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JOSEPH HAVLICEK, JR.
1934-4993

Joseph Havlicek, Jr. was a teacher, researcher, administrator, and leader in agricultural
140 economics. His enthusiasm and optimism were hallmarks of his character and career. He wasintensely interested in his work, excited by his research, and energetic in his teaching. He had theability to motivate and inspire others -- students, colleagues, administrators, and leaders in theprofession. Both his classroom and office represented opportunities for clarification and motivation toall who appeared at his door.

Havlicek was a pioneer in much of his research. He was an early developer of nonlineareconometric systems for modeling interregional competition, among the first to research the economicsof waste management, and an innovator in the analysis of consumer and market behavior using systemsof equations and in the assessment of investment in agricultural research and extension.

Havlicek grew up on a farm in Mercer County, Ohio, fluent in the Czech language of his
01P 

parents, who had immigrated from the Ukraine area of Russia just prior to World War I. After earningthe Bachelor of Science (1955) and Master of Science (1956) degrees in Agricultural Economics fromThe Ohio State University, he earned a Ph.D. degree (1959) in both Agricultural Economics and
Statistics from North Carolina State University.

North Carolina State had one of the early graduate programs in econometric analysis and
Havlicek put this training into practice during his first position (1959-61) in the Agricultural Economics

oie 
Branch of The Tennessee Valley Authority. His research was in agronornic-economic studies, responsesurface analysis, and resource economics, including watershed analyses.

By 1961, Purdue University was hiring faculty to establish a graduate program in econometricsand Havlicek joined the team to develop this program as applied to agricultural economics. At Purdue,
his research focused on interregional competition, demand and price analysis, and the economics of
waste management. He spent 13 years at Purdue before moving to Virginia Polytechnic Institute's
agricultural economics department with a joint appointment in the statistics department. At VP!, his

se 
research focused on supply and demand analyses of selected products and production inputs,
consumption analysis, environmental economics, and returns to investment in agricultural research.

riOA Both at Purdue and VP!, Havlicek taught graduate and undergraduate courses in statistics,
econometrics, matrix algebra, demand and price analysis, and marketing. His lecture notes for matrix01. algebra and for econometrics were reproduced and used not only by his graduate classes, but were

00.), distributed upon request to many researchers throughout the country.

Between 1961 and 1982, Havlicek was the major professor for 18 Ph.D. dissertations and 10Ile Masters theses. Two of these Ph.D. dissertations and four of the M.S. theses won AAEA awards.
00, Throughout his career he served on committees for numerous other graduate students. Many of his

students have made significant contributions to the profession, both in the U.S. and abroad.8110_1!)



In 1982, Havlicek went to the University of Maryland to become Chairperson of the
Department of Agricultural and Resource Economics. In 1984, he was offered the position of
Chairperson of the Department of Agricultural Economics and Rural Sociology at The Ohio State
University. The opportunity to lead the department from which he had received his B.S. and M.S.
degrees was exciting, and he returned to Ohio. Under Havlicek, the department grew professionally in
faculty and received increased national and global recognition. In 1993 he received the OSU
Distinguished Affirmative Action Award for his hiring practices to include women and minorities.

Havlicek's leadership abilities were recognized by his professional organizations. He served on
the Editorial Council of the Southern Journal of Agricultural Economics (1975-77) and the American
Journal of Agricultural Economics (1981-82), and on the Board of Directors for the American
Agricultural Economics Association (1981-84), AAEA Foundation (1987-88), and The Economics
Institute, Boulder, Colorado (1985-88). Havlicek was elected and served the Southern Agricultural
Economics Association as First Vice President (1980-81), President-Elect (1983-84), President (1984-
85), and Past President (1985-86). He was elected and served AAEA as President-Elect (1985-86),
President (1986-87), and Past President (1987-88) In 1989, he was named a Fellow of the AAEA.
Following his death, AAEA established the Joseph Havlicek Appreciation Club. Its purpose is to
bestow travel grants to graduate students and foreign faculty to travel to the AAEA national meetings.
In 1995, Havlicek was posthumously awarded the SAEA's Lifetime Achievement Award.

In 1990, Havlicek returned to teaching and research at OSU. He traveled to Taiwan, China,
Hungary, Poland, and Czechoslovakia seeking to establish joint research and graduate exchange
programs. With the opening of Eastern Europe, Havlicek had the opportunity to teach economic
policies under a democracy to farm co-op managers in the Czech Republic and to students of
agricultural economics at the Agricultural College of Prague University. Havlicek was able to teach
these classes in the Czech language. He became instrumental in establishing a section on the program
of the AAEA meetings for European topics and in finding ways for the faculty of Eastern Europe to
attend the AAEA national meetings. Among his last responsibilities was work with Prague University
to establish programs between that university and OSU. He also was instrumental in arranging a short
course on farm loans at OSU for bankers in the Czech and Slovak Republics.

Shortly before his death in March 1993, Havlicek was asked to identify an area in his
professional career for which he would like to be honored. His response was price analysis and applied
econometrics. All of those who have worked with Havlicek have felt his commitment to applied
econometrics. Because of Havlicek's belief that learning should be ongoing from student days
throughout the professional's life, the Department of Agricultural Economics and Rural Sociology
decided that a memorial lecture series in applied econometrics should be established. Funds for the
lectures (to be presented annually in perpetuity) were contributed by Havlicek's colleagues, friends,
and the Havlicek family.

The Havlicek Memorial Lecture Series in Applied Econometrics was established in 1993 and
the first lecture was given by Professor Oral Capps, Jr., who completed an AAEA award-winning
Ph.D. dissertation under Havlicek in 1980.
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GROWTH RATE CONVERGENCE, FACT OR ARTIFACT?
An Essay on the Use and Misuse of Panel Data Econometrics
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ABSTRACT
El-The sensitivity of the convergence rate, or the test of no convergence in the standard Barro-Baumol sense,to the econometric method employed is investigated. Two basic models are investigated: The first is the
standard model with individual-specific effects for each country; the second is a model in which
individual countries have different individual-specific trends in output per capita. All of the resulis
reported support the growth convergence hypothesis conditional on savings and population growth ratesin the usual sense but illustrate the rather different estimates of the rates of convergence obtained when
different estimation techniques are use,c1]. In particular, I show that the use of fixed-effects panel models
biases the results towards finding relatively rapid convergence and that, when more appropriate
maximum-likelihood estimates, unconditional on the initial observations, are employed, very slow
convergence is implied (to within 90% of equilibrium only in excess of 50 years). Biases in the estimates
of the coefficient of the "state" variable for all of the usual methods of panel data analysis imply biased
estimates of the coefficients of any other variables included if these are correlated with the "state" variable,
which is typically the case. Thus, the significance and possibly the sign of any other determinants of
growth may be seriously affected. Alternative maximum likelihood methods are developed which utilize
the information contained in the initial observations for each country that reflect the operation of the
growth process prior to the time at which we began to observe them.

This paper is based on an earlier paper of similar tide presented at the Sixth Conference on
Panel Data Econometrics, Amsterdam, 28-29 June 1996. The present version has been prepared for the
1998 Havlicek Lecture in Applied Econometrics at Ohio State University, April 16, 1998.

My interest in the question of how the econometric approach might have influenced recent
findings with respect to the convergence hypothesis was stimulated by reading Islam (19.95) But there is
now a vast literature utilizing the data from the Penn World Tables, which I also use here. I do not
attempt a comprehensive survey of this literature in this paper.

I thank Hashem Pesaran for helpful discussions, and Robert Baffo, Michael Binder, William
Greene, G. S. Maddala, and C. Spohr for useful continents. Special thanks are due to Anke Meyer, with
whom I discussed every aspect of this work

I am also indebted to Jinkyo Suit and Timothy Thomas for computational counsel and their
assistance in straightening out the GAUSS programs which I wrote to obtain my earlier results. Suh also
checked and double checked all derivations and verified that my programs accurately reflected the
formulae derived.



