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JOSEPH HAVLICEK, JR.
1934-1993

Joseph Havlicek, Jr. was a teacher, researcher, administrator, and leader in agricultural
economics. His enthusiasm and optimism were hallmarks of his character and career. He was
intensely interested in his work, excited by his research, and energetic in his teaching. He had the
ability to motivate and inspire others -- students, colleagues, administrators, and leaders in the

profession. Both his classroom and office represented opportunities for clarification and motivation to
all who appeared at his door.

Havlicek was a pioneer in much of his research. He was an early developer of nonlinear
econometric systems for modeling interregional competition, among the first to research the economics
of waste management, and an innovator in the analysis of consumer and market behavior using systems
of equations and in the assessment of investment in agricultural research and extension.

Havlicek grew up on a farm in Mercer County, Ohio, fluent in the Czech language of his
parents, who had immigrated from the Ukraine area of Russia just prior to World War I. After earning
the Bachelor of Science (1955) and Master of Science (1956) degrees in Agricultural Economics from

The Ohio State University, he earned a Ph.D. degree (1959) in both Agricuitural Economics and
Statistics from North Carolina State University.

North Carolina State had one of the early graduate programs in econometric analysis and
Havlicek put this training into practice during his first position (1959-61) in the Agricultural Economics
Branch of The Tennessee Valley Authority. His research was in agronomic-economic studies, response
surface analysis, and resource economics, including watershed analyses.

By 1961, Purdue University was hiring faculty to establish a graduate program in econometrics
and Havlicek joined the team to develop this program as applied to agricultural economics. At Purdue
his research focused on interregional competition, demand and price analysis, and the economics of
waste management. He spent 13 years at Purdue before moving to Virginia Polytechnic Institute’s
agricultural economics department with a joint appointment in the statistics department. At VPI, his
research focused on supply and demand analyses of selected products and production inputs,
consumption analysis, environmental economics, and returns to investment in agricultural research.

9

Both at Purdue and VPI, Havlicek taught graduate and undergraduate courses in statistics,
econometrics, matrix algebra, demand and price analysis, and marketing. His lecture notes for matrix
algebra and for econometrics were reproduced and used not only by his graduate classes, but were
distributed upon request to many researchers throughout the country.

Between 1961 and 1982, Havlicek was the major professor for 18 Ph.D. dissertations and 10
Masters theses. Two of these Ph.D. dissertations and four of the M.S. theses won AAEA awards.
Throughout his career he served on committees for numerous other graduate students. Many of his
students have made significant contributions to the profession, both in the U.S. and abroad.




In 1982, Havlicek went to the University of Maryland to become Chairperson of the
Department of Agricultural and Resource Economics. [n 1984, he was offered the position of
Chairperson of the Department of Agricultural Economics and Rural Sociology at The Ohio State
University. The opportunity to lead the department from which he had received his B.S. and M.S.
degrees was exciting, and he returned to Ohio. Under Havlicek, the department grew professionally in
faculty and received increased national and global recognition. In 1993 he received the OSU
Distinguished Affirmative Action Award for his hiring practices to include women and minorities.

Havlicek’s leadership abilities were recognized by his professional organizations. He served on
the Editorial Council of the Southern Journal of Agricultural Economics (1975-77) and the American
Journal of Agricultural Economics (1981-82), and on the Board of Directors for the American
Agricultural Economics Association (1981-84), AAEA Foundation (1987-88), and The Economics
Institute, Boulder, Colorado (1985-88). Havlicek was elected and served the Southern Agricultural
Economics Association as First Vice President (1980-81), President-Elect (1983-84), President (1984-
85), and Past President (1985-86). He was elected and served AAEA as President-Elect (1985-86),
President (1986-87), and Past President (1987-88) In 1989, he was named a Fellow of the AAEA.
Following his death, AAEA established the Joseph Havlicek Appreciation Club. Its purpose is to
bestow travel grants to graduate students and foreign faculty to travel to the AAEA national meetings.
In 1995, Havlicek was posthumously awarded the SAEA’s Lifetime Achievement Award.

In 1990, Havlicek returned to teaching and research at OSU. He traveled to Taiwan, China,
Hungary, Poland, and Czechoslovakia seeking to establish joint research and graduate exchange
programs. With the opening of Eastern Europe, Havlicek had the opportunity to teach economic
policies under a democracy to farm co-op managers in the Czech Republic and to students of
agricultural economics at the Agricultural College of Prague University. Havlicek was able to teach
these classes in the Czech language. He became instrumental in establishing a section on the program
of the AAEA meetings for European topics and in finding ways for the facuity of Eastern Europe to
attend the AAEA national meetings. Among his last responsibilities was work with Prague University
to establish programs between that university and OSU. He also was instrumental in arranging a short
course on farm loans at OSU for bankers in the Czech and Slovak Republics.

Shortly before his death in March 1993, Havlicek was asked to identify an area in his
professional career for which he would like to be honored. His response was price analysis and applied
econometrics. All of those who have worked with Havlicek have felt his commitment to applied
econometrics. Because of Havlicek’s belief that learning should be ongoing from student days
throughout the professional’s life, the Department of Agricultural Economics and Rural Sociology
decided that a memorial lecture series in applied econometrics should be established. Funds for the
lectures (to be presented annually in perpetuity) were contributed by Havlicek’s colleagues, friends,
and the Havlicek family.

The Havlicek Memorial Lecture Series in Applied Econometrics was established in 1993 and
the first lecture was given by Professor Oral Capps, Jr., who completed an AAEA award-winning
Ph.D. dissertation under Havlicek in 1980.
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GROWTH RATE CONVERGENCE, FACT OR ARTIFACT?

An Essay on the Use and Misuse of Panel Data Econometrics

Marc Nerlove :
Department of Agricultural and Resource Economics
University of Maryland
Tel: (301) 405-1388 Fax: (301) 314-9032
e-mail: mnerlove@arec.umd.edu
http://www.arec.umd.edwmnerlove/mneriove. htm

. ABSTRACT
The sensitivity of the convergence rate, or the test of no convergence in the standard Barro-Baumol sense,
to the econometric method employed is investigated. Two basic models are investigated: The first is the
standard model with individual-specific effects for each country; the second is a model in which
individual countries have different individual-specific trends in output per capita. All of the resuls
reported support the growth convergence hypothesis conditional on savings and population growth rates
in the usual sense but illustrate the rather different estimates of the rates of convergence obtained when
different estimation techniques are usegln particular, I show that the use of fixed-effects panel models
biases the results towards finding relatively rapid convergence and that, when more appropriate
maximum-likelihood estimates, unconditional on the initial observations, are employed, very slow
convergence is implied (to within 90% of equilibrium only in excess of 50 years). Biases in the estimates
of the coefficient of the "state" variable for all of the usual methods of panel data analysis impty biased
estimates of the coefficients of any other variables included if these are correlated with the "state” variable,
which is typically the case. Thus, the significance and possibly the sign of any other determinants of
growth may be seriously affected. Alternative maximum likelihood methods are developed which utilize
the information contained in the initial observations for each country that reflect the operation of the
growth process prior to the time at which we began to observe them.

This paper is based on an earlier paper of similar title presented at the Sixth Conference on
Panel Data Econometrics, Amsterdam, 28-29 June 1996. The present version has been prepared for the
1998 Havlicek Lecture in Applied Econometrics at Ohio State University, April 16, 1998. ,
My interest in the question of how the econometric approach might have influenced recent
findings with respect to the convergence hypothesis was stimulated by reading Islam (1995) But there is
now a vast literature utilizing the data from the Penn World Tables , which [ also use here. I do not
attempt a comprehensive survey of this literature in this paper. ‘
[ thank Hashem Pesaran for helpful discussions, and Robert Barro, Michael Binder, William
Greene, G. S. Maddala, and C. Spohr for useful comments . Special thanks are due to Anke Meyer, with
whom [ discussed every aspect of this work '
I'am also indebted to Jinkyo Suh and Timothy Thomas for computational counsel and their
assistance in straightening out the GAUSS programs which [ wrote to obtain my earlier resuits . Suh aiso

checked and double checked all derivations and verified that my programs accurately reflected the
formulae derived.
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1. Introduction

One of the most important implications of the classic papers of Solow (1956) and Swan (1956) is
that the lower the starting level of real per capita GDP, relative to the long run or steady state position, the
faster is the growth rate. The Solow-Swan model assumes a constant-returns-to-scale production function
with two inputs, capital and labor, and substitution between inputs, a constant savings rate, and constant
rate of growth of population and neutral technical change, all exogenously given. Convergence of
economies starting out at different levels of per capita income to the same steady-state rate of growth
reflects the diminishing returns to capital implied by the production function assumed: economies starting
out with lower levels of real per capita GDP relative to the long run or steady state position have less
capital per worker and therefore higher rates of return to capital. I will refer to this as the standard Barro-
Baumol (BB) sense of the meaning of convergence.' Because the steady states of the Solow-Swan model
depend on the savings rate, the rate of growth of population, and the rate of technical progress, some
authors have argued that these factors need to be held constant in attempting to test the hypothesis of
growth rate convergence. Convergence is, in this sense, conditional. (When population growth is
endogenously determined, this implication of the neoclassical model of economic growth does not
necessarily follow: see Nerlove and Raut, 1996.)

