of some change in the producer's economic env
ironment.

We show that it is straightforward to develop a framew
ork for analyzing the impact of

crop insurance on input use that can be usefully illust
rated with graphical techniques that

should be familiar to virtually all economists. Using t
his framework, we isolate a number

of results including sufficient conditions on the technolo
gy for the provision of insurance to

lead to either an increase or a decrease in the use of an
 input.

"As noted earlier, under constant absolute riskiness
, the efficient set determines a unique lev

el of cost.

If the producer doesn't operate in the efficient set, it t
urns out that his cost must fall as a strai

ghtforward

consequence of the properties of constant absolute riski
ness.
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