1. Introduction

One of the most important implications of the classic papers of Solow (1956) and Swan (1956) isthat the lower the starting level of real per capita GDP, relative to the long run or steady state position, thefaster is the growth rate. The Solow-Swan model assumes a constant-retunis-to-scale production functionwith two inputs, capital and labor, and substitution between inputs, a constant savings rate, and constantrate of growth of population and neutral technical change, all exogenously given. Convergence ofeconomies starting out at different levels of per capita income to the same steady-state rate of growthreflects the diminishing returns to capital implied by the production function assumed: economies startingout with lower levels of real per capita GDP relative to the long run or steady state position have lesscapital per worker and therefore higher rates of return to capital. I will refer to this as the standard Barro-Baumol (BB) sense of the meaning of convergence.' Because the steady states of the Solow-Swan modeldepend on the savings rate, the 'rate of growth of population, and the rate of technical progress, someauthors have argued that these factors need to be held constant in attempting to test the hypothesis ofgrowth rate convergence. Convergence is, in this sense, conditional. (When population growth isendogenously determined, this implication of the neoclassical model of economic growth does notnecessarily follow; see Nerlove and Raut, 1996.)
The problem of BB-convergence in the standard neoclassical model is treated both theoreticallyand empirically in the recent text by Barro and Sala-i-Martin (1995) and empirically in a recent paper byIslam (1995). Bernard and Durlauf (1996) provide a useful framework for understanding the time-seriesand cross-sectional tests of the BB-convergence hypothesis and its relation to alternative definitions. Quah(1996) discusses the problem of convergence in more general form and distinguishes several differentvarieties. He argues that "Simply because panel data techniques happen to apply to data with extensivecross-section and time-series variation does not mean they are at once similarly appropriate for analyzingconvergence." While I do not fault Quah's conclusion, current discussions do emphasize panel data andmethods and derive strong conclusions regarding BB-convergence and the significance of otherdeterminants of growth from such data. It is therefore appropriate to consider how these conclusions,within the context of BB-convergence, are affected by the econometric methods employed.Perhaps even more important than the problem of convergence is the question of thedeterminants of growth. The World Bank Project on Economic Growth lists 15 published papers and 15working papers almost all of which involve dynamic panel data analysis or cross-section analysis with astate variable or initial condition.2 Although the focus of these papers is not convergence but the effects ofthe other variables included, if the coefficient of the state variable in the statistical analysis isinconsistently estimated, in this sense "biased," then the coefficient of any variable correlated with thestate variable will also be biased. Hence, quite misleading conclusions may be drawn concerning thesignificance, sign and relative magnitude of other factors included in the analysis.

In section 2,1 derive a discrete form of the BB-convergence equation, also derived in a differentway by Mankiw, et al. (1992), and show that the usual equation for testing the convergence hypothesis canbe obtained from it by a simple partial adjustment model rather than the approximation about equilibriumusually employed. In general, no essential restrictions are neglected in this simpler derivation, although incertain contexts the specification may neglect certain cross-equation parameter restrictions. It is theclassic Solow/Swan model that, for good or for ill, underlies all recent studies of the determinants of

1 There is a good deal of current discussion regarding the appropriate definition of "convergence."Barnard and Durlauf (1995) give a nice discussion emphasizing the restrictiveness of the approachadopted here (see also Quah, 1996), which is the most prevalent, going back to the earlier work of Barro(1991) and Baumol (1986). Since my main concern is to show that the econometrics matters, I will adoptthis notion of convergence in what follows, while admitting that my conclusions about convergence per seapply only to this rather narrow definition. However, the general point that inconsistency in the estimationof the coefficient of the state variable implies inconsistency in the estimation of the effects of other factorsis valid in this context and in general.
2 See http//www.worldbank.org/html/prdmg/grthweb.
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Consider the standard Solow/Swan (Solow, 1956; Swan, 1956) model with exogenous population
growth in discrete form: Let lit = output, Kt = capital stock, Nt L=-- labor force assumed to be the same as

growth and provides the justification for including a lagged value of the dependent variable, initialcondition, or other state variable,
Section 3 examines recent empirical investigations of BB-convergence and the rate ofconvergence and argues that most are flawed by failure to allow for the inconsistencies of single cross-section or panel studies in a dynamic context.3 In a dynamic context a single cross-section is best viewedas a panel with time dimension I. I do not attempt here a general review of the effects of the methods usedin more general studies of the determinants of growth, but I do examine the effects on the estimatedcoefficients of the Barro-Lee (1993) estimates of the stock of human capital or a trend variable.
In this section, I look at the problem of implementing the convergence hypothesis in the contextof cross-country data over time, and, in particular whether the model ought to be recast so that individualcountries are subject to individual specific trends. Because the maximum likelihood methods implementedin the paper require stationarity, I argue that the date should be differenced in order to implement thismodification of the basic model. I refer to the two forms as the "levels" model and the "first-differenced"model, respectively.
In section 4, I discuss five existing methods of estimating the rate of convergence (and thustesting for convergence), show that four standard methods yield estimates which satisfy an inequalityderived by Trognon and Sevestre (1996), and devise a new method of maximum-likelihood estimationbased on the density of the observations unconditional on the initial or starting values of the dependentvariable. I further show that under a mildly restrictive assumption this unconditional maximum likelihoodmethod tends to maximum likelihood conditional on the initial observations as the cross-section

dimension of the panel increases. The "biases" in conventional panel methods are reflected in theestimates of the effects of other variables included in differing ways illustrated here.
Finally, in section 5,1 apply all six methods to several panel data sets drawn from the PennWorld Tables. The results show clearly how misleading the standard estimates can be in assessing growthrate convergence and in the estimation of the significance and magnitude of other variables included. Thecontrast between the conditional and the unconditional ML estimates for a small cross-section dimensionand their similarity for a large cross-section dimension is illustrated. I argue that the usual procedures fordoing feasible GLS or for obtaining starting values for ML are seriously flawed and likely to yield

negative estimates of the random time persistent cross-sectional effects. Results not presented here showthat biases in the estimate of the coefficient of the lagged value of the dependent variable are transmittedto the estimates of other coefficients in the model such as trend or the stock of human capital, making
inferences about the determinants of growth problematic unless appropriate econometric methods are
used.

Section 6 concludes.

2. The Neoclassical Theory of Growth Convergence

The Solow/Swan model of economic growth is the starting point for all recent empirical analysesof growth convergence and the determinants of growth. In this section, I review briefly the model and
dynarnize it in a particularly simple approximate way.

a. The Solow/Swan Model

population, St = savings, I = investment, s = the savings rate, 8= depreciation rate, and n = the
exogenous rate of growth of population and labor force. Production can be represented by a constant
returns to scale function:
(1) Y, = F(K„Aff)
.15.112=.11MIC..

3 A recent study by Lee, et al. (1996) arrives at similar conclusions but proposes a number of alternatives
different from those investigated here. In particular, I do not agree that their formulation of the
unconditional likelihood function is equivalent to the one I present below.

fdr,.'s• '‘, - —
- •;,tir rtv,„ -1. •N• f0..fiP• mirKs
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or

y1 = f (10,

where y, YJN„ k, = KtiN„ and f(k) = F(k, 1). Solow/Swan assume that savings equals gross investmentand is a constant fraction s of output:

(2)i=S,=s.

The change in the capital stock equals gross investment minus depreciation:

(3) Kt.1. (1— 6)K, + = sF(K„N )+(l— (5).Kt.

Population grows exogenously at a rate n:

(4) Pit.1 = (1+ T)N,

Thus

(5)
k sf(kt) + (1— 6)k t g(I t), lc() given.

1+n

The dynamics of the Solow/Swan model is entirely described by the path of 14, the capital-labor ratio,since population grows exogenously, capital depreciates at a fixed rate, and gross investment isproportional to output.
The existence of stationary solutions to (5), i.e. le for which

(6) k*= g(k*),

and the local stability of such solutions depends on the shape of the function g. The conditions whichyield a non-negative globally stable steady state solution are the following:

g'(0)> 1, g(0) = 0,

e(k) < 1, for some k> 0, and g is concave.

These properties follow if the production function satisfies:

f(0) =

g n
f(0) >

n
f(k) < , for some k > 0,

and f is concave.

A stationary solution le is locally stable if I gi(le) I <1. Clearly IC = 0 is unstable. Under concavity off,whenever (6) holds for some le >0, then there can be no other le >0 for which (6) holds and at that point
I gi(c) < 19 so the solution is necessarily unique.
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b. Growth Convergence in the Neoclassical Model with Exogenous Population Growth and Savings

If f(10 is Cobb-Douglas, we can solve explicitly for the time path of yt:
For yt = Ask', so that

(7)

and, hence, from (5)

k =(-L-faAt

I/a)I/a
n+1 , 1-8 Y 1— 5(yt

(8) •Yt=—Kt.1— 
k f. n + 1 t+1 ..... _ .s s s At+, s A,

a is the elasticity of output with respect to capital stock; if capital is fully employed and paid its marginal
product it is the implied share of capital in total output. A, is any function of time which may affect the
productivity of capital and labor, for example neutral technical change or, more explicitly, investment in
human capital or in infrastructure. In the "stationary state'

(9)

Taking logs

Ayt
(n+l

-a/(1-a)
=-==••=.22 

•

logy: —a n+5 1 10 AtGo) 
= logC1 — a —s )+ 1:-=-; g

Although (8) shows that the rate of convergence to equilibrium is not constant, an approximation is given
by a partial adjustment model

log Ye — log yt_i = (1— Y)[logY: —logYt_ii •

This yields the approximate relation to be estimated and the equation employed in recent studies:

1—(12) logy, = 
a(1 7) 

[logs log(n 6)]+ — 
y
log At y log yt_l.