The problem of BB-convergence in the standard neoclassical model is treated both theoretically
and empirically in the recent text by Barro and Sala-i-Martin (1995) and empirically in a recent paper by
Islam (1995). Bernard and Durlauf (1996) provide a useful framework for understanding the time-series
and cross-sectional tests of the BB-convergence hypothesis and its relation to alternative definitions. Quah
(1996) discusses the problem of convergence in more general form and distinguishes several different
varieties. He argues that "Simply because panel data techniques happen to apply to data with extensive
cross-section and time-series variation does not mean they are at once similarly appropriate for analyzing
convergence." While I do not fault Quah's conclusion, current discussions do emphasize panel data and
methods and derive strong conclusions regarding BB-convergence and the significance of other
determinants of growth from such data. It is therefore appropriate to consider how these conclusions,
within the context of BB-convergence, are affected by the econometric methods employed.

Perhaps even more important than the problem of convergence is the question of the
determinants of growth. The World Bank Project on Economic Growth lists 15 published papers and 15
working papers almost all of which involve dynamic panel data analysis or cross-section analysis with a
state variable or initial condition.? Although the focus of these papers is not convergence but the effects of
the other variables included, if the coefficient of the state variable in the statistical analysis is
inconsistently estimated, in this sense "biased," then the coefficient of any variable correlated with the
state variable will also be biased. Hence, quite misleading conclusions may be drawn concerning the
significance, sign and relative magnitude of other factors included in the analysis,

In section 2, I derive a discrete form of the BB-convergence equation, also derived in a different
way by Mankiw, et al. (1992), and show that the usual equation for testing the convergence hypothesis can
be obtained from it by a simple partial adjustment model rather than the approximation about equilibrium
usually employed. In general, no essential restrictions are neglected in this simpler derivation, although in
certain contexts the specification may neglect certain cross-equation parameter restrictions. It is the
classic Solow/Swan model that, for good or for ill, underlies all recent studies of the determinants of

' There is a good deal of current discussion regarding the appropriate definition of “convergence."
Barnard and Durlauf (1995) give a nice discussion emphasizing the restrictiveness of the approach
adopted here (see also Quah, 1996), which is the most prevalent, going back to the earlier work of Barro
(1991) and Baumol (1986). Since my main concern is to show that the econometrics matters, I will adopt
this notion of convergence in what follows, while admitting that my conclusions about convergence per se
apply only to this rather narrow definition. However, the general point that inconsistency in the estimation
of the coefficient of the state variable implies inconsistency in the estimation of the effects of other factors
is valid in this context and in general.

? See hetp//www.worldbank.org/html/prdmg/grthweb.
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growth and provides the justification for including a lagged value of the dependent variable, initial
condition, or other state variable,

Section 3 examines recent empirical investigations of BB-convergence and the rate of
convergence and argues that most are flawed by failure to allow for the inconsistencies of single cross-
section or panel studies in a dynamic context.” In a dynamic context a single cross-section is best viewed
as a panel with time dimension 1. [ do not attempt here a general review of the effects of the methods used
in more general studies of the determinants of growth, but I do examine the effects on the estimated
coefficients of the Barro-Lee (1993) estimates of the stock of human capital or a trend variable.

In this section, I look at the problem of implementing the convergence hypothesis in the context
of cross-country data over time, and, in particular whether the model ought to be recast so that individual
countries are subject to individual specific trends. Because the maximum likelihood methods implemented
in the paper require stationarity, [ argue that the date should be differenced in order to implement this
modification of the basic model. [ refer to the two forms as the "levels” model and the "first-differenced"
model, respectively. ’

In section 4, I discuss five existing methods of estimating the rate of convergence (and thus
testing for convergence), show that four standard methods yield estimates which satisfy an inequality
derived by Trognon and Sevestre (1996), and devise a new method of maximum-likelihood estimation
based on the density of the observations unconditional on the initial or starting values of the dependent
variable. 1 further show that under a mildly restrictive assumption this unconditional maximum likelihood
method tends to maximum likelihood conditional on the initial observations as the cross-section
dimension of the panel increases. The "biases" in conventional panel methods are reflected in the
estimates of the effects of other variables included in differing ways illustrated here.

Finally, in section 5, I apply all six methods to several panel data sets drawn from the Penn
World Tables. The results show clearly how misleading the standard estimates can be in assessing growth
rate convergence and in the estimation of the significance and magnitude of other variables included. The
contrast between the conditional and the unconditional ML estimates for a small cross-section dimension
and their similarity for a large cross-section dimension is illustrated. I argue that the usual procedures for
doing feasible GLS or for obtaining starting values for ML are seriously flawed and likely to yield
negative estimates of the random time persistent cross-sectional effects. Results not presented here show
that biases in the estimate of the coefficient of the lagged value of the dependent variable are transmitted
to the estimates of other coefficients in the model such as trend or the stock of human capital, making

inferences about the determinants of growth problematic unless appropriate econometric methods are
used.

Section 6 concludes.
2. The Neoclassical Theory of Growth Convergence

The Solow/Swan model of economic growth is the starting point for all recent empirical analyses
of growth convergence and the determinants of growth. In this section, I review briefly the model and
dynamize it in a particularly simple approximate way. -

a. The Solow/Swan Model

Consider the standard Solow/Swan (Solow, 1956; Swan, 1956) model with exogenous population
growth in discrete form: Let Y, = output, K, = capital stock, N, = labor force assumed to be the same as

population, S, = savings, I, = investment, s = the savings rate, 3 = depreciation rate, and 7 = the

exogenous rate of growth of population and labor force. Production can be represented by a constant
returns to scale function: ‘

M ¥, =F(X,,N,)

* A recent study by Lee, et al. (1996) arrives at similar conclusions but proposes a number of alternatives
different from those investigated here. In particular, I do not agree that their formulation of the
unconditional likelihood function is equivalent to the one I present below.

L T —
‘\‘._.’ G ,\?/‘\\"




or

Y, = f(k,),

where y, = Y/N,, k, = K/N,, and f(k) = F(k, 1). Solow/Swan assume that savings equals gross investment
and is a constant fraction s of output:

) [, =S, =sY.
The change in the capital stock equals gross investment minus depreciation:
(3) K. =(1—5)K,+[,:SF(K,,N,)-f-(l—é')K,.
Population grows exogenously .ét arate ; :

@) N, =(+n)N,.

Thus

v FE)+(1- ),

L=
* 1+n

(5) = g(k,), k, given.

The dynamics of the Solow/Swan model is entirely described by the path of k,, the capital-labor ratio,
since population grows exogenously, capital depreciates at a fixed rate, and gross investment is

proportional to output. .
The existence of stationary solutions to (5), i.e. k for which

6) k* = g(k¥),

and the local stability of such solutions depends on the shape of the function 8. The conditions which
yield a non-negative globally stable steady state solution are the following;

g0)>1,g00)=0,

gk)<l, for some k > 0, and g is concave.
These properties follow if the production function satisfies:

f(0)= 0

£y > S+n

PlK) < S+n

and f is concave.

, for some k > 0,

A stationary solution k is locally stable if |g'(k’)| < 1. Clearly k™ = 0 is unstable. Under concavity of f,
whenever (6) holds for some k> 0, then there can be no other k > 0 for which (6) holds and at that point

| &) <1, so the solution is necessarily unique.
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b. Growth Convergence in the Neoclassical Model with Exogenous Population Growth and Savings

If f(k,) is Cobb-Douglas, we can solve explicitly for the time path of y,:
For y, = 4,k so that

y lVa
7 ===
@) k, [AJ ,

¢
and, hence, from (5)

n+1 +1 e 1-6( y e
n Vst '

8 = k = - Ze |

® i Ky s (A j Ky (AJ

a is the elasticity of output with respect to capital stock; if capital is fully employed and paid its marginal
product it is the implied share of capital in total output. A, is any function of time which may affect the
productivity of capital and labor, for example neutral technical change or, more explicitly, investment in
human capital or in infrastructure. In the "stationary state"

-a/(l-a)
(9) y‘ = (n + 5) Atl/(l-d) )

S
Taking logs

t+1

a n+o 1
1malog( p )+1_alogA,.

(10) logy, =

Although (8) shows that the rate of convergence to equilibrium is not constant, an approximation is given
by a partial adjustment model

(11) logy, ~logy,,=(1-y)llogy, -logy,.,].

This yields the approximate relation to be estimated and the equation employed in recent studies:

L log4, +ylogy,,.

(12 logy, = .