1—a 1—a

The speed of convergence to equilibrium is inversely proportional to y. With growth convergence 0 <y <1.
In equilibrium, per capita GDP depends only on the parameters n, s, and the time path of A. In an
empirical context, these differ from time to time and country to country. Clearly the extent of convergence
is conditional on s, n, 8 and the time path of At. In empirical investigations, changing n and s and
sometimes a measure of changing A have been introduced. In what follows, I take account of differing s
and n over time and cross-sectionally, in some additional analyses I take account of other factors such as
investment in human capital or trend, but not infrastructure investment, which might arguably affect A.4
In some further investigations not reported here, I have included A, represented by the stock of human
capital over time as measured by Barro and Lee (1993) raised to the power cp, A, , so that the

coefficient of logJI, in the implied regression equation is 
(1— r

• 

)c 
; or, alternatively, a simple linear

1 — a

4 As pointed out in a recent paper by Binder and Pesaran (1996), it makes a good deal of difference to the
question of convergence at just what point one includes the stochastic disturbance. In this paper I follow
the usual practice of tacking it on the end of the equation to be estimated.

, • ,
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ytrend, with coefficient T, in place of the entire term 
I — a 

log A, might be included .5 This gives rise to
quite a different model, particularly if one argues that the trends ought to be different for differentcountries. 1 will refer to (12) where A may differ from country to country but is assumed to be constant

yover time as the "levels" model. When the term 
1 

log A, is replaced by a linear trend with slope— a
which may differ from country to country but is assumed to be constant over time, (12) is replaced by

(12') Llogy, 
=a (1 y) 

A[log s log(n + 5)] + v +yMogy 1,a
where v is the slope of the trend and may differ from country to country. I refer to this model as the ''first-difference" mode1.6

3. Empirical Investigations of Convergence and the Rate of Convergence

Equation (12) is widely used to examine the hypothesis of growth convergence (Mankiw, et al,1992, p.410; Barro and Sala-i-Martin, 1995, Chapter 12; Islam, 1995, p. 1133; Lee, et al. 1996). Inempirical work, y, is replaced by real per capita GDP; when varying s and n are taken into account, s isreplaced by an average savings rate over the period t4 to t, and n is replaced by the growth rate ofpopulation over the period t4 to t. It is usual to use rates averaged over several years; following Islam(1995), I have used quinquennial averages. The restriction on the coefficients of in(s) and ln(n+5), whicharises from the constant-returns-to-scale assumption implies that 1n(s) and ln.(n+5) can be collapsed into asingle variable. Testing the growth convergence hypothesis, in this context, revolves largely around thecoefficient y of the initial level of per capita zeal GDP. If this is positive but much less than one, theimplication is that on average countries with low initial values are growing faster than those with highinitial values and is therefore evidence of convergence. Whereas if this coefficient is close to one, perhapseven slightly larger than one, the implication is that initial values have little or no effect or even aperverse one on subsequent growth; such a finding is therefore evidence against the neoclassical theorywhich implies convergence. For example, if y = 0.9, convergence to within 90% of final equilibriumoccurs only in 22 periods, which, given quinquennial data, implies 110 years! Similarly, 0.8 requires 53years, 0.7 32 years, while 0.2 requires only 7 years and 0.1 is within 90% in 5 years. Details are given inAppendix Table 2.
The estimates of y presented below using cross-country quinquennial data are generally in excessof 0.7 no matter what econometric procedure is employed, but vary over a wide range depending on themethod, 0.7 to 0.98. It is apparent that, for all practical purposes, coefficients in excess of 0.7 representnegligible convergence, since, with unchanging s, n, and A, it would take more than a generation toachieve 90% of equilibrium real per capita GDP. Most recent work attempts to test whether y 1;however, this is a test for unit root in log yi,. Even under the best of circumstances testing for a unit root isproblematic (see Diebold and Nerlove, 1990). Here the problems are compounded by the short timedimension of the typical panel. Basing a test on the size of y rather than equality with 1 finesses a host ofproblems of the sort discussed extensively in Diebold and Nerlove.7

5 The human capital variable constructed by Barro and Lee(1993) is available only for a subsample ofcountries by quinquennia for the period 1965 - 1985. Essentially the stock of human capital in thepopulation is measured by Barro and Lee as the average schooling in the population as a whole over 25. Inthe results referred to, this variable is often the wrong sign and never significant.
6 Differencing the model to achieve stationarity creates some interesting problems with respect to thedisturbance term which are discussed below. See especially footnote 12.
Barnard and Durlauf (1995) use cointegration techniques on rather longer time series for 15 OECDcountries to test alternative time-series definitions of convergence and contrast the results with thestandard BB-formulation. Using long annual time series (1865 - 1994) for 16 OECD countries,
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Tests based on a single cross-section (which can be viewed as a panel of time dimension 1) or onpooled cross-section time series (panel) data generally have yielded contradictory results: Pooled paneldata studies tend to reject the hypothesis of BB-convergence (relatively high yis), even after controlling forpopulation growth rates, savings rates and other variables. Dynamic fixed-effects models are of course notpossible for a single cross-section, but recent work (Islam, 1995) using a dynamic fixed-effects panelmodel yields results supporting convergence. There are serious problems with tests such as these whichrely on the estimated coefficients of the initial, or lagged value, of the dependent variable in dynamicpanel models, or in the special case of a single cross-section, which arise from two sources of bias. In thispaper, I show that these findings are probably statistical artifacts arising from biases in the econometricmethods employed to test the growth convergence hypothesis in the BB sense. This does not mean thatthis sense is the correct one to employ in the more general context of convergence, as emphasized byQuah(1996), but demonstrates the sensitivity of the conclusions drawn about y to the econometric methodemployed, irrespective of the validity of the relationship of such conclusions to more general notions ofconvergence.
The first source of bias are omitted variables, especially infrastructure and investments over timein infrastructure, and the natural resource base available to each country in cross-sectional or panelstudies. Systematic differences in these across countries or regions will systematically bias theconclusions. To the extent that these effects are approximated by differing trends for each countryomitting such variables may account for the differences between the first-difference model and the levelsmodel. Because such omitted variables are likely to be correlated with savings or investment rates inconventional or in human capital and with population growth rates it is not altogether clear what the neteffect of omitting them on the coefficient of the initial value will be in a single cross-section. But in apooled model it is clear that, to the extent such differences are persistent, they will be highly correlatedwith the initial value and therefore omitting them will bias the coefficient of that variable upwardstowards one and thus towards rejecting convergence. This source of bias has been well-known since theearly paper by Balestra and Nerlove (1966) and is well-supported by the Monte Carlo studies reported inNerlove (1971). In this light, it is not surprising that pooled panel data, or single cross-sections, which area special case of panels with T 1, even with inclusion of additional variables, often reject convergence.Second, since there are likely to be many sources of cross-country or cross-region differences,many of which cannot be observed or directly accounted for, it is natural to try to represent these by fixedeffects in a panel context. But, as is well-known from the Monte Carlo investigations reported in Nerlove(1971) and demonstrated analytically by Nickell (1981), inclusion of fixed effects in a dynamic modelbiases the coefficient of the initial value of the dependent variable included as an explanatory variabledownwards, towards zero and therefore towards support for the convergence hypothesis. This may accountfor Islam's (1995) recent findings.

Alternative estimates based on more appropriate random-effects models, such as two-stagefeasible Generalized Least Squares or maximum likelihood conditional on the initial observations arealso biased in small samples and inconsistent in large, or in the case of Instrumental Variable estimateshave poor sampling properties or are difficult to implement. Results for the alternative method of
unconditional maximum likelihood suggested in Nerlove and Balestra (1996) are presented here!

Even if one has little interest in the question of convergence, or its rate, per se, the question ofwhether the coefficient of the state variable, lagged dependent or initial value, is biased in the sense of
being inconsistent is an important one since biases in this coefficient will affect the estimates of the

Michelacci and Zaffaroni (1997) extend the Solow-Swan model to allow for cross-sectional heterogeneityin the pace of convergence and conclude that the iform 2% rate of convergence found in much of the
empirical literature is a consequence of fractionally integrated nonstationarity with underlying parameter
strictly between 0.5 and 1.0. My first-difference formulation is equivalent to assuming a unit root, an
hypothesis which is rejected by Micelacci and Zaffaroni.
8 See also Nerlove (1999). Lee, et al. (1996) also estimate from what they term is an unconditional
likelihood function, but inasmuch as they do not transform to stationarity (their relationship includes botha constant and a linear trend), I do not think their formulation of the likelihood function based on whatthey refer to as the unconditional density of the dependent variable is equivalent to mine.
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coefficients of other variables correlated with it and their levels of significance. To the extent suchestimates are important in the formulation of policies to promote growth, the matter is indeed a seriousone.
In the remainder of this paper, I investigate the sensitivity of the convergence rate, or the test ofno convergence, to the econometric method employed as well has the sensitivity of the estimates of thecoefficients of other variables included. All of the results reported, except those for pooled panel data,support the growth convergence hypothesis conditional on savings and population growth rates butillustrate the rather different estimates of the rates of convergence. In additional research not presentedhere I also show that the coefficients of other explanatory variables vary considerably when differentestimation techniques are used. In addition, a technique for examining the shape of sections of a *ghdimensional likelihood function is developed which reveals interesting and somewhat unexpectedrelationships among the various estimates.