M[logs= log(n+96)]+ !
l-a 1-
The speed of convergence to equilibrium is inversely proportional to y. With growth convergence 0 <y <1.
In equilibrium, per capita GDP depends only on the parameters n, s, and the time path of A. In an
empirical context, these differ from time to time and country to country. Clearly the extent of convergence
is conditional on s, n, § and the time path of A,. In empirical investigations, changing n'and s and
sometimes a measure of changing A have been introduced. In what follows, I take account of differing s
and n over time and cross-sectionally, in some additional analyses I take account of other factors such as
investment in human capital or trend, but not infrastructure investment, which might arguably affect A.*
In some further investigations not reported here, I have inciuded A, represented by the stock of human

capital over time as measured by Barro and Lee (1993) raised to the power, 4, = H,f , SO that the
. o . . (-9 : o
coefficient of log /,, in the implied regression equation is 1oa " alternatively, a simple linear

‘ As pointed out in a recent paper by Binder and Pesaran (1996), it makes a good deal of difference to the
question of convergence at just what point one includes the stochastic disturbance. In this paper [ follow
the usual practice of tacking it on the end of the equation to be estimated. '




Y
p fog A4, might be included * This gives rise to

quite a different model, particularly if one argues that the trends ought to be different for different
countries. [ will refer to (12) where A may differ from country to country but is assumed to be constant

1-
over time as the "levels" model. When the term 1 4
-

which may differ from country to country but is assumed to be constant over time, (12) is replaced by

trend, with coeficient t, in place of the entire term l

log A, is replaced by a linear trend with slope

a(l-
(12)  Alogy, =¥A[logs—log(n+5)]+ v+yAlogy, ,,
where v is the slope of the trend and may differ from country to country. I refer to this model as the "first-
difference” model.® :

3. Empirical Investigations of Convergence and the Rate of Convergence

Equation (12) is widely used to examine the hypothesis of growth convergence (Mankiw, et al ,
1992, p.410; Barro and Sala-i-Martin, 1995, Chapter 12; Islam, 1995, P. 1133; Lee, et al. 1996). In
empirical work, y, is replaced by real per capita GDP; when varying s and n are taken into account, s is
replaced by an average savings rate over the period t-1 to t, and n is replaced by the growth rate of
population over the period t-1 to t. It is usual to use rates averaged over several years; following Islam
(1995), I have used quinquennial averages. The restriction on the coefficients of In(s) and In(n+8), which
arises from the constant-returns-to-scale assumption implies that In(s) and In(n+3) can be collapsed into a
single variable. Testing the growth convergence hypothesis, in this context, revolves largely around the
coefficient y of the initial level of per capita real GDP. If this is positive but much less than one, the

initial values and is therefore evidence of convergence. Whereas if this coefficient is close to one, perhaps
even slightly larger than one, the implication is that initial values have little or no effect or even a
perverse one on subsequent growth; such a finding is therefore evidence against the neoclassical theory
which implies convergence. For example, if y = 0.9, convergence to within 90% of final equilibrium
occurs only in 22 periods, which, given quinquennial data, implies 110 years! Similarly, 0.8 requires 53
years, 0.7 32 years, while 0.2 requires only 7 years and 0.1 is within 90% in § years. Details are given in
Appendix Table 2.

negligible convergence, since, with unchanging s, n, and A, it would take more than a generation to
achieve 90% of equilibrium real per capita GDP. Most recent work attempts to test whether y = 1;
however, this is a test for unit root in log yi. Even under the best of circumstances testing for a unit root is
problematic (see Diebold and Nerlove, 1990). Here the problems are compounded by the short time
dimension of the typical panel. Basing a test on the size of y rather than equality with 1 finesses a host of
problems of the sort discussed extensively in Diebold and Nerlove.’

° The human capital variable constructed by Barro and Lee(1993) is available only for a subsample of
countries by quinquennia for the period 1965 - 1985, Essentially the stock of human capital in the
population is measured by Barro and Lee as the average schooling in the population as a whole over 25. In
the results referred to, this variable is often the wrong sign and never significant.

6 Differencing the model to achieve stationarity creates some interesting problems with respect to the
disturbance term which are discussed below. See especially footnote 12.

" Barnard and Durlauf (1995) use cointegration techniques on rather longer time series for 15 OECD
countries to test alternative time-series definitions of convergence and contrast the results with the
standard BB-formulation. Using long annual time series (1865 - 1994) for 16 OECD countries,
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Tests based on a single cross-section (which can be viewed as a panel of time dimension 1) or on
pooled cross-section time series (panel) data generally have yielded contradictory results: Pooled panel
data studies tend to reject the hypothesis of BB-convergence (relatively high y's), even after controlling for
population growth rates, savings rates and other variables. Dynamic fixed-effects models are of course not
possible for a single cross-section, but recent work (Islam, 1995) using a dynamic fixed-effects panel
model yields results supporting convergence. There are serious problems with tests such as these which
rely on the estimated coefficients of the initial, or lagged value, of the dependent variable in dynamic
panel models, or in the special case of a single cross-section, which arise from two sources of bias. In this
paper, [ show that these findings are probably statistical artifacts arising from biases in the econometric
methods employed to test the growth convergence hypothesis in the BB sense. This does not mean that
this sense is the correct one to employ in the more general context of convergence, as emphasized by
Quah(1996), but demonstrates the sensitivity of the conclusions drawn about y to the econometric method
employed, irrespective of the validity of the relationship of such conclusions to more general notions of
convergence. '

The first source of bias are omitted variables, especially infrastructure and investments over time
in infrastructure, and the natural resource base available to each country in cross-sectional or panel
studies. Systematic differences in these across countries or regions will systematically bias the
conclusions. To the extent that these effects are approximated by differing trends for each country
omitting such variables may account for the differences between the first-difference model and the levels
model. Because such omitted variables are likely to be correlated with savings or investment rates in
conventional or in human capital and with population growth rates it is not altogether clear what the net
effect of omitting them on the coefficient of the initial value will be in a single cross-section. But in a
pooled model it is clear that, to the extent such differences are persistent, they will be highly correlated
with the initial value and therefore omitting them will bias the coefficient of that variable upwards
towards one and thus towards rejecting convergence. This source of bias has been well-known since the
early paper by Balestra and Nerlove (1966) and is well-supported by the Monte Carlo studies reported in
Nerlove (1971). In this light, it is not surprising that pooled panel data, or single cross-sections, which are
a special case of panels with T = 1, even with inclusion of additional variables, often reject convergence.

Second, since there are likely to be many sources of cross-country or cross-region differences,
many of which cannot be observed or directly accounted for, it is natural to try to represent these by fixed
effects in a panel context. But, as is well-known from the Monte Carlo investigations reported in Nerlove
(1971) and demonstrated analytically by Nickell (1981), inclusion of fixed effects in a dynamic model
biases the coefficient of the initial value of the dependent variable included as an explanatory variable
downwards, towards zero and therefore towards support for the convergence hypothesis. This may account
for Islam's (1995) recent findings. :

Alternative estimates based on more appropriate random-effects models, such as two-stage
feasible Generalized Least Squares or maximum likelihood conditional on the initial observations are
also biased in small samples and inconsistent in large, or in the case of Instrumental Variable estimates
have poor sampling properties or are difficult to implement. Results for the alternative method of
unconditional maximum likelihood suggested in Nerlove and Balestra (1996) are presented here.®

Even if one has little interest in the question of convergence, or its rate, per se, the question of
whether the coefficient of the state variable, lagged dependent or initial value, is biased in the sense of
being inconsistent is an important one since biases in this coefficient will affect the estimates of the

Michelacci and Zaffaroni (1997) extend the Solow-Swan model to allow for cross-sectional heterogeneity
in the pace of convergence and conclude that the uniform 2% rate of convergence found in much of the
empirical literature is a consequence of fractionally integrated nonstationarity with underlying parameter
strictly between 0.5 and 1.0. My first-difference formulation is equivalent to assuming a unit root, an
hypothesis which is rejected by Micelacci and Zaffaroni.

® See also Nerlove (1999). Lee, et al. (1996) also estimate from what they term is an unconditional
likelihood function, but inasmuch as they do not transform to stationarity (their relationship includes both
a constant and a linear trend), I do not think their formulation of the likelihood function based on what
they refer to as the unconditional density of the dependent variable is equivalent to mine.




coefficients of other variables correlated with it and their levels of significance. To the extent such
estimates are important in the formulation of policies to promote growth, the matter is indeed a serious
one.

In the remainder of this paper, [ investigate the sensitivity of the convergence rate, or the test of
no convergence, to the econometric method employed as well has the sensitivity of the estimates of the
coefficients of other variables included. All of the results reported, except those for pooled panel data,
support the growth convergence hypothesis conditional on savings and population growth rates but
illustrate the rather different estimates of the rates of convergence. In additional research not presented
here I also show that the coefficients of other explanatory variables vary considerably when different
estimation techniques are used. In addition, a technique for examining the shape of sections of a high
dimensional likelihood function is developed which reveals interesting and somewhat unexpected
relationships among the various estimates.