4. Alternative Methods for Estimating Rates of Convergence'

A good summary of the current state of knowledge about the properties of various estimators indynamic panel models is contained in Sevestre and Trognon (1992, 2nd. ed. 1996). cannon (1978) was the firstto show the inconsistency of maximum likelihood conditional on the initial individual observations. Nickell(1981) shows the inconsistency of the estimates of the fixed-effects in a dynamic panel model. ICiviet (1995)derives exact results for the bias of leading estimators. In this section, following Sevestre and Trognon, I reviewthe leading estimators and their properties for dynamic panel models.
For simplicity, in this section I restrict attention to the simple model containing one exogenous variablexi and one lagged value of the dependent variable yaw as explanatory. Extension to the case in which more thanone exogenous explanatory variable is included presents no serious difficulty.

(13) yit = a + ficit yytt...1 pi e1t , i=1,...N, t=1,...T.

Taking deviations from overall means eliminates the constant a.. The usual assumptions are made about the
properties of the ),Li and the

(i) E(1.4) = E(cit) =0 , alli and t,
(ii) EC) ..--- 0 , all i, j and t,

{

a, 2 
i=i

OW E (j1 i Aii ) = _
0 i* i ,

{
cr2 t=s,i=j

(iv) geiteis)= (8) otherwise e
Both pi and eit are assumed to be =correlated with xit for all i and t. Clearly, however, yit.1 cannot be assumed to
be =correlated with }.4. It is clear, therefore, that OLS applied to (13) ignoring the component nature of the
disturbances vit = gi + eit , which I call the pooled regression, will yield inconsistent estimates. In particular, if
1>0, ypcolcd is "biased" upwards. So, just as in the case of ordinary serial correlation, Ppoolcd is also "biased" and
the OLS residuals understate the amount of serial correlation, which in this case is measured by the intraclass
correlation coefficient p. This parameter measures the extent of unobserved or latent time-invariant individual-
specific, variation relative to the total unobserved variation in the sample, , +4 ) . It is extremely important
in understanding the nature of the variation, both observed and unobserved, in the panel.

9 I rely extensively in this section on the excellent discussion of Sevestre and Trognon, Chapter 7 in
Mat* and Sevestre (1996, pp.120-144). Additional alternatives, more appropriate when longer time
series are available, are treated by Lee, et at. (1996) and are not discussed or implemented here.
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(a) Inconsistency of the pooled-sample OLS estimates of the dynamic error-components model.

Since the panel has two dimensions, it is possible to consider asymptotic behavior as N T -÷co, orboth. Generally speaking it is easier to increase the cross-section dimension of a panel, so the most relevantasymptotics are as N 00. This is called semi-asymptotics in the panel data literature. It is not necessary toassume M < I as long as T is fixed, but the way in which the initial values of the dependent variable, yio , areassumed to be generated is crucial. To see why, write (13) as

1— rt(14) yit =7t y10 + Ey'flx„_) • 
1— y

-,u, + v,„where = .
J=0 J.0

Equation (14) expresses yit as the sum of four terms: the first, ytyio , depends on the initial values; the second onlagged values of the exogenous variable; the INA on the individual, time-invariant, component of residualvariance; and the fourth on lagged values of the remaining component This last term is an autoregressive
process with initial values vo 0 and vit = rvit_i et, . It need not be assumed to be stationary as long as T
is fixed. It does not make sense in this context to assume that the yio are uncorrelated with either the psi or the
lagged values of the xi's. On the other hand, rio is a random variable with mean 0 and variance cr 2
independently and identically distributed for all i. Thus, the initial observation can be written as a function of
lagged x's, the Ili and so:

(15) yb0 f (xi° Xi-1 • • 'Pi 310 )

Clearly, if the individual effects i1 are assumed to be fixed and the lagged x's to be given, the no are also fixed
and uncorrelated with the disturbances in (15), vi, t =1,...,T. But, if the individual effects are considered to be
random, as Nerlove and Balestra (1996) have argued they should be, the initial observations are not exogenous
since they are correlated with them, as they are part of the disturbance term, namely the third and fourth terms of(1).

It is common in the literature on panel data to assume that the yo are Li.d. random variables which are
characterized by their second moments and correlations with the individual effects and not necessarily generated
by the same process which generates the rest of the yit's. The properties of various estimators depend on the
process generating them. One possibility is to try to model and estimate this pro= together with the dynamic
panel model (13).

(b) Inconsistency of the OLS Estimators ofthe Dummy Variable, or Faed-Effects, Model.

The ordinary least squares estimates of both the coefficient of the lagged dependent variable and the
exogenous variable are inconsistent in the fixed effects modeL As is well-known, the fixed effects model is
equivalent to taking deviations from individual (country) means and then estimating an ordinary US
regression:
(16) Axit —y (-1))+ v1t where

vit 4. •
Although (7.2 0,

(17)

1
cry2(-1).= -4-1)T

1 T-1—Ty+yr 2
0.Ta (1— y)2



Thus, the OLS estimates of both 13 and y in the fixed effects model are inconsistent, although as T--4.00, the
inconsistency disappears. But for finite, typically small T, it remains. (See Nickell, 1981, p.1424). For T = 10
and y = 0.5, for example, the "bias" of the OLS estimate of y, say c, is proportional to -0.16, the factor of
proportionality being the OLS estimate of the variance of c from the within regression. It is always negative,
implying that the bias of the OLS estimate of 13, say b, is therefore upward. This conclusion holds regardless ofwhether one assumes the true model is fixed- or random-effects.

Although the inconsistency will be small when T is moderate to large, small values of T are typicallythe case. Nonetheless, Nerlove (1971) suggested using the fixed effects model to estimate p for FGLS, in contrastto the earlier suggestion of Balestra and Nerlove (1966), hereinafter BN, of a consistent instrumental variableapproach. BN also suggested but did not implement a method based on estimating p from the pooled and fixed-effects regressions. Rejection of instnimental variables by Nerlove (1971) was based on the instability of theresults in Monte Carlo trials. Since the OLS estimates of the parameters from pooled or fixed-effects regressionsare inconsistent, the estimates of p based on this regression will not be either, hence, the FGLS estimates
computed using them will not generally be consistent In the results reported here, an estimate of p is derivedfrom the estimates of residual variance from both the fixed-effects and the pooled regressions, as suggested by Band N (1966), and is not consistent

(c) Country Means Regression and the Estimation of p

Many authors (e.g., Greene, 1993, pp. 475477, Judge, et al., pp. 484-488), hereinafter GJ, suggest
basing an estimate of p on the cross-section regression of the overall means and either the pooled or fixed-effects
regression. This suggestion, =fortunately often leads to negative estimates of p and unwarranted rejection of themodel. These estimates are also inconsistent The GJ suggestion is, unfortunately, utilized in many computer
packages for implementing FGLS for panel data or for obtaining starting values for ML, and often leads to the
adoption of badly biased fixed-effects OLS when a negative estimate of p is obtained.

The GJ suggestion is to regress the group means of the independent variable on the group means of the
dependent variables:

e==141

(18) yi. = x +13 xi. + WI , where wi = ei.
2a

The variance of Iv; is a 2 + 
, 
. The purely crow-sectional variation of the individual means gives usT

information on both the slope and the overall constant in the regression. This is often called the between
groups regression. In many panel data problems purely cross-sectional variation may dominate, but this
variation may not give us much information about the true value of the slope of the independent variable if the
regression also contains a lagged value of the dependent variable. The residual SS/N = RSSB/N from this

fr 2
regression estimates 0'2 + . But it will not be a very good estimate if the regression is estimated by OLS,T
since (18) will tend to fit too well if cross-section variation dominates the &tat° ap2 is then estimated as

1° For example, when a lagged value of the dependent variable is included as one of the explanatory
variables, its mean may be very close to the mean of the =Lagged variable; then the fit of (18) may be
nearly perfect The estimated residual variance may be close to zero in this case. In general, if there is a
lot of associated cross-sectional variation, the residual of this relationship may be very small. If combined
with the estimate of ai2 obtained from the within regression, the implied estimate of a: may well turn out
to be negative (see Greene, pp. 474-476). But this does not imply that the model is misspecified. Balestra
and Nerlove (1966, p.607) suggest estimating ap,2 from the fixed-effects model as the "variance" of the

, 2
implied constant terms: a- = -L y. , where fl is the OLS estimate of f3 inN
that regression. This suggestion is the one implemented in Nerlove(1971) and used to obtain FGL
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I)

fr2

Cr
wT

, where an estimate of Cr; Can be obtained from the fixed-effects regression. If T is large, the

estimated value of crm2 is not likely to be negative no matter how well the between groups regression fits. But if
T is small, and particularly if the regression contains a lagged value of the dependent variable on the right-hand
side, the chances of obtaining a negative, and therefore unacceptable, estimate of p are high irrespective of the
validity of the model.

(d) Generalized Least Squares and Feasible GLS.

The means or between regression and the fixed-effects regression both contain information about the
parameters of the model: The means regression reflects purely cross-sectional variation, whereas the fixed-effects
regression reflects the individual variation over time. GLS combines these two types of information with weights
which depend on the characteristic roots of Euu° = cr2 n. The individual means themselves are weighted by the
reciprocal of the square root of = 1 - co+ Tp, while the deviations from these means are weighted by the
reciprocal of the square root of r 1-p. A representative transformed observation is

Yit= c1/2371 +77-112(1=-1) i = 1, • N, t --- 1,

estimates below. Alternatively, if a regression with dummy variables for each individual, overall constant
suppressed, has been estimated, it suffices to compute the variance, sum of squared deviations from the
mean value divided by N, to estimate cro2.

In the following Table, I present the three estimates of p discussed above as possible candidates
for the transformation involved in FGLS for the 94-country sample and the model in levels. The Greene-
Judge estimate is sharply biased downwards and prone to be negative; similarly, the argument Nickell
gives with reference to the downward bias in the coefficient of the lagged dependent variable in a fixed-
effects regression suggests that the other coefficients will be biased upwards, including the variance of the
estimated fixed effects, Coupled with a downward bias in the estimate of the residual variance in the
fixed-effects regression, this provides an explanation of the extremely high estimates obtained by the
Nerlove (1971) method. It is interesting to note that the Balestra-Nerlove estimate, while substantially
higher than the GI estimate (it can never be negative) is, nonetheless, not too far out of line with the
estimates of p obtained from the conditional likelihood function for the OECD countries and for both the
conditional and unconditional likelihood functions for the 94-country sample. Levels model only:

Method 94-countries 22-countries

Balestra-Nerlove(1966) 0.2678 0.4027

Nerlove(1971) 0.7790 0.7038

G-J(1983/88) 0.0983 0.0804

Conditional ML

Unconditional ML

0.1133 0.4796

0.1288 0.7700

. • • • • ; r -
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Thus y: is a weighted combination (weighted by the reciprocals of the square roots of the characteristic roots of0) of individual means of the original observations ji; . and deviations from individual means (y„ — )7, . ). The
other variables are similarly transformed to xi: and yia, (— I). GLS the amounts to running the OLS regression:. . .(19) Y„ = a + Ait + )11,t-t+ vit •

Lete2,,..rii=0...,-trz iri-1/2, )2 be the relative weight of the between variation to the within variation.Note that this weight tends to 0 from above as T -÷ co , i.e., the within information dominates. For T small,92 < 1, so that the between variation is allowed to play a greater role. When the intraclass correlation, p, is closeto one, the unobserved, residual cross-section variation is large relative to the unobserved individual
1variation. 02 = 1 = is smaller for fixed T than when p is small. Between information

1 + T  1+ T 
'—p ,..2

u .
gets a lower relative weight when p is large than when p is small, which corresponds to the usual weighting ofdata from sources with varying degrees of error.

To obtain an estimate of p for use in a feasible GLS, I prefer to obtain both an estimate of o-e2 from afixed-effects model and then an estimate of c32 from the pooled regression, as indicated above. Although thisestimate is not consistent, it is never negative and, empirically it gives, at least the appearance of; a tighter upperbound to the true value ofy than the pooled regression does and a closer approximation to the MI., estimate.

(e) Bounds for the Coefficient of the Lagged Dependent Variable.

As Maddala (1971) has pointed out, the GLS estimates withX, --.. 1/02 can be considered members of amore general class of estimators obtained through different choices of X. Let 5; (2) be the estimator of y
obtained by solving the GLS normal equations for an arbitrary value of X. Sevestre and Trognon (1996, pp.130-133) show that for the case in which J3 = 0, the purely autoregressive case, the following inequality holds:

p1imi(0) < y <p1im(2) <plim9(1) <plimi(co)(20)
fixed -effects GLS OLS pooled means '

Remarkably, the GLS estimate is inconsistent even when a consistent estimate of p is used to compute FGLSestimates. The problem is that the lagged dependent variable is correlated even with the transformed disturbance.
Since p lim i• (A) is a continuous function of X, there exists a value X* in the interval [0, 1/02] for

which p iim 5;(2) = y . Sevestre and Trognon (1983) show that this value is
(1 — yr)E(Yi0gi4) 

(21)

where K.
7. —1—Ty +yr , and p, and a' areas before.T(1— y)2

They also show that when 0 * 0, the estimate 5e‘ (2) behaves almost the same as in the purely autoregressive
case. Since the X* estimate is consistent when there are no exogenous variables, it remains so when there are.The trick is to obtain a consistent estimate of)* which can be accomplished by finding an appropriateinstrumental variable for y..i. Even in this case the results depend heavily on the distribution of the estimate ofX*.

A.` . IC(1.-- p) 1 ( 
(1— r)o-2

In the dynamic error-components model, not only are the OLS pooled regression estimates, the fixed-effect or within estimates, and the between estimates inconsistent, but so are the GLS estimates using the truevalue of p. However, the method of instrumental variables may be used to obtain a feasible member of the X-classof estimates which is consistent (See Sevestre and Trognon, 1996.) Unfortunately, this estimate may have a verylarge variance, as demonstrated in Nerlove (1971).
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Nonetheless, the fixed-effects and the pooled regressions may be used to bound the true value of y evenwhen exogenous regressors are also included. Empirically, [have found that FGLS appears to provide an even'3 tighter bound, although since FGLS is also based on an inconsistent estimate of p, there is no guarantee that thisis in fact an upper bound.

(e) Maximum Likelihood Conditional on the Initial Value of the Lagged Dependent Variable

When the likelihood function for the model (13) with Irk = + sit — N(0, cr2n) is derived in the usual
way from the product of the densities of yi conditional on xi, and yk.,1 , the joint density is conditional on yio. This
likelihood function can be written in terms of the earlier notation introduced as
(22) log L(a, y, o-2,„ o'slyn , xi, ,...xyr Yio • • • YN0

NT N (7' — l) 
log ri= log2n- — —

NT
log a

2 
PI— log

2 2 2
N T

( 
•- E Yit 2 A. vue )2

r)2o 1=1 t=1

r-) 
where y*, x* and y*.1 are the transformed variables. Since

  and ri = 
A(T 1)

, logL can be expressed as a function solely of , 02, a, 13, and— 
Trognon (1978) shows that, when the exogenous variable x is generated by a first-order autoregression with

white noise input, w-- wn (0, cr,,2 I), also assumed in the Monte Carlo experiment reported in Nerlove (1971),

(23) x ettc + w

maximization of the conditional likelihood function (22) yields boundary solutions p = 0 , which, unlike
interior maximum likelihood solutions, are inconsistent for a considerable, and indeed likely, range of
parameter values. In particular, there is a value of y in (13),

9

7*=  3)2 8 

(T+1)2

such that when y <7* there exists an interior maximum of (22) which yields consistent ML estimates, but that
when y y* there are values of p for which the conditional likelihood function (13) is maximized at the
boimdaty p 0, ie., for the OLS estimates of the pooled regression , which we know to be inconsistent. The
problem is that when T is small the permissible range of y, the coefficient of the lagged dependent variable is
implausible (e.g., negative or very small). For example,. for T = 5, y* = -0.11, while for T = 10, y* = 0.34. When

y*, whether or not an interior maximum with consistent MI, estimates occurs depends on the value of p. For
p <p* boundary maxima occur where

.(T=112 fl2cr2, 1
P =

LT +i) 2 (r r °)(1- y5)2 •

a 2For example, when T = 5, f3 = 1.0, y = 0..75, 8 = 0.5, and = 1.0, 7* -0.11 and the critical value of p is

p* 0.31. That means that any true value of the intraclass correlation less than 0.31 is liable to produce a

rr!.,,T4--T:r7F9Mr14,11'1,,,171'.."*..777717"rir NI or.17:: ANTTITT.‘X,EV.'vr, • .
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boundary solution to (22) p =0 and inconsistent estimate of an the parameters. Using these results, Trognon(1978) is able to replicate the Monte Carlo results reported in Nerlove (1971)."

Even though ML may yield inconsistent estimates when the nonnegligible probability of a boundarysolution is taken into account, it is nonetheless true that the likelihood function summarizes the informationcontained in the data about the parameters. (Birnbaum, 1962; Barnard, Jenkins and Winsten, 1962.) For thisreason, sections of some of the multidimensional likelihood functions are also presented in the next section.When first differences are taken to eliminate a linear deterministic trend, the individual-specific time invarianteffects become differences in the trend slopes. This makes the interpretation of the model in first-difference formdifferent than that in levels. Moreover, the time- and individual varying disturbance is now likely to be seriallycorrelated, a fact which needs to be taken into account in the formulation of the unconditional likelihoodfunction. 1 2 I do not attempt to implement this model and approach in this paper but leave the matter for aseparate investigation.