4. Alternative Methods for Esﬁmating Rates of Convergence’

A good summary of the current state of knowledge about the properties of various estimators in
dynamic panel models is contained in Sevestre and Trognon (1992, 2nd. ed. 1996). Trognon (1978) was the first
to show the inconsistency of maximum likelihood conditional on the initial individual observations. Nickell
(1981) shows the inconsistency of the estimates of the fixed-effects in a dynamic panel model. Kiviet (1995)
derives exact results for the bias of leading estimators. In this section, following Sevestre and Trognon, I review
the leading estimators and their properties for dynamic panel models,

For simplicity, in this section I restrict attention to the simple model containing one exogenous variable
X and one lagged value of the dependent variable y,,, as explanatory. Extension to the case in which more than
one exogenous explanatory variable is included presents no serious difficulty.

13) Yo=a+fx, +py,  +u, +€,,i=1,.Nt=1_T

Taldngdcviaﬁonsﬁomovmaﬂm&nseliminatmtheconstanta.'Iheusualassumptionsaremadeabomthe
properties of the p; and the g,

@ E(w)=E(e) =0, alliandt,

(id) E(pe) =0, alli, jandt,
ol i=j

(iid) E(uiu,-)={ L
0 1#],

o} t=s,i=j

(iv) E (5“81':) ={ 0 otherwise

Both ; and €; are assumed to be uncorrelated with x, for all i and t. Clearly, however, y,., cannot be assumed to
be uncorrelated with ;. It is clear, therefore, that OLS applied to (13) ignoring the component nature of the
disturbances v; = p; + & , which I call the pooled regression, will yield inconsistent estimates. In particular, if
Y>0, Ypooted is “biased” upwards. So, just as in the case of ordinary serial correlation, Bpooled is also “biased” and
the OLS residuals understate the amount of serial correlation, which in this case is measured by the intraclass
correlation coefficient p. This parameter measures the extent of unobserved or latent time-invariant, individual-

2
specific, variation relative to the total unobserved variation in the sample, %‘3,,}). It is extremely important
in understanding the nature of the variation, both observed and unobserved, in the panel.

? I rely extensively in this section on the excellent discussion of Sevestre and Trognon, Chapter 7 in
Mityas and Sevestre (1996, pp.120-144). Additional alternatives, more appropriate when longer time
series are available, are treated by Lee, et al. (1996) and are not discussed or implemented here.
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(a) Inconsistency of the pooled-sample OLS estimates of the dynamic error-components model.

Since the panel has two dimensions, it is possible to consider asymptotic behavior as N — %, T —0, or
both. Generally speaking it is easier to increase the cross-section dimension of a panel, so the most relevant
asymptotics are as N —» co. This is called semi-asymptotics in the panel data literature. It is not necessary to
assume fy] <1 as long as T is fixed, but the way in which the initial values of the dependent variable, y, , are
assumed to be generated is crucial. To see why, write (13) as

-1 ] 1_ t t=-1 )
D Yu=t ot 2y By = _}; M +v, wherev, =3 y’s, .
j=0

J=0

Equaﬁon(14)expmssmykasthemoffomm$:meﬁmﬁg,depmdsonmehﬁﬁMVNus; the second on
lagged values of the exogenous variable; the third on the individual, time-invariant, component of residual
vaﬁanoe;andthefmmhonlaggedvalusofmemmainingcomponcm.Thislasttelmisanautoregressive
process with initial values vo=0and v, = yv,_, *+ €, . It need not be assumed to be stationary as long as T

is fixed. Itdoesnotmakesensemthisoomcntoassumematmeypareuncomlatedwdtheiﬁmtheuiorthe
lagged values of the x,’s. On the other hand, &, is a random variable with mean 0 and variance ol
independently and identically distributed for all i. Thus, the initial observation can be written as a function of
lagged x’s, the p; and &,

(15) Yo =S (X0 X ysees Hy, €10).

Clearly, if the individual effects H; are assumed to be fixed and the lagged X’s to be given, the y,, are also fixed
and uncorrelated with the disturbances in (15), v; , t =1,....T. But, if the individual effects are considered to be
random, as Nerlove and Balestra (1996) have argued they should be, the initial observations are not exogenous
since they are correlated with them, as they are part of the disturbance term, namely the third and fourth terms of
.

It is common in the literature on panel data to assume that the y,, are i.i.d. random variables which are
dmmctcxizedbythcirseoondmomemsandconelaﬁomwhhﬂwindividualeﬂ'easandnotneossarjlygenmated
bythesamepmcsswhichgenerammemtofthey{s. The properties of various estimators depend on the
process generating them. Ompossibiﬁtyismwwmoddandwﬁmatemispmmmgethcrmmedynmnic
panel model (13). '

(b) Inconsistency of the OLS Estimators of the Dummy Variable, or Fixed-Effects, Model.

The ordinary least squares estimates of both the coefficient of the lagged dependent variable and the
exogenous variable are inconsistent in the fixed effects model. As is well-known, the fixed effects model is
equivalent to taking deviations from individual (country) means and then estimating an ordinary OLS
regression: :

(16) Yu =Y. =p(x, -% )+ 7(yit-lll— Y, (-1)+v,, where

Ve =& — & .
Although o’f =0,

o1 - -
0’3(—!): = phm?Z(yn-l ‘“yi—l)(git = gf—l)

=I==T=-lnTy+rTO’2¢0
-y
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Thus, the OLS estimates of both 8 and v in the fixed effects model are inconsistent, although as T—o, the
inconsistency disappears. But for finite, typically small T, it remains, (See Nickell, 1981, p.1424). For T = 10
andy = 0.5, for example, the "bias" of the OLS estimate of Y, say c, is proportional to -0.16, the factor of
proportionality being the OLS estimate of the variance of ¢ from the within regression. It is always negative,
implying that the bias of the OLS estimate of B, say b, is therefore upward. This conclusion holds regardless of
whether one assumes the true model is fixed- or random-effects.

Although the inconsistency will be small when T is moderate to large, small values of T are typically
the case. Nonetheless, Nerlove (1971) suggested using the fixed effects model to estimate p for FGLS, in contrast
to the earlier suggestion of Balestra and Nerlove (1966), hereinafter BN, of a consistent instrumental variable
approach. BN also suggested but did not implement a method based on estimating p from the pooled and fixed-
effects regressions. Rejection of instrumental variables by Nerlove (1971) was based on the instability of the
results in Monte Carlo trials. Since the OLS estimates of the parameters from pooled or fixed-effects regressions
are inconsistent, the estimates of p based on this regression will not be either; hence, the FGLS estimates
computed using them will not generally be consistent. In the results reported here, an estimate of p is derived
from the estimates of residual variance from both the fixed-effects and the pooled regressions, as suggested by B
and N (1966), and is not consistent.

(c) Country Means Regression and the Estimation of g

Many authors (e.g., Greene, 1993, pp. 475477, Judge, et al, pp. 484-488), hereinafter GJ, suggest
basing an estimate of p on the cross-section regression of the overall means and either the pooled or fixed-effects
regression. This suggestion, unfortunately often leads to negative estimates of p and unwarranted rejection of the
model. These estimates are also inconsistent. The GJ suggestion is, unfortunately, utilized in many computer
packages for implementing FGLS for panel data or for obtaining starting vatues for ML, and often leads to the
adoption of badly biased fixed-effects OLS when a negative estimate of p is obtained. .

The GJ suggestion is to regress the group means of the independent variable on the group means of the
dependent variables:

(18) ;/,— =a+BxT+ W, ,wherew; = + Z ,
2
o
The variance of w; is O'f, + Tf . ‘I'hepmelycmss-sectionalvariationoftheindividualmwnsgwes’ us

information on both the slope and the overall constant in the regression. This is often called the between
groups regression. In many panei data problems purely cross-sectional variation may dominate, but this
vaxiationmaynotgiveusnmchinfonnaﬁonabomthemlcvahwofthcslopeoftheindependemvadableifthe
regression also contains a lagged value of the dependent variable. The residual SS/N = RSSB/N from this

2

g
regression estimates a': + 7: - But it will not be a very good estimate if the regression is estimated by OLS,

since (18) will tend to fit too well if cross-section variation dominates the data'® &2 is then estimated as

' For example, when a lagged value of the dependent variable is included as one of the explanatory
variables, its mean may be very close to the mean of the unlagged variable; then the fit of (18) may be
nearly perfect. The estimated residual variance may be close to zero in this case. In general, if there is a
lot of associated cross-sectional variation, the residual of this relationship may be very small. If combined
with the estimate of o, obtained from the within regression, the implied estimate of o, may well turn out
to be negative (see Greene, pp. 474-476). But this does not imply that the model is misspecified. Balestra
and Nerlove (1966, p.607) suggest estimating o, from the fixed-effects model as the “variance” of the

1 R N & P . .
implied constant terms: o’f‘ = FZ(y& -y =B -% )) , where f3 is the OLS estimate of  in

that regression. This suggestion is the one implemented in Nerlove(1971) and used to obtain FGL
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,

0'3 - 7‘ where an estimate of 0‘5 can be obtained from the fixed-effects regression. If T is large, the

estimated value of 0'; is not likely to be negative no matter how well the between groups regression fits. But if

T is small, and particularly if the regression contains a lagged value of the dependent variable on the right-hand

side, the chances of obtaining a negative, and therefore unacceptable, estimate of p are high irrespective of the
validity of the model.