09 Unconditional Maximum Likelihood

While it is not guaranteed that no boundary solution to the likelihood equations is obtained, yieldinginconsistent estimates, it is apparent that in panels with a short time dimension the initial values provideimportant information about the parameters of the model, and to condition on them is to neglect thisinformation.
It is not, in fact difficult to obtain the unconditional likelihood function once the marginaldistribution of the initial values is specified. The problem is a correct specification of this distribution. If

11 Maddala (1971, pp. 346 - 347) gives a condition for the gradient of the concentrated likelihoodfunction to be positive at a boundary p 0 (OLS on the pooled data) for the conditional likelihoodfunction. So if p is constrained to the interval [0,1) this implies a local maximum at the boundary 0.Breusch (1987) shows that this condition can be easily checked at the start of his iterative GLS procedureby beginning with the pooled OLS estimates and p --- 0. Unfortunately these results apply only to thelikelihood function when no lagged value of the dependent variable is included or when those initialvalues are conditioned upon. I have not been able to derive a similar result for the unconditionallikelihood function below.

12 Adding trend, t, to (13)
(13) yit = a + yy + t + , and differencing,
031 4y, = fiaxit rAYit-t +1; + Aeit i=1,•••K

where denotes the first-difference operator and ari is the individual-specific trend coefficient, assumedto have mean zero (enforced by eliminating any overall constant in the differences by deducting the samplemeans). Thus, not only is the meaning of p altered, but if eit did not contain a unit root to start with it will now,in particular, if et is not serially correlated to start with, it will follow a first-order moving average proems withunit root The variance -covariance matrix of the new disturbances ri+Ack is now block diagonal with blocks:
1 a b ...b-

a I a b..

b a 1 a...

• • •••1

a.2 n.2 2

where 0-2 = 0-2 + ,a = and b =-
a,

a2 •

The characteristic roots of A give the necessary transform and Jacobian. This should be taken into account in theformulation of both the conditional and the unconditional likelihood functions. As indicated, however,ditferencing is unnecessary when the initial values are conditioning but then a trend variable must be includedas explanatory with as many different slopes as commies. See Nerlove (1999, section 2.2) for an extendeddiscussion of the transformation required to tender the time-varying part of the disturbances seriallyuncoffelated.
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M 1 or the processes generating the xii are not stationary, it will not, in general be possible to specify themarginal distribution of the initial observations. I will assume that, possibly after some differencing, boththe yg and the xi, are stationary. The difficulties associated with the formulation of the unconditionallikelihood function in the case in which deterministic or stochastic trends are included are discussed infootnote 12 above.
Under this assumption, the dynamic relationship to be estimated is stationary and < 1.

Consider equation (14)13 with the intercept eliminated, for yio and the infinite past:

(24) .Y10 =E7V3x,.-;
l=1

+ 
—1 

+ ,where vit = yv;t_i + e.
14

1 y

If j3 = 0, so that the relationship to be estimated is a pure autoregression for each yk, the vector of initialvalues yo = 6/10, yo)' has a joini normal distribution with means 0 and variance-covariance matrix0,2

P  (
72

r . _2 r
L 0 r)2 or, y 

(1 
r)2 + 1 _ 7, 2 )4 . The unconditional likelihood is there=

(25) log gy , c7 or IY la; • • .; Y , • . • , YNO

L
T NT 2 N N (T — 

2log  
2 

•log=-A- iog 2g — —
2 

1 NT

Y
• 12

it YYst--1/E( •
— 1.1 t=1

N 
2 2 1

—log 
2 y)2 + 1-y 2

2' a2

2( (TP
(1—y) 2 1—y2

This likelihood function can easily be concentrated: To maximize, express a02, CY 2, and Ti in terms of p and y.
For given p and y in the interval. [0,1), concentrate the likelihood function with respect to a2 . It follows that

13For a particular time period T and the infinite past

Ye/. +Eric/kJ...), +
j.0

pi 4- va. where vir = . Since 1 hi and
1— j=o

Er j eir_j is the MA form of a first-order autoregression with white noise input, equation (24) follows. 
j=4:1

14 If all variables are expressed as deviations of from their overall means, there is no need to include an intercept;
if not, pi should be replaced by a +
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N (T + 1) Lo—ry. 1—y2

2 RSS * r P) 
N T 

p + 1 — p(y , — where RSS* (y , p). E (y,; (E y7.°  

Thus, the concentrated LF is

log L * (y, =
N  (T N (T l) og2r 2 log /7

N(T— RSS*(y,p1 p
og

N (T l) j 2 — y)2

p

1— y2

—(12Fas-iN(T.1))EZ(y; )2  { (2 / N(T +1))[- 
) 2 1 y
P
y  2

I 0
NT

This is quite a bit more complicated than the usual minimization of the sum of squares in the penultimate term
T'N 2because RSS*, in that term, depends on y , as well as on p and y , which enter the final terms as well.

when p* 0, things are more complicated still. Various alternative specifications considered in theliterature are reported and analyzed in Sevestre and Trognon (1996, pp. 136-138)." Considerable simplification,however, can be obtained if, following Nerlove (1971), we are willing to assume that xi, follows a well-specifiedcommon stationary time-series model for all individuals 1. The first term in (24) is

pao = flEr . Hence, for any stationary processes xi ,which may be serially correlated,i.o

with variances

(26)

q:)it 91,4

fi —r --it

2
CT
2

2 fl 
=
" °1_y2 •

If we suppose that the variance of the xt is the same for all i, then the random variable

Oit E j fiXit-j
j.0

15 One interesting possibility discussed by Trognon and Sevestre (1996, p. 136-138) is to choose yio a
linear function of some observed individual-specific time-invariant exogenous variables and a disturbance
which is decomposed as the slam of the individual-specific disturbances and a remainder. The first-
order equations for maximizing the likelihood then take on a simple recursive form when 13 0, and
permit other simplification when 13 0. But if we knew some individual-specific time-invariant observed
variables influenced behavior why not incorporate them directly in (13) , the equation to be estimated?
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113

has a well defined variance which is the same for all i and a function of 0. 7, and O This then enters the
final term in the unconditional likelihood (25), which now becomes:

(27) log L(fl,

N (T + 1) NT 2 N N (T
 log2n---flogo-

T

ZE(Yit 2011.1)2
ar a 1 t.

2N 132 0-2
x2 +  2 + 5 2 )

(1-7) 1_r2)

2

1

O a 
2

 ÷ 8(
1—yx2 

-}-
(1—y)2 1—y2'

Concentrating the likelihood function to permit a one or two-dimensional grid search is no longer possible. If
gradient procedures yield and interior maximum, the MI, estimates obtained are consistent as long as the

random variables Ot = r ifixt,t_i have well-defined variances and covariance's, which they will if the xe

are generated by stationaty a process. It doesn't really matter what this process is as long as it is stationary.
Besides, since the xit are assumed to be exogenous, we really have no basis on which to model their
determination and are likely to tnisspecify this part of the model. In this sense we ought to prefer this kind of
"almost full-information" maximum likelihood. Still we have to assume something about the variance of the x
process in order to proceed. I suggest estimating (7.! from the sample data

To generalize these results to the case in which their are several explanatory variables in addition to the
lagged value of the dependent variable, assume that Xk follows a stationary VAR process and replace f3x*it by
XV and p2 by by frE xt, 13 in the above formula.

5. Empirical Evidence on Growth Rate Convergence and the Comparative Performance of
Different Panel Data Methods

(a) Numerical Results.

In order to examine the effects of the econometric methods employed on the finding of growth
rate convergence or the lack of it, I initially used data on 94 countries for the period 1960 - 1985, and a
subsample of 22 OECD countries, from the Penn World Tables 5.6, publicly available from the NBER
web site at flp://nber.harvard.edu/pub/. The countries are listed in the Appendix Table A4. Following
Islam (1995), s and n were computed as quinquennial means over the preceding 5-year span for the 5
years 1965, 1970, 1975, 1980, 1985; y was taken as the value reported in that year and in 1960 for the
lagged value applicable to 1965. Characteristics of the sample are reported in Table 1. The results of the
six methods applied to these data or to their first differences are reported in Table 2 and 3. In the case of
the latter, an appropriate transformation of the original data is made to eliminate the serial correlation
introduced in the time-varying part of the disturbance by the first-difference transformation. I have listed
the regression methods in the order in which the corresponding estimates of y appear in the inequality of

`?:it) yta .'V •ii0*"1-Z .V.ittN4 t •
i-P 7'17 •

• • ‘i • • '‘.• , • .• . , `. „ • ....I •
J i

• ' • - •'1,•.•:T:jf?S:r1,17.7.1%•

• 1. 1.1 .
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Trognon and Sevestre (equation 20 above). These estimates are followed by the maximum likelihoodestimates conditional on the initial values yo and the MI, estimates unconditional on the initial values,assuming stationarity of both the processes generating the exogenous variable and real GDP per capita. Ina substantive study of growth rate convergence, it would clearly be important to include additionalexplanatory variables such as. for example, the stock of human capital, also available at the NBERinternet site, infrastructure investment, and so forth. However, for my purpose here, omission of relevantvariables simply increases the unexplained disturbance variance and thus heightens the contrast amongalternative estimators.