(d) Generalized Least Squares and Feasible GLS,

The means or between regression and the fixed-effects regression both contain information about the
parameters of the model: The means regression reflects purely cross-sectional variation; whereas the fixed-effects
regression reflects the individual variation over time. GLS combines these two types of information with weights
which depend on the characteristic roots of Fuu' = o® Q. The individual means themselves are weighted by the
reciprocal of the square root of £ = 1 - p+ Tp, while the deviations from these means are weighted by the
reciprocal of the square root of i = 1-p. A representative transformed observation is

N P W P W W W W w W W

%

Ye=&"Y 407 0=5) i=1,.,N t=1.,T.

L~

estimates below. Alternatively, if a regression with dummy variables for each individual, overall constant
suppressed, has been estimated, it suffices to compute the variance, sum of squared deviations from the
mean value divided by N, to estimate c,2.

In the following Table, I present the three estimates of p discussed above as possible candidates
for the transformation involved in FGLS for the 94-country sample and the model in levels. The Greene-
Judge estimate is sharply biased downwards and prone to be negative; similarly, the argument Nickell
gives with reference to the downward bias in the coefficient of the lagged dependent variable in a fixed-
effects regression suggests that the other coefficients will be biased upwards, including the variance of the
estimated fixed effects, Coupled with a downward bias in the estimate of the residual variance in the
fixed-effects regression, this provides an explanation of the extremely high estimates obtained by the
Nerlove (1971) method. It is interesting to note that the Balestra-Nerlove estimate, while substantially
higher than the GJ estimate (it can never be negative) is, nonetheless, not too far out of line with the
estimates of p obtained from the conditional likelihood function for the OECD countries and for both the
conditional and unconditional likelihood functions for the 94-country sample. Levels model only:

ww e W

-

Method 94-countries 22-countries

Balestra-Nerlove(1966) 02678 - 0.4027

Nerlove(1971) 0.7790 0.7038

G-J(1983/88) 0.0983 0.0804

Conditionai ML 0.1133 0.4796

- v Y

Unconditional ML 0.1288 0.7700

L~

&V @

R

9 : A A G N A R L O & (A e T AR S F A e i i/ AR R Yl i a2 )
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Thus y; is a weighted combination (weighted by the reciprocals of the square roots of the characteristic roots of
€2) of individual means of the original observations Y, and deviations from individual means e =7,.). The
other variables are similarly transformed to x,.: and y,: (=1). GLS the amounts to running the OLS regression:

a

(19) ylf=a+&i‘l+”)l:—l+‘/“'

Let®=n/&= (2" /2 be the relative weight of the between variation to the within variation,
Note that this weight tends to 0 from above as T — o » L.e., the within information dominates. For T smali,
8% <1, so that the between variation is allowed to play a greater role. When the intraclass correlation, p, is close
to one, the unobserved, residual cross-section variation is large relative to the unobserved individual
. 1 1 .
variation. 8% = = 7~ is smaller for fixed T than when p is small. Between information
P . o

I+ T —— "1, 722

I-p ol

getsalowcrmlaﬁveweightwhmpislargethanwhmpissmaﬂ, whichoonmpondstotheusualweightingof
datafromsomwswimvaxyingdegtmofexmr.

To obtain an estimate of p for use in a feasible GLS, I prefer to obtain both an estimate of o2 from a
fixed-effects model and then an estimate of o from the pooled regression, as indicated above, Although this
estimate is not consistent, it is never negative and, empiximllyitgivs,atleastthcapp&mnceof, a tighter upper
bound to the true valye ofythanthepooledregrmsiondomandacloserappm:dmationtothcMLwtimate.

(e) Bounds for the Coefficient of the Lagged Dependent Variable.

AsMaddala(l971)haspoimedmn, the GLS estimates with ), = 1/62canbeconsideredmembersofa
more general class of estimators obtained through different choices of A, Let ¥ (1) be the estimator of y
obtained by solving the GLS normal equations for an arbitrary value of A. Sevestre and Trognon (1996, pp.
130-133) show that for the case in which B =0, the purely autoregressive case, the following inequality holds:
plimy(0)< y <plimy(1) <plimy (1) < plimy ()
fixed - effects GLS OLS pooled means

Remarkably, the GLS estimate is inconsistent even when a consistent estimate of p is used to compute FGLS
estimates. The problem is that the lagged dependent variable is correlated even with the transformed disturbance.

Since plim (1) is a continuous fimction of A, there exists a value A* in the interval [0, 1/6 for
which plimy (1) =y . Sevestre and Trognon (1983) show that this value is

(20)

T
(1-y)o
@ T-1-Ty+yT
where X yrr ,and p, & and o? are as before.

They also show that when § = 0, the estimate ;'(l)behavmalmostmcmmeasmthepnrelyautomgmssive
mse.Sinoeﬂwk‘sdnmeiseonm‘aemwhmtlmamnoexogenomvaﬁablw, it remains so when there are.
Thetn'd(istoobtainamnsistmnsﬁmateofl‘whichmnbeaoomnpﬁshedbyﬁndingmappropﬁatc
insmmexxmlvaﬁablcfory.,.Eveninthismsethemsultsdependhmvﬂyonﬂwdisuibuﬁonofthemﬁmaxeof
Ar

In the dynamic error-components model, not only are the OLS pooled regression estimates, the fixed-
effect or within estimates, andthebetweensﬁxmtminoonsismnngoamﬂwGLSsﬁmmusingmem
value of p. However,thcmcthndofirMnnexnalvaﬁablsmaybeusedtoobtainafmblememberoftbck-class
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Nonetheless, the fixed-effects and the pooled regressions may be used to bound the true value of y even
when exogenous regressors are also included. Empinically, [ have found that FGLS appears to provide an even

tighter bound, although since FGLS is also based on an inconsistent estimate of p, there is no guarantee that this
is in fact an upper bound.

(e) Maximum Likelihood Conditional on the Initial Value of the Lagged Dependent Variable

When the likelihood function for the model (13) with u, = M+ ~ N(O, c*"Q) is derived in the usual
way from the product of the densities of y, conditional on x, and Yat , the joint density is conditional on y,. This
likelihood function can be written in terms of the earlier notation introduced as

@) logL(a,B,7,0%, 0y s Yar i ¥itse - Xar i Vi0s s Vo)

NT NT N N(T-1)
=-—"log27x - —1] LI | SR S |
5 ‘0827 -—-logo” - 0gé o log7

l N T * -.Vz L] L 2
“;?ZZ()’:‘: =a5 =I&it _}yu-l) ’
i=l t=1

i=1

where y*, x* and y*; are the transformed variables. Since

T AT
= d S —— l be ﬁux i 1 flroz) Y s
¢ 1+/1(T=l) and 7 1+/1(T—1)’ ogL. can be expressed as a function solely o o, B, and

7. Trognon (1978) shows that, when the exogenous variable x is generated by a first-order autoregression with
white noise input, w~ wn (0, o’ I), also assumed in the Monte Carlo experiments reported in Nerlove (1971),
(23) x=4a_ +w

1]

maximization of the conditional likelihood function (22) yields boundary solutions p = O, which, unlike

interior maximum likelihood sotutions, are inconsistent, for a considerable, and indeed likely, range of
parameter values. In particular, there is a vatue of yin (13),

2
o= (T-3)"-8 ’

(T+1)?
such that when y <y"'mme:dmmMmimmaﬁmmof(ZZ)whichyiddsmnsistemNﬂ,mﬁmam,butmat
wheny 2 y* there are values of p for which the conditional likelihood function (13) is maximized at the
bmmdaxyp=0,i.e.,fortheOLSstimatwofthepooledregstion,whichwelmowtobeinomsiswm.The
pmblmBMthnTissnmllﬂmpmnissiblemngeofy,thecoeﬁicientofthelaggeddependcxnvariableis
implausible (e.g., negative or very small). For example, for T =5, y* =-0.11, while for T = 10, y* = 0.34. When
727"',whccherornotanimcﬂorma:dnmmwithoomteml\/ﬁ._wﬁmatesoocursdependsonthevalueofp:For
p <p* boundary maxima occur where .

. (T-1) pc? 1-y
P “(T-HJ o® (r-rX1-r9)"

2
(o2

For example, when T = 5, B = 1.0, y = 0..75, §= 0.5, and — =10, y*=0.11 and the critical value of p is
(o

p*=0.31. That means that any true value of the intraclass correlation less than 0.31 is liable to produce a

G adaikdati s
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boundary solution to (22) p = 0 and inconsistent estimate of all the parameters. Using these results, Trognon
(1978) is able to replicate the Monte Carlo results reported in Nerlove (1971).""

Even though ML may yield inconsistent estimates when the nonnegligible probability of a boundary
solution is taken into account, it is nonetheless true that the likelihood function summarizes the information
contained in the data about the parameters. (Bimbaum, 1962; Bamard, Jenkins and Winsten, 1962.) For this
reason, sections of some of the multidimensional likelihood functions are also presented in the next section.
When first differences are taken to eliminate a linear deterministic trend, the individual-specific time invariant
effects become differences in the trend slopes. This makes the interpretation of the model in first-difference form
different than that in levels, Moreover, the time- and individual varying disturbance is now likely to be serially
correlated, a fact which needs to be taken into account in the formuiation of the unconditional likelihood
function. "* I do not attempt to implement this model and approach in this paper but leave the matter for a
separate investigation.

(9 Unconditional Maximum Likelihood

information.
It is not, in fact difficuit to obtain the unconditional likelihood function once the marginal
distribution of the initial values is specified. The problem is a correct specification of this distribution. If

' Maddala (1971, pp. 346 - 347) gives a condition for the gradient of the concentrated likelihood
function to be positive at a boundary o =0 (OLS on the pooled data) for the conditional likelihood
function. So if P is constrained to the interval [0,1) this implies a local maximum at the boundary 0.
Breusch (1987) shows that this condition can be easily checked at the start of his iterative GLS procedure
by beginning with the pooled OLS estimates and P = 0. Unfortunately these resuits apply only to the
likelihood function when no lagged value of the dependent variable is included or when those initial
values are conditioned upon. I have not been able to derive a similar result for the unconditional
likelihood function below.

2 Adding trend, t, to (13) _
13) y, =a+pfx, +p, , +1t+ 4 +&, ,i=1,.N,t=1,.T, and differencing,
(13) Ay, = fAx, +yAy,  +1, +Ag, ,i=1,.N, t=1,..T,

where A denotes the first-difference operator and T is the individual-specific trend coefficient, assumed
tohavemmnzero(enforwdbyeliminaﬁnganycvemllconstantmthe differences by deducting the sample
means). Thus, not only is the meaning of p altered, but if €, did notoomainaunitroottostanwithitwillnow,
in particular, if €, is not serially correlated to start with, itwillfollowaﬁrst-ordermovingaveragepmwsswith
unit root. The variance ~covariance matrix of the new disturbances t+Ae, is now block diagonal with blocks:

1 a b .5

al a b.. 0.2:10,2 (72
A=7* where o’ =0} +0?,a=—"—; ~ and b=—%-.

b al a. o’ o

.l

The characteristic roots of A give the necessary transform and Jacobian. This should be taken into account in the
formulation of both the conditional and the unconditional likelihood functions, As indicated, however,
differencing is unnecessary when the initial values are conditioning, but then a trend variable must be included
as explanatory with as many different slopes as countries, See Nerlove (1999, section 2.2) for an extended
discussion of the transformation required to rendermetime-vaxyingpanofthedisunbancsseriany
uncorrelated,
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fvl 2 1 or the processes generating the x, are not stationary, it will not, in general be possible to specify the
marginal distribution of the initial observations. [ will assume that, possibly after some differencing, both
the y, and the x; are stationary. The difficulties associated with the formulation of the unconditional

likelihood function in the case in which deterministic or stochastic trends are included are discussed in
footnote 12 above.

Under this assumption, the dynamic relationship to be estimated is stationary and Jy| < 1.
Consider equation (14)'? with the intercept eliminated, for y, and the infinite past:

o ‘ 1
29 y, = Zyj i-; t 1 K + v, , where v, =W T & M
J=1 -y

If B =0, so that the relat@onship to be estimated is a pure autoregression for each Yz, the vector of initial
values Yo = (1o, ... ¥no)’ has a joint normal distribution with means 0 and variance-covariance matrix
2 2

% 2 g, o, I
[(1—7)2+G'V”=( + ), . The unconditional likelihood is therefore

(1-7) 1-y?
25) IOgL(J’aP,O';,O':lyn:~~~,J’~1;~~~;)’10:~‘-»YN0)
N(T-1
=—iv2110g27t-¥10g0'2 —%’-logf‘(—)'log”

1 N T . . 2

- 202 lel(y“ =7yit-|)
i=l t=

N 0': o’ 1 <,
-] + - ;
2 Gy ) (T, )§y'°

A=) 1=y

Thislikclihoodﬁmcﬁonmnmsilybeooncennamd: Tomaximize,expmc,f, c.z,éandnintcmlsofpandy.
For given p and y in the interval [0,1), concentrate the likelihood function with respect to o . It follows that

“For a particular time pericd T and the infinite past

Y =YY, +‘Z)’j i +1—11y, + v, ,where v, =Z?’j5ir-1 . Since 1 2 1y| and
J=0 -y

j=0
° o
Vir = Z v? &r.; is the MA form of a first-order autoregression with white noise input, equation (24) follows.

j=0

4 Ifaﬂvaﬁablesamexpmdasdeviaﬁonsofﬁmntheirovmﬂmms,t!meisnoneedtoindudcanimemept;
if not, j; should be replaced by & + ;.
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2 RSS*(y, NI A _
"(y"”:—(@W’WRSS*(W>=ZZU,.—;y,,-l>-+<2yfo/[ o pJ'

N(T+ l) 1=] =1 i=l (I—},)z 1_72

Thus, the concentrated LF is

N(T+1 N N(T-1
logL*(r,p)=—(—z-llog%—;logf-—(z—)logr/

=N(T—l)lo RSS*r.p)| N[ p L1-p

2 BUNT-) T2\ s,

N T N N

. ° p 1-

‘=(%R.ss°m(r+|))zzo’u ~ W) = Zyizo /{(2/ N(T+ 1))’: 7t [;:,RSS*}
i=1 t=1 i=l - 1-y

Thisisquitcabitmomoomplim:edt.hantheusmlmininﬁzationofthesmnofsquaminthepemﬂtimawm

N
because RSS*, in that term, dependson D, y2 , as well as on p and y , which enter the final terms as well
When B + 0, things are more complicated still. Various alternative specifications considered in the
literature are reported and analyzed in Sevestre and Trognon (1996, pp. 136-138).' Considerable simplification,

however, can be obtained if, following Nerlove (197 1), we are willing to assume that x, follows a well-specified
common stationary time-series model for all individuals i. The first term in (24) is

Pio :ﬁZy’xL_j . Hence, foranystaﬁonarypmmx;_whichmaybeseﬁallyoonelated,

J=0
% =Y ¢;l + X,
with variances
ﬂ2o,2
2 _ X
(26) O = 1_72

If we suppose that the variance of the X, is the same for all i, then the random variable

¢it =Zyjﬂ‘it-j
Jj=0

' One interesting possibility discussed by Trognon and Sevestre (1996, p. 136-138) is to choose y; a
linear function of some observed individual-specific time-invariant exogenous variables and a disturbance
which is decomposed as the sum of the individual-specific disturbances ki and a remainder. The first-
order equations for maximizing the likelihood then take on a simple recursive form when = 0, and
permit other simplification when f # 0. But if we knew some individual-specific time-invariant observed
variables influenced behavior why not incorporate them directly in (13), the equation to be estimated?
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has a well defined variance which is the same for all i and a function of f. v, and & f « This then enters the
final term in the unconditional likelihood (25), which now becomes:

(27) logL(ﬂ$y)Gj10§Lylla"‘ayNT;xll)"'xNT;yIO)"')yNO)
_ N(T+1) NT , N N(T-1)
R log2z - 2 logo* - > logé - 5 logn
N T . 2
(v - e -mi)
=1

L
20° ¢ t=1

1

N _Bo o, o’ 1 N
-—1lo =+ +—=) - 2.
2 g(l-}" (1-7)° 1-72) Z(ﬂzof T, o’ Ey”

&

+ + )
L=yt (A=) 1=y

Concentrating the likelihood function to permit a one- or two-dimensional grid search is no longer possible. If
gradient procedures yield and interior maximum, the ML estimates obtained are consistent as long as the

random variables ¢, = Dy’ A, have well-defined variances and covariance's, which they will if the x,
Jj=0

are generated by stationary a process. It doesn't really matter what this process is as long as it is stationary.

Bwids,sincethex.axeassumcdtobemgenous,wermllyhavenobasisonwhichtomodelmeir

determination and are likely to misspecify this part of the model. In this sense we ought to prefer this kind of

“almost full-information” maximmum likelihood. Still we have to assume something about the variance of the x

process in order to proceed. I suggest estimating a‘f from the sample data.

Togencxalizethesemuhstothemseinwhichthciramsevmalexplanatoryvaﬁablesinadclitiontothe
lagged value of the dependent variable, assume that X, follows a stationary VAR process and replace Bx*; by
X*pand B’} by BT ., B in the above fornmia.

S. Empirical Evidence on Growth Rate Convergence and the Comparative Performance of
Different Panel Data Methods

(a) Numerical Results.