TABLE 1: COMPARATIVE DESCRIPTIVE STATISTICS
FOR THE TWO SAMPLESItem 94-country sample 22-country sample Ratio 22/94 values

Variance initial y 0.799 0.256 0.320

Variance final y 0.899 0.222 0.247

Correlation between y0
and y5 0.988 0.090 0.092Variances about overall
means:

1.058 0.204 0.193
0.698 0.040 0.058Pooled variances about

country means:
0.045 0.040 0.897
0.083 0.007 0.084

Turning now to the regression estimates presented in Tables 2 and 3:

[Insert Table 2 near here.]

Consider the first four methods applied to the levels model. The estimates of y for the 94-countrysample range from a low of 0.72 (fixed-effects regression) to a high of 0.98 (country means regression)with pooled OLS and FGLS falling in between. For the OECD countries the range is 0.76 to 0.93. Theimplied speed of convergence thus ranges from 90% in 35 years to 90% in 570 years. None could becharacterized as evidence of reasonably rapid convergence. All of the estimates of y satisfy the TrognonSevestre inequality, although the regressions contain an exogenous explanatory variable in contrast to thecase considered by Trognon and Sevestre. Pooled OLS and FGLS also stand in the order predicted by theTrognon-Sevestre results. While it is tempting to infer that FGLS provides a tighter upper bound to thetrue value of y than the pooled OLS regression estimate, the temptation should be resisted. The FGLSestimates are doubly inconsistent: they are based on an inconsistent estimate of p reflecting theinconsistency of the estimates of the residual variance and the fixed effects depending on whichregressions they are derived from. Not only is the estimated value of fit sensitive to the method ofestimation but the estimate of the elasticity of output with respect to capital stock in the productionfunction is extremely so, reflecting the dependence of the estimated value on the coefficient of the laggeddependent variable, y. This parameter should estimate approximately (1 - the share of labor in the realGDP). It is clear that all of the estimates of capital's share are wide of the mark. If therefore one were toinfer policy implications from this parameter, it could be seriously misleading.
The most interesting estimates are those for conditional and unconditional maximum likelihoodpresented as methods 5 and 6 in Table 2. In the case of the 22 country OECD sample, these estimates
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differ quite a bit from one another, although unconditional ML is not far from the fixed-effects OLSregression, while conditional ML yields results close to FGLS using the Balestra-Nerlove (1966) first-round estimate of p. The contrast with the 94-country sample is striking: The conditional and theunconditional ML estimates differ little from one another. They are close to the pooled OLS regressionestimates (a consequence of the fact that the estimated value of p is small although significantly differentfrom zero), but are both quite different than any of the inconsistent regression estimates. As found earlier,the estimates of f3 are quite insensitive to the method used, but the estimates of y are not very differenteither; consequently the implied estimates of capital's share are similar, albeit different for the twosamples. '6

Table3.
Turning now to the parameter estimates for the first-difference model presented in

[Insert Table 3 near here.]

The contrast with the levels model is remarkable; at least in terms of reasonableness, at lag we seem to bein the right "ball park." Consider the first four methods applied to the levels model. The estimates of y forthe 94-country sample range from a low of 0.40 (fixed-effects regression) to a high of 0.92 (country meansregression) with pooled OLS and FGLS falling in between. For the OECD countries the range is 0.36 to0.72. The implied speed of convergence thus much more reasonable that obtained for the levels model,although none could be characterized as evidence of reasonably rapid convergence. The estimates of y nolonger satisfy the Trognon-Sevestre inequality. FGLS is now lower than the the estimate obtained by fixedeffects OLS. Pooled OLS is greater than FGLS and fixed-effects OLS, as predicted by the Trognon-

16 What accounts for these remarkable differences between the two samples and for the similarity of theunconditional and conditional ML estimates for the 94-country sample? Consider the log of the ratio ofthe unconditional to the conditional likelihood, i.e. the marginal density of yio:

log {unconditional / conditional likelihood) =

N 0-2 pc? 1- oa- —
2
log2r

2 1— y (1— y)2 1 y2 )- p2 472 pa'' (1— p)o-2
2( 1-7 (1-r)2 1-7,2

Let the sample variance of yio be varyo and let

p22 

p(72 ( 1 0.2

= (
1 — y

.; + 
y )2 + 1 — y2

Then
log {unconditional / conditional likelihood) =

N N 2 [  N varyo--1og2r —log(q) ) 292 ].2 2
This function is dearly decreasing in N and vary. Its behavior with respect to 92 depends on the relationbetween varyo and p2; when varyo > Cp2, it is increasing, but when varyo <ç2, it is decreasing. Thus for a givenvaryo the log of the ratio of the unconditional to the conditional density tends to zero, i.e. the ratio tends to one,as N increases and as 44)2 increases. In other words the unconditional becomes more and more like the conditional
likelihood. For 13 = 0.15, y =0.85, 0;2 = 0.08 , p = 0.8 and cx2= 0.02, cp2 = 0.73. Table 3 presents some
descriptive statistics for the two samples. Typically, varyo is much less than 0.73, for example, 0.256 for the 22-country sample. On the other hand it is about that value for the 94-country sample. Thus the principleexplanation for the similarity of the conditional ML and the unconditional MI, estimates for the 94-countrysample is the size of the cross-section dimension similarly, the small sample in the OECD case accounts for thelack of similarity.
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Sevestre results. As was the case for the levels model, the estimated value of p is sensitive to the methodof estimation, although generally less so, and the estimate of the elasticity of output with respect to capitalstock in the production function is more so, reflecting the dependence of the estimated value on thecoefficient of the lagged dependent variable, y. This parameter should estimate approximately (1 - theshare of labor in the real GDP). lt is clear that these estimates bring us much closer to what could beconsidered a reasonable figure.
The most plausible estimates are those for conditional and unconditional maximum likelihoodpresented as methods 5 and 6 in Table 3. En the case of the 22 country OECD sample, only the estimatesdiffer from one another. Implied speeds of convergence are still, however, quite slow for the OECDcountries, but much, much faster for the larger group of 94 countries. Perhaps one can conclude that ifdiffering country-specific trends are taken into account, so-called "beta convergence" obtains at areasonably rapid rate for a group of diverse countries, but when the relatively homogeneous group ofOECD countries is considered,. convergence is much more problematic.

(b) Graphical Results.

Further insight into the support for the convergence hypothesis, as modified in this paper, which isgiven by the likelihood functions for the two samples can be obtained graphically. Since the first-differencemodel gives by far the most plausible results, I present only graphs for this case. Bear in mind, however, that theconvergence concept considered is "beta" convergence with a vengeance. Not only are the results conditioned ondiffering savings and population growth rates, but I am allowing for differing linear trends among countries. Themodel is reduced to stationarity by first-differencing the quinquennial averages. The explanatory variables, inthis case first differences of savings rates and population growth rates are assumed to be exogenous and to bedetermined by some sort of stationary process. Having eliminated the constant term by taking deviations fromthe overall means of all variables, we are left with four parameters: p, y, 13 and cr2. Although there are
(42)

— 6 possible pairs to consider, I focus on the crucial pairs: p vs. y and 13 vs. (72 . it is important that
the likelihood functions as formulated reflect the operation of the process which generated the data beforewe began to observe them; the appearence of the unconditional likelihood functions is rather differenteven though the ML estimates are quite close to those given by the unconditional likelihood functions.Figures 1 and 2 give one-parameter slices and 2-parameter 3-1) plots of the likelihood for thepairs p-sy and f3-a2 for the 94- and 22-country samples, respectively. Each Figure consists of two papgeswith four plots each. The figures are at the end of the paper. The main finding is that the differencebetween the estimates for the two samples is not great except for a much slower speed of convergence(larger y) for the more diverse 94-country sample and is well-supported by the shape of the likelihoodfunctions in the two cases.

The likelihood reaches a unique maximum in every case. Except for a2, the functions are well-behaved in the vicinity of the maximizing parameter values. Since the value of a2 is bounded from belowby zero, the graph has the typical shape found in regression problems: a sharp rise from near zerofollowed by a long slow decline. I find no evidence of double maxima or a boundary maximum of thelikelihood function with respect to p. There is clearly considerable "trade-off" between p and y for the 94-country sample and to a lesser degree for the 22-country sample.