In order to examine the effects of the econometric methods employed on the finding of growth
rate convergence or the lack of it, I initially used data on 94 countries for the period 1960 - 1985, and a -
subsample of 22 OECD countries, from the Penn World Tables 5.6, publicly available from the NBER
web site at fip://nber. harvard.edu/pub/. The countries are listed in the Appendix Table A-1. Following
Islam (1995), s and n were computed as quinquennial means over the preceding S-year span for the 5
years 1965, 1970, 1975, 1980, 1985; y was taken as the value reported in that year and in 1960 for the
lagged value applicable to 1965. Characteristics of the sample are reported in Table i. The results of the
six methods applied to these data or to their first differences are reported in Table 2 and 3. In the case of
the latter, an appropriate transformation of the original data is made to eliminate the serial correlation
introduced in the time-varying part of the disturbance by the first-difference transformation. I have listed
the regression methods in the order in which the corresponding estimates of y appear in the inequality of
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Trognon and Sevestre (equation 20 above). These estimates are followed by the maximum likelihood
estimates conditional on the initial values Yio and the ML estimates unconditional on the initial values,
assuming stationarity of both the processes generating the exogenous variable and real GDP per capita. In
a substantive study of growth rate convergence, it would clearly be important to include additional
explanatory variables such as. for example, the stock of human capital, also available at the NBER
internet site, infrastructure investment, and so forth. However, for my purpose here, omission of relevant
variables simply increases the unexplained disturbance variance and thus heightens the contrast among
alternative estimators.

TABLE 1: COMPARATIVE DESCRIPTIVE STATISTICS
FOR THE TWO SAMPLES

Item 94-country sample 22-country sample Ratio 22/94 values
Variance initial y 0.799 0.256 0.320
Variance final y 0.899 0.222 0.247
Correlation between y0
andy5  0.988 0.090 0.092
Variances about overail
means:
y 1.058 0.204 0.193
z 0.698 0.040 0.058
Pooled variances about
country means;
y 0.045 0.040 0.897
z 0.083 0.007 0.084

Turning now to the regression estimates presented in Tables 2 and 3:
[Insert Table 2 near here.]

Consider the first four methods applied to the levels model. The estimates of y for the 94-country
sample range from a low of 0.72 (fixed-effects regression) to a high of 0.98 (country means regression)
with pooled OLS and FGLS falling in between. For the OECD countries the range is 0.76 to 0.93. The
implied speed of convergence thus ranges from 90% in 35 years to 90% in 570 years. None could be
characterized as evidence of reasonably rapid convergence. All of the estimates of y satisfy the Trognon-
Sevestre inequality, although the regressions contain an exogenous explanatory variable in contrast to the
case considered by Trognon and Sevestre. Pooled OLS and FGLS also stand in the order predicted by the
Trognon-Sevestre results. While it is tempting to infer that FGLS provides a tighter upper bound to the
true value of y than the pooled OLS regression estimate, the temptation should be resisted. The FGLS
estimates are doubly inconsistent: they are based on an inconsistent estimate of p reflecting the
inconsistency of the estimates of the residual variance and the fixed effects depending on which
regressions they are derived from. Not only is the estimated value of B sensitive to the method of
estimation but the estimate of the elasticity of output with respect to capital stock in the production
function is extremely so, reflecting the dependence of the estimated value on the coefficient of the lagged
dependent variable, y. This parameter should estimate approximately (1 - the share of labor in the real
GDP). It is clear that all of the estimates of capital's share are wide of the mark. If therefore one were to
infer policy implications from this parameter, it could be seriously misleading,

The most interesting estimates are those for conditional and unconditional maximum likelihood
presented as methods 5 and 6 in Table 2. In the case of the 22 country OECD sample, these estimates
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differ quite a bit from one another, although unconditional ML is not far from the fixed-effects OLS
regression, while conditional ML yields resuits close to FGLS using the Balestra-Nerlove (1966) first-
round estimate of p. The contrast with the 94-country sample is striking: The conditional and the
unconditional ML estimates differ little from one another. They are close to the pooled OLS regression
estimates (a consequence of the fact that the estimated value of p is small although significantly different

from zero), but are both quite different than any of the inconsistent regression estimates. As found earlier,

the estimates of B are quite insensitive to the method used, but the estimates of Y are not very different
either; consequently the implied estimates of capital's share are similar, albeit different for the two

16
samples.

Turning now to the parameter estimates for the first-difference model presented in
Table3.

[Insert Table 3 near here.]

The contrast with the levels model is remarkable; at least in terms of reasonableness, at last we seem to be
in the right "ball park." Consider the first four methods applied to the levels model. The estimates of y for
the 94-country sample range from a low of 0.40 (fixed-effects regression) to a high of 0.92 (country means
regression) with pooled OLS and FGLS falling in between. For the OECD countries the range is 0.36 to
0.72. The implied speed of convergence thus much more reasonable that obtained for the levels mode},
although none could be characterized as evidence of reasonably rapid convergence. The estimates of Y no
longer satisfy the Trognon-Sevestre inequality. FGLS is now lower than the the estimate obtained by fixed
effects OLS. Pooled OLS is greater than FGLS and fixed-effects OLS, as predicted by the Trognon-

'® What accounts for these remarkable differences between the two samples and for the similarity of the
unconditional and conditional ML estimates for the 94-country sample? Consider the log of the ratio of
the unconditional to the conditional likelihood, i.e. the marginal density of y,:

log {lmconditional/conditionallikelihood}=

N N  po* po* (1-p)o? 1 N
log2r - : + -
2 ogarmr 2 Og(l_},z (1=7)2 1@72 2(ﬂ20'3 . po.z (1"“,0)6'2 ;
I-y* (1-p)*  1-p?

Let the sample variance of Yo be vary, and let
2 _ Bol  pot  (1-p)a’
=( 7t 7+ 2
-7 (1-y) 1-y
Then

log {unconditional / conditional likelihood }=
N N 2 Nvaryo
) log2n > log((p )A [ 20 |

This function is clearly decreasing in N and vary,, Its behavior with respect to ¢* depends on the relation
between vary, and %, when vary, > ¢?, it is increasing; but when vary, < ¢’, it is decreasing. Thus for a given
vary, the log of the ratio of the unconditional to the conditional density tends to zero, i.e. the ratio tends to one,
asN increases and as ¢ increases. In other words the unconditional becomes more and more like the conditional
ikelihood. For = 0.15,y=0.85, o7 =0.08, p=0.8 and o* = 0,02, ¢* = 0.73. Table 3 presents some
descriptive statistics for the two samples. Typically, vary, is much less than 0.73, for example, 0.256 for the 22-
Country sample. On the other hand it is about that value for the 94-country sample. Thus the principle
explanation for the similarity of the conditional ML and the unconditionai ML estimates for the 94-country

Sampleisthesizeofthecmss-sectiondimension; similarly, the small sample in the OECD case accounts for the
lack of similarity. '
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Sevestre results. As was the case for the levels model, the estimated value of B is sensitive to the method
of estimation, although generally less so, and the estimate of the elasticity of output with respect to capital
stock in the production function is more so, reflecting the dependence of the estimated value on the
coefficient of the lagged dependent variable, y. This parameter should estimate approximately (1 - the
share of labor in the real GDP). [t is clear that these estimates bring us much closer to what could be
considered a reasonable figure.

The most plausible estimates are those for conditional and unconditional maximum likelihood
presented as methods 5 and 6 in Table 3. In the case of the 22 country OECD sample, only the estimates
differ from one another. Implied speeds of convergence are still, however, quite slow for the OECD
countries, but much, much faster for the larger group of 94 countries. Perhaps one can conclude that if
differing country-specific trends are taken into account, so-called "beta convergence" obtains at a
reasonably rapid rate for a group of diverse countries, but when the relatively homogeneous group of
OECD countries is considered, convergence is much more problematic.

(b) Graphical Results.

(:) = 6 possible pairs to consider, I focus on the crucial pairs: pvs.yand Bvs.o . Itis important that
the likelihood functions as formulated reflect the operation of the process which generated the data before
we began to observe them; the appearence of the unconditional likelihood functions is rather different
even though the ML estimates are quite close to those given by the unconditional likelihood functions.

Figures 1 and 2 give one-parameter slices and 2-parameter 3-D plots of the likelihood for the
pairs p-y and B-c? for the 94- and 22-country samples, respectively. Each Figure consists of two papges
with four plots each. The figures are at the end of the paper. The main finding is that the difference
between the estimates for the two samples is not great except for a much slower speed of convergence
(larger y) for the more diverse 94-country sample and is well-supported by the shape of the likelihood
functions in the two cases.

The likelihood reaches a unique maximum in every case. Except for o?, the functions are well-
behaved in the vicinity of the maximizing parameter values. Since the value of o2 is bounded from below
by zero, the graph has the typical shape found in regression problems: a sharp rise from near zero
followed by a long slow decline. I find no evidence of double maxima or a boundary maximum of the
likelihood function with respect to p- There is clearly considerable "trade-off" between p and y for the 94-
country sample and to a lesser degree for the 22-country sample.

6. Conclusions

The principal conclusion that can be drawn from this analysis is that, in panel data econometrics,
method matters — a lot. Although, using a highly simplified Solow/Swan model without human capital
stocks or infrastructure, I have found estimates of the adjustment parameter significantly different than
one in every case, indicating convergence. All of the estimates based on analyses of levels, however, are so
close to one, always greater than 0.7, that convergence to within 90% of equilibrium in less than one
generation is effectively ruled out. This can hardly be called "convergence" in any relevant sense.
Moreover, the estimates range from 0.72 to 0.98, suggesting a convergence range of from 33 to over 500
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years, with most clustering around 0.8, underscoring the importance of choice of econometric method.
Much of the variation in estimates of the speed of convergence appears to be due to trade-offs between the
crucial parameter p, which measures the importance of unobserved cross-sectional variation relative to
total residual variation, and y, which measures the speed of adjustment. For this reason, it is especially
important to introduce other relevant variables, such as infrastructure investment and human capital
stock, in order to reduce the importance of unobserved cross-sectional variation. When differing country-
specific trend are taken into account and when likelihood methods are employed which take into account
the operation of the growth process prior to the point at which the data sample begins, however, the
results are dramatically different: convergence to paths conditioned on differing savings and population
growth rates and country specific trends is quite rapid for the relatively homogeneous 22-contry sample,
although it is still very slow for the more heterogeneous 94-country sample.
A second important finding is that the Sevestre-Trognon inequality, proved only for the case
B =0, and then only asymptotically, holds for all the examples presented except for one reversal in the
case of the first-difference model.. Indeed, fixed-effects OLS always yields estimates of the adjustment
parameter at the extreme low end of the range of estimates obtained. The "bias" of fixed-effects models in
the estimation of dynamic panel models is apparent. In this context, the use of such methods biases a test
for convergence, or more appropriately rapid convergence, towards finding it. Fixed-effects models,
however, are widely used, in part because they are the basis for two-round FGLS estimators, and because
computer packages for panel data analysis incorporate an extremely misguided suggestion for estimating
P, guaranteed to yield extremely low or even negative values of this parameter. These packages should be
avoided, and, if they are used and do yield a negative estimate, it should not be concluded that the model
is misspecified or that fixed-effects are a preferable alternative. Fixed-effects OLS remains badly biased in
a dynamic context irrespective of whether the packaged routines fail.
I do find, however, that FGLS, using the Balestra-Nerlove (1966) estimate of p, which can never
be negative, always lie between the fixed-effects OLS estimates and the pooled OLS estimates, which are
known to yield upwardly biased estimates of y. It is not appropriate to conclude that these FGLS estimates,

~ however, represent a tighter upper bound to the true value of y, since they are doubly inconsistent

estimates and may lie below the true value. This is underscored by the finding that both conditional and
unconditional ML yield different estimates of p and y, sometimes higher and sometimes lower than FGLS.
The interaction between p and y is crucial in this regard.

Finally, maximum likelihood, unconditional on the initial observations, assuming them to be
stationary and generated by the same dynamic process we are trying to estimate and assuming the
exogenous variables also to be stationary, is feasible and indeed a viable alternative to conventional
regression methods or conditional ML. Use of such methods will, however, generally involve removal of
the overall means of all variables prior to analysis and omission of a constant term and may also involve
differencing to remove deterministic or stochastic trends. formulation of the unconditional likelihood

function is somewhat more complicated in the case of differenced variables but has been carried out here
without significant trauma.
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Data on 94 countries for the period 1960 - 1985 from the Penn World Tabl
the NBER web site at ftp://nber. harvard.edw/pub/.

22-Country Sample:

Japan

Austria

Belgium
Denmark
Finland

France

Germany (FRG)
Greece

Ireland
Italy
Netherlands
Norway
Portugal
Spain
Sweden
Switzerland
Turkey
U.K
Canada
U.S.
Australia
New Zealand

Appendix:

94-country Sample = 22-Country Sample + the Following:

Uruguay
Venezuela
Bangladesh
Hong Kong
India

Central African Republic
Chad

Congo

Egypt

Ghana

Liberia

Mauritania
Mauritius
Mozambique
Niger

Rwanda

Somali

Togo

Uganda

Zaire

Nepal

Papua New Guinea
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es 5.6, publicly available from
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TABLE 2: PARAMETER ESTIMATES FOR THE MODEL IN LEVELS,

ALTERNATIVE ECONOMETRIC ANALYSES

METHOD OF ANALYSYS

94-COUNTRY SAMPLE

22-COUNTRY SAMPLE

1. Fixed Effects OLS
Y

B

Implied Capital Share
Residual Variance

2. Feasible GLS
Estimate of P used’

Y
B

Implied Capital Share
Residual Variance

3. Pooled OLS
Y

Implied Capital Share
Residual Variance

4. Country Means OLS
Y

Implied Capital Share
Residual Variance

5. Conditional ML
P

Y
Implied Capital Share
Residual Variance

6. Unconditional ML
Estimates of of used
P
Y

Implied Capital Share
Residual Variance

0.7204 (0.0211)
0.1656 (0.0172)

0.3719 (0.0278)
0.0113

0.2675
0.9130 (0.0119)
0.1520 (0.0135)

0.6362 (0.0247)
0.0213

0.9487 (0.0090)
0.1244 (0.0108)

0.7080 (0.0271)
0.0193

0.9817 (0.0112)
0.0919 (0.0138)

0.8339 (0.0704)
0.0047

0.1133 (0.0497)
0.9339 (0.0122)
0.1370 (0.0131)

0.6744 (0.0289)
0.0194 (0.0013)

0.0826

0.1288 (0.0456)
0.9385 (0.0105)
0.1334 (0.0124)

0.6846 (0.0277)
0.0197 (0.0013)

0.7645 (0.0166)
0.1634 (0.0510)

0.4096 (0.0783)
0.0020

0.4027
0.8282 (0.0156)
0.1913 (0.0422)

0.5269 (0.0579)
0.0047

0.8857 (0.0125)
0.1764 (0.0308)

0.6067 (0.0452)
0.0041

0.9320 (0.0148)
0.1493 (0.0343)

0.6870 (0.0593)
0.0580

0.4796 (0.1584)
0.8189 (0.0245)
0.1908 (0.0438)

0.5131 (0.0664)
0.0052 (0.0012)

0.0069

0.7700 (0.0731)
0.8085 (0.0228)
0.1815 (0.0521)

0.4865 (0.0791)
0.0113 (0.0028)

Figures in parentheses are standard ervors.

¢ Estimated by the method suggested in Balestra and Nerlove (1966).
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TABLE 3: PARAMETER ESTIMATES FOR THE MODEL IN FIRST DIFFERENCES,
ALTERNATIVE ECONOMETRIC ANALYSES

METHOD OF ANALYSYS 94-COUNTRY SAMPLE 22-COUNTRY SAMPLE

. Fixed Effects OLS

Y 0.4007 (0.0375) 0.4544 (0.0611)
B 0.1199 (0.0187) -0.0126 (0.0637)
Implied Capital Share 0.1667 (0.0246) -0.0237 (0.1209)
Residual Variance 0.0077 0.0014

. Feasible GLS
Estimate of P used’ 0.4866 0.3628

y

0.4227 (0.0406)

0.5833 (0.0531)

B 0.1520 (0.0135) 0.1913 (0.0422)
Implied Capital Share 0.1864 (0.0259) 0.1322 (0.1218)
Residual Variance 0.0213 0.0047

. Pooled OLS
Y 0.7031 (0.0328) 0.6237 (0.0453)
[3 0.1632 (0.0195) 0.0845 (0.0586)
Implied Capital Share 0.3548 (0.0373) 0.1834 (0.1121)
Residual Variance 0.0141 0.0022

. Country Means OLS
Y 0.9178 (0.0471) 0.7215 (0.0572)
B 0.1719 (0.0339) 0.1174 (0.0978)
Implied Capital Share 0.6763 (0.1263) 0.2965 (0.1873)
Residual Variance 0.0041 0.0005

. Conditional ML
p 0.2267 (0.0664) 0.0126 (0.0405)
Y 0.4540 (0.0651) 0.6187 (0.0490)
B 0.1368 (0.0208) 0.0815 (0.0601)
Implied Capital Share 0.2004 (0.0358) 0.1762 (0.1159)
Residual Variance 0.0122 (0.0009) 0.0021 (0.0003)

. Unconditional ML
Estimate of o> used 0.0597 0.0058
o) 0.2335 (0.0632) 0.0936 (0.0696)

Y 0.4364 (0.0578) 0.7254 (0.0512)
ﬁ 0.1340 (0.0201) 0.1478 (0.0727)
Implied Capital Share 0.1921 (0.0317) 0.3500 (0.1326)
Residual Variance 0.0120 (0.0008) 0.0027 (0.0004)

Figures in parentheses are standard errors.

* Estimated by the method suggesicd in Balestra and Nerlove (1966).
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