6. Conclusions

The principal conclusion that can be drawn from this analysis is that, in panel data econometrics,method matters — a lot. Although, using a highly simplified Solow/Swan model without human capitalstocks or infrastructure, I have found estimates of the adjustment parameter significantly different thanone in every case, indicating convergence. All of the estimates based on analyses of levels, however, are soclose to one, always greater than 0.7, that convergence to within 90% of equilibrium in less than onegeneration is effectively ruled out. This can hardly be called "convergence" in any relevant sense.Moreover, the estimates range from 0.72 to 0.98, suggesting a convergence range of from 33 to over 500
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years, with most clustering around 0.8, underscoring the importance of choice of econometric method.Much of the variation in estimates of the speed of convergence appears to be due to trade-offs between thecrucial parameter p, which measures the importance of unobserved cross-sectional variation relative tototal residual variation, and y, which measures the speed of adjustment. For this reason, it is especiallyimportant to introduce other relevant variable, such as infrastructure investment and human capitalstock, in order to reduce the importance of unobserved cross-sectional variation. When differing country-specific trend are taken into account and when likelihood methods are employed which take into accountthe operation of the growth process prior to the point at which the data sample begins, however, theresults are dramatically different: convergence to paths conditioned on differing savings and populationgrowth rates and country specific trends is quite rapid for the relatively homogeneous 22-contry sample,although it is still very slow for the more heterogeneous 94-country sample.
A second important finding is that the Sevestre-Trognon inequality, proved only for the casef3 = 0, and then only asymptotically, holds for all the examples presented except for one reversal in thecase of the first-difference model. Indeed, fixed-effects OLS always yields estimates of the adjustmentparameter at the extreme low end of the range of estimates obtained. The "bias" of fixed-effects models inthe estimation of dynamic panel models is apparent. In this context, the use of such methods biases a testfor convergence, or more appropriately rapid convergence, towards finding it. Fixed-effects models,however, are widely used, in part because they are the basis for two-round FGLS estimators, and becausecomputer packages for panel data analysis incorporate an extremely misguided suggestion for estimatingp, guaranteed to yield extremely low or even negative values of this parameter. These packages should beavoided, and, if they are used and do yield a negative estimate, it should not be concluded that the modelis misspecified or that fixed-effects are a preferable alternative. Fixed-effects OLS remains badly biased ina dynamic context irrespective of whether the packaged routines fail.
I do find, however, that FGLS, using the Balestra-Nerlove (1966) estimate of p, which can neverbe negative, always lie between the fixed-effects OLS estimates and the pooled OLS estimates, which areknown to yield upwardly biased estimates of y. It is not appropriate to conclude that these FGLS estimates,however, represent a tighter upper bound to the true value of y, since they are doubly inconsistentestimates and may lie below the true value. This is underscored by the finding that both conditional andunconditional MI, yield different estimates of p and y, sometimes higher and sometimes lower than FGLS.The interaction between p and y is crucial in this regard.
Finally, maximum likelihood, unconditional on the initial observations, assuming them to bestationary and generated by the same dynamic process we are trying to estimate and assuming theexogenous variables also to be stationary, is feasible and indeed a viable alternative to conventionalregression methods or conditional ML. Use of such methods will, however, generally involve removal ofthe overall means of all variables prior to analysis and omission of a constant term and may also involvedifferencing to remove deterministic or stochastic trends. formulation of the unconditional likelihoodfunction is somewhat more complicated in the case of differenced variables but has been carried out herewithout significant trauma.
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Appendix:
Data on 94 countries for the period 1960 - 1985 from the Penn World Tables 5.6, publicly available fromthe NBER web site at ftp://nber.harvardiedu/pub/.

22-Country Sample: 94-country Sample = 22-Country Sample + the Following:

Japan
Austria
Belgium
Denmark
Finland
France
GC=any (FRG)
Greece
Ireland
Italy
Netherlands
Norway
Portugal
Spain
Sweden
Switzerland
Turkey
U. K,
Canada
U. S.
Australia
New Zealand

Algeria
Botswana
Cameroon
Ethiopia
Ivory Coast
Kenya
Madagascar
Malawi
Mali
Morocco
Nigeria
Senegal
South Africa
Tanzania
Tunisia
Zambia
Zimbabwe
Costa Rica
Dominican Rep.
El Salvador
Guatemala
Haiti
Honduras
Jamaica
Mexico
Nicaragua
Panama
Trinidad & Tobago
Argentina
Bolivia
Brazil
Chile
Colombia
Ecuador
Paraguay
Peru

Uruguay
Venezuela
Bangladesh
Hong Kong
India
Israel
Jordan
Korea
Malaysia
Buena
Pakistan
Philippines
Singapore
Sri Lanka
Syria
Thailand
Angola
Benin
Burundi
Central African Republic
Chad
Congo
Egypt
Ghana
Liberia
Mauritania
Mauritius
Mozambique
Niger
Rwanda
Somalia
Togo
Uganda
Zaire
Nepal
Papua New Guinea
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TABLE 2: PARAMETER ESTIMATES FOR THE MODEL IN LEVELS,
ALTERNATIVE ECONOMETRIC ANALYSES

METHOD OF ANALYSYS 94-COUNTRY SAMPLE 22-COUNTRY SAMPLE

1. Fixed Effects OLS

13
Implied Capital Share
Residual Variance

2. Feasible GLS
Estimate of p used

13
lied Capital Share

Residual Variance

3. Pooled OLS

13
Implied Capital Share
Residual Variance

4. Country Means OLS

13
Implied Capital Share
Residual Variance

5. Conditional ML

Implied Capital Share
Residual Variance

6. Unconditional ML

Estimates of c:r2 used

Implied Capital Share
Residual Variance

0.7204 (0.0211)

0.1656 (0.0172)

0.3719 (0.0278)
0.0113

0.2675

0.9130 (0.0119)

0.1520 (0.0135)

0.6362 (0.0247)
0.0213

0.9487 (0.0090)

0.1244 (0.0108)

0.7080 (0.0271)
0.0193

0.9817 (0.0112)

0.0919 (0.0138)

0.8339 (0.0704)
0.0047

0.1133 (0.0497)

0;9339 (0.0122)

0.1370 (0.0131)

0.6744 (0.0289)
0.0194 (0.0013)

0.0826

0.1288 (0.0456)

0.9385 (0.0105)

0.1334 (0.0124)

0.6846 (0.0277)
0.0197 (0.0013)

0.7645 (0.0166)

0.1634 (0.0510)

0.4096 (0.0783)
0.0020

0.4027

0.8282 (0.0156)

0.1913 (0.0422)

0.5269 (0.0579)
0.0047

0.8857 (0.0125)

0.1764 (0.0308)

0.6067 (0.0452)
0.0041

0.9320 (0.0148)

0.1493 (0.0343)

0.6870 (0.0593)
0.0580

0.4796 (0.1584)

0.8189 (0.0245)

0.1908 (0.0438)

0.5131 (0.0664)
0.0052 (0.0012)

0.0069

0.7700 (0.0731)

0.8085 (0.0228)

0.1815 (0.0521)

0.4865 (0.0791)
0.0113 (0.0028)

Figures in parentheses are standard MOM * Estimated by the method suggested in Balestra and Nerlove (1966).
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TABLE 3: PARAMETER ESTIMATES FOR THE MODEL IN FIRST DIFFERENCES,
ALTERNATIVE ECONOMETRIC ANALYSES

METHOD OF ANALYSYS 94-COUNTRY SAMPLE 22-COUNTRY SAMPLE

1. Fixed Effects OLS

Implied Capital Share
Residual Variance

2. Feasible GLS
Estimate of p used

Implied Capital Share
Residual Variance

3. Pooled OLS

Implied Capital Share
Residual Variance

4. Country Means OLS

13
Implied Capital Share
Residual Variance

5. Conditional ML

13
Implied Capital Share
Residual Variance

6. Unconditional ML

Estimate of co-, used

13
Implied Capital Share
Residual Variance

0.4007 (0.0375)

0.1199 (0.0187)

0.1667 (0.0246)
0.0077

0.4866

0.4227 (0.0406)

0.1520 (0.0135)

0.1864 (0.0259)
0.0213

0.7031 (0.0328)

0.1632 (0.0195)

0.3548 (0.0373)
0.0141

0.9178 (0.0471)

0.1719 (0.0339)

0.6763 (0.1263)
0.0041

0.2267 (0.0664)

0.4540 (0.0651)

0.1368 (0.0208)

0.2004 (0.0358)
0.0122 (0.0009)

0.0597

0,2335 (0.0632)

0.4364 (0.0578)

0.1340 (0.0201)

0.1921 (0.0317)
0.0120 (0.0008)

4.

0.4544 (0.0611)

- 0.0126 (0.0637)

-0.0237 (0.1209)
0.0014

0.3628

0.5833 (0.0531)

0.1913 (0.0422)

0.1322 (0.1218)
0.0047

0.6237 (0.0453)

0.0845 (0.0586)

0.1834 (0.1121)
0.0022

0.7215 (0.0572)

0.1174 (0.0978)

0.2965 (0.1873)
0.0005

0.0126 (0.0405)

0.6187 (0.0490)

0.0815 (0.0601)

0.1762 (0.1159)
0.0021 (0.0003)

0.0058

0.0936 (0.0696)

0.7254 (0.0512)

0.1478 (0.0727)

0.3500 (0.1326)
0.0027 (0.0004)

Figures in parentheses are standard errors. • Estimated by the method suggested in Balestra and Neriove (1966).
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